summaryrefslogtreecommitdiff
path: root/src/arch/x86/pagetable_walker.cc
blob: 46d608aceb3372a99f05eeb9654d158d411d83d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
/*
 * Copyright (c) 2012 ARM Limited
 * All rights reserved.
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2007 The Hewlett-Packard Development Company
 * All rights reserved.
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Gabe Black
 */

#include "arch/x86/pagetable.hh"
#include "arch/x86/pagetable_walker.hh"
#include "arch/x86/tlb.hh"
#include "arch/x86/vtophys.hh"
#include "base/bitfield.hh"
#include "base/trie.hh"
#include "cpu/base.hh"
#include "cpu/thread_context.hh"
#include "debug/PageTableWalker.hh"
#include "mem/packet_access.hh"
#include "mem/request.hh"

namespace X86ISA {

// Unfortunately, the placement of the base field in a page table entry is
// very erratic and would make a mess here. It might be moved here at some
// point in the future.
BitUnion64(PageTableEntry)
    Bitfield<63> nx;
    Bitfield<11, 9> avl;
    Bitfield<8> g;
    Bitfield<7> ps;
    Bitfield<6> d;
    Bitfield<5> a;
    Bitfield<4> pcd;
    Bitfield<3> pwt;
    Bitfield<2> u;
    Bitfield<1> w;
    Bitfield<0> p;
EndBitUnion(PageTableEntry)

Fault
Walker::start(ThreadContext * _tc, BaseTLB::Translation *_translation,
              RequestPtr _req, BaseTLB::Mode _mode)
{
    // TODO: in timing mode, instead of blocking when there are other
    // outstanding requests, see if this request can be coalesced with
    // another one (i.e. either coalesce or start walk)
    WalkerState * newState = new WalkerState(this, _translation, _req);
    newState->initState(_tc, _mode, sys->getMemoryMode() == Enums::timing);
    if (currStates.size()) {
        assert(newState->isTiming());
        DPRINTF(PageTableWalker, "Walks in progress: %d\n", currStates.size());
        currStates.push_back(newState);
        return NoFault;
    } else {
        currStates.push_back(newState);
        Fault fault = newState->startWalk();
        if (!newState->isTiming()) {
            currStates.pop_front();
            delete newState;
        }
        return fault;
    }
}

Fault
Walker::startFunctional(ThreadContext * _tc, Addr &addr, unsigned &logBytes,
              BaseTLB::Mode _mode)
{
    funcState.initState(_tc, _mode);
    return funcState.startFunctional(addr, logBytes);
}

bool
Walker::WalkerPort::recvTimingResp(PacketPtr pkt)
{
    return walker->recvTimingResp(pkt);
}

bool
Walker::recvTimingResp(PacketPtr pkt)
{
    WalkerSenderState * senderState =
        dynamic_cast<WalkerSenderState *>(pkt->senderState);
    pkt->senderState = senderState->saved;
    WalkerState * senderWalk = senderState->senderWalk;
    bool walkComplete = senderWalk->recvPacket(pkt);
    delete senderState;
    if (walkComplete) {
        std::list<WalkerState *>::iterator iter;
        for (iter = currStates.begin(); iter != currStates.end(); iter++) {
            WalkerState * walkerState = *(iter);
            if (walkerState == senderWalk) {
                iter = currStates.erase(iter);
                break;
            }
        }
        delete senderWalk;
        // Since we block requests when another is outstanding, we
        // need to check if there is a waiting request to be serviced
        if (currStates.size()) {
            WalkerState * newState = currStates.front();
            if (!newState->wasStarted())
                newState->startWalk();
        }
    }
    return true;
}

void
Walker::WalkerPort::recvRetry()
{
    walker->recvRetry();
}

void
Walker::recvRetry()
{
    std::list<WalkerState *>::iterator iter;
    for (iter = currStates.begin(); iter != currStates.end(); iter++) {
        WalkerState * walkerState = *(iter);
        if (walkerState->isRetrying()) {
            walkerState->retry();
        }
    }
}

bool Walker::sendTiming(WalkerState* sendingState, PacketPtr pkt)
{
    pkt->senderState = new WalkerSenderState(sendingState, pkt->senderState);
    return port.sendTimingReq(pkt);
}

MasterPort &
Walker::getMasterPort(const std::string &if_name, int idx)
{
    if (if_name == "port")
        return port;
    else
        return MemObject::getMasterPort(if_name, idx);
}

void
Walker::WalkerState::initState(ThreadContext * _tc,
        BaseTLB::Mode _mode, bool _isTiming)
{
    assert(state == Ready);
    started = false;
    tc = _tc;
    mode = _mode;
    timing = _isTiming;
}

Fault
Walker::WalkerState::startWalk()
{
    Fault fault = NoFault;
    assert(started == false);
    started = true;
    setupWalk(req->getVaddr());
    if (timing) {
        nextState = state;
        state = Waiting;
        timingFault = NoFault;
        sendPackets();
    } else {
        do {
            walker->port.sendAtomic(read);
            PacketPtr write = NULL;
            fault = stepWalk(write);
            assert(fault == NoFault || read == NULL);
            state = nextState;
            nextState = Ready;
            if (write)
                walker->port.sendAtomic(write);
        } while(read);
        state = Ready;
        nextState = Waiting;
    }
    return fault;
}

Fault
Walker::WalkerState::startFunctional(Addr &addr, unsigned &logBytes)
{
    Fault fault = NoFault;
    assert(started == false);
    started = true;
    setupWalk(addr);

    do {
        walker->port.sendFunctional(read);
        // On a functional access (page table lookup), writes should
        // not happen so this pointer is ignored after stepWalk
        PacketPtr write = NULL;
        fault = stepWalk(write);
        assert(fault == NoFault || read == NULL);
        state = nextState;
        nextState = Ready;
    } while(read);
    logBytes = entry.logBytes;
    addr = entry.paddr;

    return fault;
}

Fault
Walker::WalkerState::stepWalk(PacketPtr &write)
{
    assert(state != Ready && state != Waiting);
    Fault fault = NoFault;
    write = NULL;
    PageTableEntry pte;
    if (dataSize == 8)
        pte = read->get<uint64_t>();
    else
        pte = read->get<uint32_t>();
    VAddr vaddr = entry.vaddr;
    bool uncacheable = pte.pcd;
    Addr nextRead = 0;
    bool doWrite = false;
    bool doTLBInsert = false;
    bool doEndWalk = false;
    bool badNX = pte.nx && mode == BaseTLB::Execute && enableNX;
    switch(state) {
      case LongPML4:
        DPRINTF(PageTableWalker,
                "Got long mode PML4 entry %#016x.\n", (uint64_t)pte);
        nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.longl3 * dataSize;
        doWrite = !pte.a;
        pte.a = 1;
        entry.writable = pte.w;
        entry.user = pte.u;
        if (badNX || !pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        entry.noExec = pte.nx;
        nextState = LongPDP;
        break;
      case LongPDP:
        DPRINTF(PageTableWalker,
                "Got long mode PDP entry %#016x.\n", (uint64_t)pte);
        nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.longl2 * dataSize;
        doWrite = !pte.a;
        pte.a = 1;
        entry.writable = entry.writable && pte.w;
        entry.user = entry.user && pte.u;
        if (badNX || !pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        nextState = LongPD;
        break;
      case LongPD:
        DPRINTF(PageTableWalker,
                "Got long mode PD entry %#016x.\n", (uint64_t)pte);
        doWrite = !pte.a;
        pte.a = 1;
        entry.writable = entry.writable && pte.w;
        entry.user = entry.user && pte.u;
        if (badNX || !pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        if (!pte.ps) {
            // 4 KB page
            entry.logBytes = 12;
            nextRead =
                ((uint64_t)pte & (mask(40) << 12)) + vaddr.longl1 * dataSize;
            nextState = LongPTE;
            break;
        } else {
            // 2 MB page
            entry.logBytes = 21;
            entry.paddr = (uint64_t)pte & (mask(31) << 21);
            entry.uncacheable = uncacheable;
            entry.global = pte.g;
            entry.patBit = bits(pte, 12);
            entry.vaddr = entry.vaddr & ~((2 * (1 << 20)) - 1);
            doTLBInsert = true;
            doEndWalk = true;
            break;
        }
      case LongPTE:
        DPRINTF(PageTableWalker,
                "Got long mode PTE entry %#016x.\n", (uint64_t)pte);
        doWrite = !pte.a;
        pte.a = 1;
        entry.writable = entry.writable && pte.w;
        entry.user = entry.user && pte.u;
        if (badNX || !pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        entry.paddr = (uint64_t)pte & (mask(40) << 12);
        entry.uncacheable = uncacheable;
        entry.global = pte.g;
        entry.patBit = bits(pte, 12);
        entry.vaddr = entry.vaddr & ~((4 * (1 << 10)) - 1);
        doTLBInsert = true;
        doEndWalk = true;
        break;
      case PAEPDP:
        DPRINTF(PageTableWalker,
                "Got legacy mode PAE PDP entry %#08x.\n", (uint32_t)pte);
        nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.pael2 * dataSize;
        if (!pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        nextState = PAEPD;
        break;
      case PAEPD:
        DPRINTF(PageTableWalker,
                "Got legacy mode PAE PD entry %#08x.\n", (uint32_t)pte);
        doWrite = !pte.a;
        pte.a = 1;
        entry.writable = pte.w;
        entry.user = pte.u;
        if (badNX || !pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        if (!pte.ps) {
            // 4 KB page
            entry.logBytes = 12;
            nextRead = ((uint64_t)pte & (mask(40) << 12)) + vaddr.pael1 * dataSize;
            nextState = PAEPTE;
            break;
        } else {
            // 2 MB page
            entry.logBytes = 21;
            entry.paddr = (uint64_t)pte & (mask(31) << 21);
            entry.uncacheable = uncacheable;
            entry.global = pte.g;
            entry.patBit = bits(pte, 12);
            entry.vaddr = entry.vaddr & ~((2 * (1 << 20)) - 1);
            doTLBInsert = true;
            doEndWalk = true;
            break;
        }
      case PAEPTE:
        DPRINTF(PageTableWalker,
                "Got legacy mode PAE PTE entry %#08x.\n", (uint32_t)pte);
        doWrite = !pte.a;
        pte.a = 1;
        entry.writable = entry.writable && pte.w;
        entry.user = entry.user && pte.u;
        if (badNX || !pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        entry.paddr = (uint64_t)pte & (mask(40) << 12);
        entry.uncacheable = uncacheable;
        entry.global = pte.g;
        entry.patBit = bits(pte, 7);
        entry.vaddr = entry.vaddr & ~((4 * (1 << 10)) - 1);
        doTLBInsert = true;
        doEndWalk = true;
        break;
      case PSEPD:
        DPRINTF(PageTableWalker,
                "Got legacy mode PSE PD entry %#08x.\n", (uint32_t)pte);
        doWrite = !pte.a;
        pte.a = 1;
        entry.writable = pte.w;
        entry.user = pte.u;
        if (!pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        if (!pte.ps) {
            // 4 KB page
            entry.logBytes = 12;
            nextRead =
                ((uint64_t)pte & (mask(20) << 12)) + vaddr.norml2 * dataSize;
            nextState = PTE;
            break;
        } else {
            // 4 MB page
            entry.logBytes = 21;
            entry.paddr = bits(pte, 20, 13) << 32 | bits(pte, 31, 22) << 22;
            entry.uncacheable = uncacheable;
            entry.global = pte.g;
            entry.patBit = bits(pte, 12);
            entry.vaddr = entry.vaddr & ~((4 * (1 << 20)) - 1);
            doTLBInsert = true;
            doEndWalk = true;
            break;
        }
      case PD:
        DPRINTF(PageTableWalker,
                "Got legacy mode PD entry %#08x.\n", (uint32_t)pte);
        doWrite = !pte.a;
        pte.a = 1;
        entry.writable = pte.w;
        entry.user = pte.u;
        if (!pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        // 4 KB page
        entry.logBytes = 12;
        nextRead = ((uint64_t)pte & (mask(20) << 12)) + vaddr.norml2 * dataSize;
        nextState = PTE;
        break;
      case PTE:
        DPRINTF(PageTableWalker,
                "Got legacy mode PTE entry %#08x.\n", (uint32_t)pte);
        doWrite = !pte.a;
        pte.a = 1;
        entry.writable = pte.w;
        entry.user = pte.u;
        if (!pte.p) {
            doEndWalk = true;
            fault = pageFault(pte.p);
            break;
        }
        entry.paddr = (uint64_t)pte & (mask(20) << 12);
        entry.uncacheable = uncacheable;
        entry.global = pte.g;
        entry.patBit = bits(pte, 7);
        entry.vaddr = entry.vaddr & ~((4 * (1 << 10)) - 1);
        doTLBInsert = true;
        doEndWalk = true;
        break;
      default:
        panic("Unknown page table walker state %d!\n");
    }
    if (doEndWalk) {
        if (doTLBInsert)
            if (!functional)
                walker->tlb->insert(entry.vaddr, entry);
        endWalk();
    } else {
        PacketPtr oldRead = read;
        //If we didn't return, we're setting up another read.
        Request::Flags flags = oldRead->req->getFlags();
        flags.set(Request::UNCACHEABLE, uncacheable);
        RequestPtr request =
            new Request(nextRead, oldRead->getSize(), flags, walker->masterId);
        read = new Packet(request, MemCmd::ReadReq);
        read->allocate();
        // If we need to write, adjust the read packet to write the modified
        // value back to memory.
        if (doWrite) {
            write = oldRead;
            write->set<uint64_t>(pte);
            write->cmd = MemCmd::WriteReq;
            write->clearDest();
        } else {
            write = NULL;
            delete oldRead->req;
            delete oldRead;
        }
    }
    return fault;
}

void
Walker::WalkerState::endWalk()
{
    nextState = Ready;
    delete read->req;
    delete read;
    read = NULL;
}

void
Walker::WalkerState::setupWalk(Addr vaddr)
{
    VAddr addr = vaddr;
    CR3 cr3 = tc->readMiscRegNoEffect(MISCREG_CR3);
    // Check if we're in long mode or not
    Efer efer = tc->readMiscRegNoEffect(MISCREG_EFER);
    dataSize = 8;
    Addr topAddr;
    if (efer.lma) {
        // Do long mode.
        state = LongPML4;
        topAddr = (cr3.longPdtb << 12) + addr.longl4 * dataSize;
        enableNX = efer.nxe;
    } else {
        // We're in some flavor of legacy mode.
        CR4 cr4 = tc->readMiscRegNoEffect(MISCREG_CR4);
        if (cr4.pae) {
            // Do legacy PAE.
            state = PAEPDP;
            topAddr = (cr3.paePdtb << 5) + addr.pael3 * dataSize;
            enableNX = efer.nxe;
        } else {
            dataSize = 4;
            topAddr = (cr3.pdtb << 12) + addr.norml2 * dataSize;
            if (cr4.pse) {
                // Do legacy PSE.
                state = PSEPD;
            } else {
                // Do legacy non PSE.
                state = PD;
            }
            enableNX = false;
        }
    }

    nextState = Ready;
    entry.vaddr = vaddr;

    Request::Flags flags = Request::PHYSICAL;
    if (cr3.pcd)
        flags.set(Request::UNCACHEABLE);
    RequestPtr request = new Request(topAddr, dataSize, flags,
                                     walker->masterId);
    read = new Packet(request, MemCmd::ReadReq);
    read->allocate();
}

bool
Walker::WalkerState::recvPacket(PacketPtr pkt)
{
    assert(pkt->isResponse());
    assert(inflight);
    assert(state == Waiting);
    assert(!read);
    inflight--;
    if (pkt->isRead()) {
        state = nextState;
        nextState = Ready;
        PacketPtr write = NULL;
        read = pkt;
        timingFault = stepWalk(write);
        state = Waiting;
        assert(timingFault == NoFault || read == NULL);
        if (write) {
            writes.push_back(write);
        }
        sendPackets();
    } else {
        sendPackets();
    }
    if (inflight == 0 && read == NULL && writes.size() == 0) {
        state = Ready;
        nextState = Waiting;
        if (timingFault == NoFault) {
            /*
             * Finish the translation. Now that we now the right entry is
             * in the TLB, this should work with no memory accesses.
             * There could be new faults unrelated to the table walk like
             * permissions violations, so we'll need the return value as
             * well.
             */
            bool delayedResponse;
            Fault fault = walker->tlb->translate(req, tc, NULL, mode,
                                                 delayedResponse, true);
            assert(!delayedResponse);
            // Let the CPU continue.
            translation->finish(fault, req, tc, mode);
        } else {
            // There was a fault during the walk. Let the CPU know.
            translation->finish(timingFault, req, tc, mode);
        }
        return true;
    }

    return false;
}

void
Walker::WalkerState::sendPackets()
{
    //If we're already waiting for the port to become available, just return.
    if (retrying)
        return;

    //Reads always have priority
    if (read) {
        PacketPtr pkt = read;
        read = NULL;
        inflight++;
        if (!walker->sendTiming(this, pkt)) {
            retrying = true;
            read = pkt;
            inflight--;
            return;
        }
    }
    //Send off as many of the writes as we can.
    while (writes.size()) {
        PacketPtr write = writes.back();
        writes.pop_back();
        inflight++;
        if (!walker->sendTiming(this, write)) {
            retrying = true;
            writes.push_back(write);
            inflight--;
            return;
        }
    }
}

bool
Walker::WalkerState::isRetrying()
{
    return retrying;
}

bool
Walker::WalkerState::isTiming()
{
    return timing;
}

bool
Walker::WalkerState::wasStarted()
{
    return started;
}

void
Walker::WalkerState::retry()
{
    retrying = false;
    sendPackets();
}

Fault
Walker::WalkerState::pageFault(bool present)
{
    DPRINTF(PageTableWalker, "Raising page fault.\n");
    HandyM5Reg m5reg = tc->readMiscRegNoEffect(MISCREG_M5_REG);
    if (mode == BaseTLB::Execute && !enableNX)
        mode = BaseTLB::Read;
    return new PageFault(entry.vaddr, present, mode, m5reg.cpl == 3, false);
}

/* end namespace X86ISA */ }

X86ISA::Walker *
X86PagetableWalkerParams::create()
{
    return new X86ISA::Walker(this);
}