summaryrefslogtreecommitdiff
path: root/src/arch/x86/predecoder.cc
blob: 407a09ec037c1b96b75ede56da95f9a167c9dc97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/*
 * Copyright (c) 2007 The Hewlett-Packard Development Company
 * All rights reserved.
 *
 * Redistribution and use of this software in source and binary forms,
 * with or without modification, are permitted provided that the
 * following conditions are met:
 *
 * The software must be used only for Non-Commercial Use which means any
 * use which is NOT directed to receiving any direct monetary
 * compensation for, or commercial advantage from such use.  Illustrative
 * examples of non-commercial use are academic research, personal study,
 * teaching, education and corporate research & development.
 * Illustrative examples of commercial use are distributing products for
 * commercial advantage and providing services using the software for
 * commercial advantage.
 *
 * If you wish to use this software or functionality therein that may be
 * covered by patents for commercial use, please contact:
 *     Director of Intellectual Property Licensing
 *     Office of Strategy and Technology
 *     Hewlett-Packard Company
 *     1501 Page Mill Road
 *     Palo Alto, California  94304
 *
 * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.  Redistributions
 * in binary form must reproduce the above copyright notice, this list of
 * conditions and the following disclaimer in the documentation and/or
 * other materials provided with the distribution.  Neither the name of
 * the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.  No right of
 * sublicense is granted herewith.  Derivatives of the software and
 * output created using the software may be prepared, but only for
 * Non-Commercial Uses.  Derivatives of the software may be shared with
 * others provided: (i) the others agree to abide by the list of
 * conditions herein which includes the Non-Commercial Use restrictions;
 * and (ii) such Derivatives of the software include the above copyright
 * notice to acknowledge the contribution from this software where
 * applicable, this list of conditions and the disclaimer below.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Gabe Black
 */

#include "arch/x86/predecoder.hh"
#include "base/misc.hh"
#include "base/trace.hh"
#include "sim/host.hh"

namespace X86ISA
{
    void Predecoder::doReset()
    {
        origPC = basePC + offset;
        DPRINTF(Predecoder, "Setting origPC to %#x\n", origPC);
        emi.rex = 0;
        emi.legacy = 0;
        emi.opcode.num = 0;
        emi.opcode.op = 0;
        emi.opcode.prefixA = emi.opcode.prefixB = 0;

        immediateCollected = 0;
        emi.immediate = 0;
        emi.displacement = 0;

        emi.modRM = 0;
        emi.sib = 0;
        emi.mode = 0;
    }

    void Predecoder::process()
    {
        //This function drives the predecoder state machine.

        //Some sanity checks. You shouldn't try to process more bytes if
        //there aren't any, and you shouldn't overwrite an already
        //predecoder ExtMachInst.
        assert(!outOfBytes);
        assert(!emiIsReady);

        //While there's still something to do...
        while(!emiIsReady && !outOfBytes)
        {
            uint8_t nextByte = getNextByte();
            switch(state)
            {
              case ResetState:
                doReset();
                state = PrefixState;
              case PrefixState:
                state = doPrefixState(nextByte);
                break;
              case OpcodeState:
                state = doOpcodeState(nextByte);
                break;
              case ModRMState:
                state = doModRMState(nextByte);
                break;
              case SIBState:
                state = doSIBState(nextByte);
                break;
              case DisplacementState:
                state = doDisplacementState();
                break;
              case ImmediateState:
                state = doImmediateState();
                break;
              case ErrorState:
                panic("Went to the error state in the predecoder.\n");
              default:
                panic("Unrecognized state! %d\n", state);
            }
        }
    }

    //Either get a prefix and record it in the ExtMachInst, or send the
    //state machine on to get the opcode(s).
    Predecoder::State Predecoder::doPrefixState(uint8_t nextByte)
    {
        uint8_t prefix = Prefixes[nextByte];
        State nextState = PrefixState;
        if(prefix)
            consumeByte();
        switch(prefix)
        {
            //Operand size override prefixes
          case OperandSizeOverride:
            DPRINTF(Predecoder, "Found operand size override prefix.\n");
            emi.legacy.op = true;
            break;
          case AddressSizeOverride:
            DPRINTF(Predecoder, "Found address size override prefix.\n");
            emi.legacy.addr = true;
            break;
            //Segment override prefixes
          case CSOverride:
          case DSOverride:
          case ESOverride:
          case FSOverride:
          case GSOverride:
          case SSOverride:
            DPRINTF(Predecoder, "Found segment override.\n");
            emi.legacy.seg = prefix;
            break;
          case Lock:
            DPRINTF(Predecoder, "Found lock prefix.\n");
            emi.legacy.lock = true;
            break;
          case Rep:
            DPRINTF(Predecoder, "Found rep prefix.\n");
            emi.legacy.rep = true;
            break;
          case Repne:
            DPRINTF(Predecoder, "Found repne prefix.\n");
            emi.legacy.repne = true;
            break;
          case RexPrefix:
            DPRINTF(Predecoder, "Found Rex prefix %#x.\n", nextByte);
            emi.rex = nextByte;
            break;
          case 0:
            nextState = OpcodeState;
            break;
          default:
            panic("Unrecognized prefix %#x\n", nextByte);
        }
        return nextState;
    }

    //Load all the opcodes (currently up to 2) and then figure out
    //what immediate and/or ModRM is needed.
    Predecoder::State Predecoder::doOpcodeState(uint8_t nextByte)
    {
        State nextState = ErrorState;
        emi.opcode.num++;
        //We can't handle 3+ byte opcodes right now
        assert(emi.opcode.num < 3);
        consumeByte();
        if(emi.opcode.num == 1 && nextByte == 0x0f)
        {
            nextState = OpcodeState;
            DPRINTF(Predecoder, "Found two byte opcode.\n");
            emi.opcode.prefixA = nextByte;
        }
        else if(emi.opcode.num == 2 &&
                (nextByte == 0x0f ||
                 (nextByte & 0xf8) == 0x38))
        {
            panic("Three byte opcodes aren't yet supported!\n");
            nextState = OpcodeState;
            DPRINTF(Predecoder, "Found three byte opcode.\n");
            emi.opcode.prefixB = nextByte;
        }
        else
        {
            DPRINTF(Predecoder, "Found opcode %#x.\n", nextByte);
            emi.opcode.op = nextByte;

            //Figure out the effective operand size. This can be overriden to
            //a fixed value at the decoder level.
            int logOpSize;
            if(/*FIXME long mode*/1)
            {
                if(emi.rex.w)
                    logOpSize = 3; // 64 bit operand size
                else if(emi.legacy.op)
                    logOpSize = 1; // 16 bit operand size
                else
                    logOpSize = 2; // 32 bit operand size
            }
            else if(/*FIXME default 32*/1)
            {
                if(emi.legacy.op)
                    logOpSize = 1; // 16 bit operand size
                else
                    logOpSize = 2; // 32 bit operand size
            }
            else // 16 bit default operand size
            {
                if(emi.legacy.op)
                    logOpSize = 2; // 32 bit operand size
                else
                    logOpSize = 1; // 16 bit operand size
            }

            //Set the actual op size
            emi.opSize = 1 << logOpSize;

            //Figure out the effective address size. This can be overriden to
            //a fixed value at the decoder level.
            int logAddrSize;
            if(/*FIXME 64-bit mode*/1)
            {
                if(emi.legacy.addr)
                    logAddrSize = 2; // 32 bit address size
                else
                    logAddrSize = 3; // 64 bit address size
            }
            else if(/*FIXME default 32*/1)
            {
                if(emi.legacy.addr)
                    logAddrSize = 1; // 16 bit address size
                else
                    logAddrSize = 2; // 32 bit address size
            }
            else // 16 bit default operand size
            {
                if(emi.legacy.addr)
                    logAddrSize = 2; // 32 bit address size
                else
                    logAddrSize = 1; // 16 bit address size
            }

            //Set the actual address size
            emi.addrSize = 1 << logAddrSize;

            //Figure out how big of an immediate we'll retreive based
            //on the opcode.
            int immType = ImmediateType[emi.opcode.num - 1][nextByte];
            if (emi.opcode.num == 1 && nextByte >= 0xA0 && nextByte <= 0xA3)
                immediateSize = SizeTypeToSize[logAddrSize - 1][immType];
            else
                immediateSize = SizeTypeToSize[logOpSize - 1][immType];

            //Determine what to expect next
            if (UsesModRM[emi.opcode.num - 1][nextByte]) {
                nextState = ModRMState;
            } else {
                if(immediateSize) {
                    nextState = ImmediateState;
                } else {
                    emiIsReady = true;
                    nextState = ResetState;
                }
            }
        }
        return nextState;
    }

    //Get the ModRM byte and determine what displacement, if any, there is.
    //Also determine whether or not to get the SIB byte, displacement, or
    //immediate next.
    Predecoder::State Predecoder::doModRMState(uint8_t nextByte)
    {
        State nextState = ErrorState;
        ModRM modRM;
        modRM = nextByte;
        DPRINTF(Predecoder, "Found modrm byte %#x.\n", nextByte);
        if (0) {//FIXME in 16 bit mode
            //figure out 16 bit displacement size
            if(modRM.mod == 0 && modRM.rm == 6 || modRM.mod == 2)
                displacementSize = 2;
            else if(modRM.mod == 1)
                displacementSize = 1;
            else
                displacementSize = 0;
        } else {
            //figure out 32/64 bit displacement size
            if(modRM.mod == 0 && modRM.rm == 5 || modRM.mod == 2)
                displacementSize = 4;
            else if(modRM.mod == 1)
                displacementSize = 1;
            else
                displacementSize = 0;
        }

        // The "test" instruction in group 3 needs an immediate, even though
        // the other instructions with the same actual opcode don't.
        if (emi.opcode.num == 1 && (modRM.reg & 0x6) == 0) {
           if (emi.opcode.op == 0xF6)
               immediateSize = 1;
           else if (emi.opcode.op == 0xF7)
               immediateSize = (emi.opSize == 8) ? 4 : emi.opSize;
        }

        //If there's an SIB, get that next.
        //There is no SIB in 16 bit mode.
        if (modRM.rm == 4 && modRM.mod != 3) {
                // && in 32/64 bit mode)
            nextState = SIBState;
        } else if(displacementSize) {
            nextState = DisplacementState;
        } else if(immediateSize) {
            nextState = ImmediateState;
        } else {
            emiIsReady = true;
            nextState = ResetState;
        }
        //The ModRM byte is consumed no matter what
        consumeByte();
        emi.modRM = modRM;
        return nextState;
    }

    //Get the SIB byte. We don't do anything with it at this point, other
    //than storing it in the ExtMachInst. Determine if we need to get a
    //displacement or immediate next.
    Predecoder::State Predecoder::doSIBState(uint8_t nextByte)
    {
        State nextState = ErrorState;
        emi.sib = nextByte;
        DPRINTF(Predecoder, "Found SIB byte %#x.\n", nextByte);
        consumeByte();
        if (emi.modRM.mod == 0 && emi.sib.base == 5)
            displacementSize = 4;
        if (displacementSize) {
            nextState = DisplacementState;
        } else if(immediateSize) {
            nextState = ImmediateState;
        } else {
            emiIsReady = true;
            nextState = ResetState;
        }
        return nextState;
    }

    //Gather up the displacement, or at least as much of it
    //as we can get.
    Predecoder::State Predecoder::doDisplacementState()
    {
        State nextState = ErrorState;

        getImmediate(immediateCollected,
                emi.displacement,
                displacementSize);

        DPRINTF(Predecoder, "Collecting %d byte displacement, got %d bytes.\n",
                displacementSize, immediateCollected);

        if(displacementSize == immediateCollected) {
            //Reset this for other immediates.
            immediateCollected = 0;
            //Sign extend the displacement
            switch(displacementSize)
            {
              case 1:
                emi.displacement = sext<8>(emi.displacement);
                break;
              case 2:
                emi.displacement = sext<16>(emi.displacement);
                break;
              case 4:
                emi.displacement = sext<32>(emi.displacement);
                break;
              default:
                panic("Undefined displacement size!\n");
            }
            DPRINTF(Predecoder, "Collected displacement %#x.\n",
                    emi.displacement);
            if(immediateSize) {
                nextState = ImmediateState;
            } else {
                emiIsReady = true;
                nextState = ResetState;
            }
        }
        else
            nextState = DisplacementState;
        return nextState;
    }

    //Gather up the immediate, or at least as much of it
    //as we can get
    Predecoder::State Predecoder::doImmediateState()
    {
        State nextState = ErrorState;

        getImmediate(immediateCollected,
                emi.immediate,
                immediateSize);

        DPRINTF(Predecoder, "Collecting %d byte immediate, got %d bytes.\n",
                immediateSize, immediateCollected);

        if(immediateSize == immediateCollected)
        {
            //Reset this for other immediates.
            immediateCollected = 0;

            //XXX Warning! The following is an observed pattern and might
            //not always be true!

            //Instructions which use 64 bit operands but 32 bit immediates
            //need to have the immediate sign extended to 64 bits.
            //Instructions which use true 64 bit immediates won't be
            //affected, and instructions that use true 32 bit immediates
            //won't notice.
            switch(immediateSize)
            {
              case 4:
                emi.immediate = sext<32>(emi.immediate);
                break;
              case 1:
                emi.immediate = sext<8>(emi.immediate);
            }

            DPRINTF(Predecoder, "Collected immediate %#x.\n",
                    emi.immediate);
            emiIsReady = true;
            nextState = ResetState;
        }
        else
            nextState = ImmediateState;
        return nextState;
    }
}