summaryrefslogtreecommitdiff
path: root/src/arch/x86/process.cc
blob: a774dd000e4ce75302ae7ff69a6a390eeb207621 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
/*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 * Copyright (c) 2007 The Hewlett-Packard Development Company
 * All rights reserved.
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2003-2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Gabe Black
 *          Ali Saidi
 */

#include "arch/x86/process.hh"

#include "arch/x86/isa_traits.hh"
#include "arch/x86/regs/misc.hh"
#include "arch/x86/regs/segment.hh"
#include "arch/x86/system.hh"
#include "arch/x86/types.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/misc.hh"
#include "base/trace.hh"
#include "cpu/thread_context.hh"
#include "debug/Stack.hh"
#include "mem/multi_level_page_table.hh"
#include "mem/page_table.hh"
#include "sim/process_impl.hh"
#include "sim/syscall_desc.hh"
#include "sim/syscall_return.hh"
#include "sim/system.hh"

using namespace std;
using namespace X86ISA;

static const int ArgumentReg[] = {
    INTREG_RDI,
    INTREG_RSI,
    INTREG_RDX,
    //This argument register is r10 for syscalls and rcx for C.
    INTREG_R10W,
    //INTREG_RCX,
    INTREG_R8W,
    INTREG_R9W
};

static const int NumArgumentRegs M5_VAR_USED =
    sizeof(ArgumentReg) / sizeof(const int);

static const int ArgumentReg32[] = {
    INTREG_EBX,
    INTREG_ECX,
    INTREG_EDX,
    INTREG_ESI,
    INTREG_EDI,
    INTREG_EBP
};

static const int NumArgumentRegs32 M5_VAR_USED =
    sizeof(ArgumentReg) / sizeof(const int);

X86Process::X86Process(ProcessParams * params, ObjectFile *objFile,
                       SyscallDesc *_syscallDescs, int _numSyscallDescs)
    : Process(params, objFile), syscallDescs(_syscallDescs),
      numSyscallDescs(_numSyscallDescs)
{
    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
    brk_point = roundUp(brk_point, PageBytes);
}

X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
                             SyscallDesc *_syscallDescs, int _numSyscallDescs)
    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
{

    vsyscallPage.base = 0xffffffffff600000ULL;
    vsyscallPage.size = PageBytes;
    vsyscallPage.vtimeOffset = 0x400;
    vsyscallPage.vgettimeofdayOffset = 0x0;

    // Set up stack. On X86_64 Linux, stack goes from the top of memory
    // downward, less the hole for the kernel address space plus one page
    // for undertermined purposes.
    stack_base = (Addr)0x7FFFFFFFF000ULL;

    // Set pointer for next thread stack.  Reserve 8M for main stack.
    next_thread_stack_base = stack_base - (8 * 1024 * 1024);

    // "mmap_base" is a function which defines where mmap region starts in
    // the process address space.
    // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
    // TASK_SIZE: (1<<47)-PAGE_SIZE
    // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
    // We do not use any address space layout randomization in gem5
    // therefore the random fields become zero; the smallest gap space was
    // chosen but gap could potentially be much larger.
    mmap_end = (Addr)0x7FFFF7FFF000ULL;
}

void
I386Process::syscall(int64_t callnum, ThreadContext *tc)
{
    TheISA::PCState pc = tc->pcState();
    Addr eip = pc.pc();
    if (eip >= vsyscallPage.base &&
            eip < vsyscallPage.base + vsyscallPage.size) {
        pc.npc(vsyscallPage.base + vsyscallPage.vsysexitOffset);
        tc->pcState(pc);
    }
    X86Process::syscall(callnum, tc);
}


I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
                         SyscallDesc *_syscallDescs, int _numSyscallDescs)
    : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
{
    _gdtStart = ULL(0xffffd000);
    _gdtSize = PageBytes;

    vsyscallPage.base = 0xffffe000ULL;
    vsyscallPage.size = PageBytes;
    vsyscallPage.vsyscallOffset = 0x400;
    vsyscallPage.vsysexitOffset = 0x410;

    stack_base = _gdtStart;

    // Set pointer for next thread stack.  Reserve 8M for main stack.
    next_thread_stack_base = stack_base - (8 * 1024 * 1024);

    // "mmap_base" is a function which defines where mmap region starts in
    // the process address space.
    // mmap_base: PAGE_ALIGN(TASK_SIZE-MIN_GAP-mmap_rnd())
    // TASK_SIZE: 0xC0000000
    // MIN_GAP: 128*1024*1024+stack_maxrandom_size()
    // We do not use any address space layout randomization in gem5
    // therefore the random fields become zero; the smallest gap space was
    // chosen but gap could potentially be much larger.
    mmap_end = (Addr)0xB7FFF000ULL;
}

SyscallDesc*
X86Process::getDesc(int callnum)
{
    if (callnum < 0 || callnum >= numSyscallDescs)
        return NULL;
    return &syscallDescs[callnum];
}

void
X86_64Process::initState()
{
    X86Process::initState();

    argsInit(sizeof(uint64_t), PageBytes);

       // Set up the vsyscall page for this process.
    allocateMem(vsyscallPage.base, vsyscallPage.size);
    uint8_t vtimeBlob[] = {
        0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00,    // mov    $0xc9,%rax
        0x0f,0x05,                             // syscall
        0xc3                                   // retq
    };
    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vtimeOffset,
            vtimeBlob, sizeof(vtimeBlob));

    uint8_t vgettimeofdayBlob[] = {
        0x48,0xc7,0xc0,0x60,0x00,0x00,0x00,    // mov    $0x60,%rax
        0x0f,0x05,                             // syscall
        0xc3                                   // retq
    };
    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vgettimeofdayOffset,
            vgettimeofdayBlob, sizeof(vgettimeofdayBlob));

    if (kvmInSE) {
        PortProxy physProxy = system->physProxy;

        /*
         * Set up the gdt.
         */
        uint8_t numGDTEntries = 0;
        uint64_t nullDescriptor = 0;
        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
                            (uint8_t *)(&nullDescriptor), 8);
        numGDTEntries++;

        SegDescriptor initDesc = 0;
        initDesc.type.codeOrData = 0; // code or data type
        initDesc.type.c = 0;          // conforming
        initDesc.type.r = 1;          // readable
        initDesc.dpl = 0;             // privilege
        initDesc.p = 1;               // present
        initDesc.l = 1;               // longmode - 64 bit
        initDesc.d = 0;               // operand size
        initDesc.g = 1;               // granularity
        initDesc.s = 1;               // system segment
        initDesc.limitHigh = 0xFFFF;
        initDesc.limitLow = 0xF;
        initDesc.baseHigh = 0x0;
        initDesc.baseLow = 0x0;

        //64 bit code segment
        SegDescriptor csLowPLDesc = initDesc;
        csLowPLDesc.type.codeOrData = 1;
        csLowPLDesc.dpl = 0;
        uint64_t csLowPLDescVal = csLowPLDesc;
        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
                            (uint8_t *)(&csLowPLDescVal), 8);

        numGDTEntries++;

        SegSelector csLowPL = 0;
        csLowPL.si = numGDTEntries - 1;
        csLowPL.rpl = 0;

        //64 bit data segment
        SegDescriptor dsLowPLDesc = initDesc;
        dsLowPLDesc.type.codeOrData = 0;
        dsLowPLDesc.dpl = 0;
        uint64_t dsLowPLDescVal = dsLowPLDesc;
        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
                            (uint8_t *)(&dsLowPLDescVal), 8);

        numGDTEntries++;

        SegSelector dsLowPL = 0;
        dsLowPL.si = numGDTEntries - 1;
        dsLowPL.rpl = 0;

        //64 bit data segment
        SegDescriptor dsDesc = initDesc;
        dsDesc.type.codeOrData = 0;
        dsDesc.dpl = 3;
        uint64_t dsDescVal = dsDesc;
        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
                            (uint8_t *)(&dsDescVal), 8);

        numGDTEntries++;

        SegSelector ds = 0;
        ds.si = numGDTEntries - 1;
        ds.rpl = 3;

        //64 bit code segment
        SegDescriptor csDesc = initDesc;
        csDesc.type.codeOrData = 1;
        csDesc.dpl = 3;
        uint64_t csDescVal = csDesc;
        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
                            (uint8_t *)(&csDescVal), 8);

        numGDTEntries++;

        SegSelector cs = 0;
        cs.si = numGDTEntries - 1;
        cs.rpl = 3;

        SegSelector scall = 0;
        scall.si = csLowPL.si;
        scall.rpl = 0;

        SegSelector sret = 0;
        sret.si = dsLowPL.si;
        sret.rpl = 3;

        /* In long mode the TSS has been extended to 16 Bytes */
        TSSlow TSSDescLow = 0;
        TSSDescLow.type = 0xB;
        TSSDescLow.dpl = 0; // Privelege level 0
        TSSDescLow.p = 1; // Present
        TSSDescLow.g = 1; // Page granularity
        TSSDescLow.limitHigh = 0xF;
        TSSDescLow.limitLow = 0xFFFF;
        TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
        TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);

        TSShigh TSSDescHigh = 0;
        TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);

        struct TSSDesc {
            uint64_t low;
            uint64_t high;
        } tssDescVal = {TSSDescLow, TSSDescHigh};

        physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
                            (uint8_t *)(&tssDescVal), sizeof(tssDescVal));

        numGDTEntries++;

        SegSelector tssSel = 0;
        tssSel.si = numGDTEntries - 1;

        uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
                                 (TSSDescLow.baseHigh << 24) |
                                  TSSDescLow.baseLow;
        uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);

        SegAttr tss_attr = 0;

        tss_attr.type = TSSDescLow.type;
        tss_attr.dpl = TSSDescLow.dpl;
        tss_attr.present = TSSDescLow.p;
        tss_attr.granularity = TSSDescLow.g;
        tss_attr.unusable = 0;

        for (int i = 0; i < contextIds.size(); i++) {
            ThreadContext * tc = system->getThreadContext(contextIds[i]);

            tc->setMiscReg(MISCREG_CS, cs);
            tc->setMiscReg(MISCREG_DS, ds);
            tc->setMiscReg(MISCREG_ES, ds);
            tc->setMiscReg(MISCREG_FS, ds);
            tc->setMiscReg(MISCREG_GS, ds);
            tc->setMiscReg(MISCREG_SS, ds);

            // LDT
            tc->setMiscReg(MISCREG_TSL, 0);
            SegAttr tslAttr = 0;
            tslAttr.present = 1;
            tslAttr.type = 2;
            tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);

            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
            tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);

            tc->setMiscReg(MISCREG_TR, tssSel);
            tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
            tc->setMiscReg(MISCREG_TR_EFF_BASE, 0);
            tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
            tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);

            //Start using longmode segments.
            installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
            installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
            installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
            installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
            installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
            installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);

            Efer efer = 0;
            efer.sce = 1; // Enable system call extensions.
            efer.lme = 1; // Enable long mode.
            efer.lma = 1; // Activate long mode.
            efer.nxe = 0; // Enable nx support.
            efer.svme = 1; // Enable svm support for now.
            efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
            tc->setMiscReg(MISCREG_EFER, efer);

            //Set up the registers that describe the operating mode.
            CR0 cr0 = 0;
            cr0.pg = 1; // Turn on paging.
            cr0.cd = 0; // Don't disable caching.
            cr0.nw = 0; // This is bit is defined to be ignored.
            cr0.am = 1; // No alignment checking
            cr0.wp = 1; // Supervisor mode can write read only pages
            cr0.ne = 1;
            cr0.et = 1; // This should always be 1
            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
                        // would be pointless.
            cr0.em = 0; // Allow x87 instructions to execute natively.
            cr0.mp = 1; // This doesn't really matter, but the manual suggests
                        // setting it to one.
            cr0.pe = 1; // We're definitely in protected mode.
            tc->setMiscReg(MISCREG_CR0, cr0);

            CR0 cr2 = 0;
            tc->setMiscReg(MISCREG_CR2, cr2);

            CR3 cr3 = pageTablePhysAddr;
            tc->setMiscReg(MISCREG_CR3, cr3);

            CR4 cr4 = 0;
            //Turn on pae.
            cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
            cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
            cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
            cr4.pce = 0; // Performance-Monitoring Counter Enable
            cr4.pge = 0; // Page-Global Enable
            cr4.mce = 0; // Machine Check Enable
            cr4.pae = 1; // Physical-Address Extension
            cr4.pse = 0; // Page Size Extensions
            cr4.de = 0; // Debugging Extensions
            cr4.tsd = 0; // Time Stamp Disable
            cr4.pvi = 0; // Protected-Mode Virtual Interrupts
            cr4.vme = 0; // Virtual-8086 Mode Extensions

            tc->setMiscReg(MISCREG_CR4, cr4);

            CR4 cr8 = 0;
            tc->setMiscReg(MISCREG_CR8, cr8);

            const Addr PageMapLevel4 = pageTablePhysAddr;
            //Point to the page tables.
            tc->setMiscReg(MISCREG_CR3, PageMapLevel4);

            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);

            tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);

            tc->setMiscReg(MISCREG_TSG_BASE, GDTVirtAddr);
            tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);

            tc->setMiscReg(MISCREG_IDTR_BASE, IDTVirtAddr);
            tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);

            /* enabling syscall and sysret */
            MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
            tc->setMiscReg(MISCREG_STAR, star);
            MiscReg lstar = (MiscReg)syscallCodeVirtAddr;
            tc->setMiscReg(MISCREG_LSTAR, lstar);
            MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
            tc->setMiscReg(MISCREG_SF_MASK, sfmask);
        }

        /* Set up the content of the TSS and write it to physical memory. */

        struct {
            uint32_t reserved0;        // +00h
            uint32_t RSP0_low;         // +04h
            uint32_t RSP0_high;        // +08h
            uint32_t RSP1_low;         // +0Ch
            uint32_t RSP1_high;        // +10h
            uint32_t RSP2_low;         // +14h
            uint32_t RSP2_high;        // +18h
            uint32_t reserved1;        // +1Ch
            uint32_t reserved2;        // +20h
            uint32_t IST1_low;         // +24h
            uint32_t IST1_high;        // +28h
            uint32_t IST2_low;         // +2Ch
            uint32_t IST2_high;        // +30h
            uint32_t IST3_low;         // +34h
            uint32_t IST3_high;        // +38h
            uint32_t IST4_low;         // +3Ch
            uint32_t IST4_high;        // +40h
            uint32_t IST5_low;         // +44h
            uint32_t IST5_high;        // +48h
            uint32_t IST6_low;         // +4Ch
            uint32_t IST6_high;        // +50h
            uint32_t IST7_low;         // +54h
            uint32_t IST7_high;        // +58h
            uint32_t reserved3;        // +5Ch
            uint32_t reserved4;        // +60h
            uint16_t reserved5;        // +64h
            uint16_t IO_MapBase;       // +66h
        } tss;

        /** setting Interrupt Stack Table */
        uint64_t IST_start = ISTVirtAddr + PageBytes;
        tss.IST1_low  = IST_start;
        tss.IST1_high = IST_start >> 32;
        tss.RSP0_low  = tss.IST1_low;
        tss.RSP0_high = tss.IST1_high;
        tss.RSP1_low  = tss.IST1_low;
        tss.RSP1_high = tss.IST1_high;
        tss.RSP2_low  = tss.IST1_low;
        tss.RSP2_high = tss.IST1_high;
        physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));

        /* Setting IDT gates */
        GateDescriptorLow PFGateLow = 0;
        PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
        PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
        PFGateLow.selector = csLowPL;
        PFGateLow.p = 1;
        PFGateLow.dpl = 0;
        PFGateLow.type = 0xe;      // gate interrupt type
        PFGateLow.IST = 0;         // setting IST to 0 and using RSP0

        GateDescriptorHigh PFGateHigh = 0;
        PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);

        struct {
            uint64_t low;
            uint64_t high;
        } PFGate = {PFGateLow, PFGateHigh};

        physProxy.writeBlob(IDTPhysAddr + 0xE0,
                            (uint8_t *)(&PFGate), sizeof(PFGate));

        /* System call handler */
        uint8_t syscallBlob[] = {
            // mov    %rax, (0xffffc90000005600)
            0x48, 0xa3, 0x00, 0x60, 0x00,
            0x00, 0x00, 0xc9, 0xff, 0xff,
            // sysret
            0x48, 0x0f, 0x07
        };

        physProxy.writeBlob(syscallCodePhysAddr,
                            syscallBlob, sizeof(syscallBlob));

        /** Page fault handler */
        uint8_t faultBlob[] = {
            // mov    %rax, (0xffffc90000005700)
            0x48, 0xa3, 0x00, 0x61, 0x00,
            0x00, 0x00, 0xc9, 0xff, 0xff,
            // add    $0x8, %rsp # skip error
            0x48, 0x83, 0xc4, 0x08,
            // iretq
            0x48, 0xcf
        };

        physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));

        MultiLevelPageTable<PageTableOps> *pt =
            dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);

        /* Syscall handler */
        pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
        /* GDT */
        pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
        /* IDT */
        pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
        /* TSS */
        pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
        /* IST */
        pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
        /* PF handler */
        pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
        /* MMIO region for m5ops */
        pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
    } else {
        for (int i = 0; i < contextIds.size(); i++) {
            ThreadContext * tc = system->getThreadContext(contextIds[i]);

            SegAttr dataAttr = 0;
            dataAttr.dpl = 3;
            dataAttr.unusable = 0;
            dataAttr.defaultSize = 1;
            dataAttr.longMode = 1;
            dataAttr.avl = 0;
            dataAttr.granularity = 1;
            dataAttr.present = 1;
            dataAttr.type = 3;
            dataAttr.writable = 1;
            dataAttr.readable = 1;
            dataAttr.expandDown = 0;
            dataAttr.system = 1;

            //Initialize the segment registers.
            for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
                tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
                tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
                tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
            }

            SegAttr csAttr = 0;
            csAttr.dpl = 3;
            csAttr.unusable = 0;
            csAttr.defaultSize = 0;
            csAttr.longMode = 1;
            csAttr.avl = 0;
            csAttr.granularity = 1;
            csAttr.present = 1;
            csAttr.type = 10;
            csAttr.writable = 0;
            csAttr.readable = 1;
            csAttr.expandDown = 0;
            csAttr.system = 1;

            tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);

            Efer efer = 0;
            efer.sce = 1; // Enable system call extensions.
            efer.lme = 1; // Enable long mode.
            efer.lma = 1; // Activate long mode.
            efer.nxe = 1; // Enable nx support.
            efer.svme = 0; // Disable svm support for now. It isn't implemented.
            efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
            tc->setMiscReg(MISCREG_EFER, efer);

            //Set up the registers that describe the operating mode.
            CR0 cr0 = 0;
            cr0.pg = 1; // Turn on paging.
            cr0.cd = 0; // Don't disable caching.
            cr0.nw = 0; // This is bit is defined to be ignored.
            cr0.am = 0; // No alignment checking
            cr0.wp = 0; // Supervisor mode can write read only pages
            cr0.ne = 1;
            cr0.et = 1; // This should always be 1
            cr0.ts = 0; // We don't do task switching, so causing fp exceptions
                        // would be pointless.
            cr0.em = 0; // Allow x87 instructions to execute natively.
            cr0.mp = 1; // This doesn't really matter, but the manual suggests
                        // setting it to one.
            cr0.pe = 1; // We're definitely in protected mode.
            tc->setMiscReg(MISCREG_CR0, cr0);

            tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
        }
    }
}

void
I386Process::initState()
{
    X86Process::initState();

    argsInit(sizeof(uint32_t), PageBytes);

    /*
     * Set up a GDT for this process. The whole GDT wouldn't really be for
     * this process, but the only parts we care about are.
     */
    allocateMem(_gdtStart, _gdtSize);
    uint64_t zero = 0;
    assert(_gdtSize % sizeof(zero) == 0);
    for (Addr gdtCurrent = _gdtStart;
            gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
        initVirtMem.write(gdtCurrent, zero);
    }

    // Set up the vsyscall page for this process.
    allocateMem(vsyscallPage.base, vsyscallPage.size);
    uint8_t vsyscallBlob[] = {
        0x51,       // push %ecx
        0x52,       // push %edp
        0x55,       // push %ebp
        0x89, 0xe5, // mov %esp, %ebp
        0x0f, 0x34  // sysenter
    };
    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsyscallOffset,
            vsyscallBlob, sizeof(vsyscallBlob));

    uint8_t vsysexitBlob[] = {
        0x5d,       // pop %ebp
        0x5a,       // pop %edx
        0x59,       // pop %ecx
        0xc3        // ret
    };
    initVirtMem.writeBlob(vsyscallPage.base + vsyscallPage.vsysexitOffset,
            vsysexitBlob, sizeof(vsysexitBlob));

    for (int i = 0; i < contextIds.size(); i++) {
        ThreadContext * tc = system->getThreadContext(contextIds[i]);

        SegAttr dataAttr = 0;
        dataAttr.dpl = 3;
        dataAttr.unusable = 0;
        dataAttr.defaultSize = 1;
        dataAttr.longMode = 0;
        dataAttr.avl = 0;
        dataAttr.granularity = 1;
        dataAttr.present = 1;
        dataAttr.type = 3;
        dataAttr.writable = 1;
        dataAttr.readable = 1;
        dataAttr.expandDown = 0;
        dataAttr.system = 1;

        //Initialize the segment registers.
        for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
            tc->setMiscRegNoEffect(MISCREG_SEG_BASE(seg), 0);
            tc->setMiscRegNoEffect(MISCREG_SEG_EFF_BASE(seg), 0);
            tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
            tc->setMiscRegNoEffect(MISCREG_SEG_SEL(seg), 0xB);
            tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
        }

        SegAttr csAttr = 0;
        csAttr.dpl = 3;
        csAttr.unusable = 0;
        csAttr.defaultSize = 1;
        csAttr.longMode = 0;
        csAttr.avl = 0;
        csAttr.granularity = 1;
        csAttr.present = 1;
        csAttr.type = 0xa;
        csAttr.writable = 0;
        csAttr.readable = 1;
        csAttr.expandDown = 0;
        csAttr.system = 1;

        tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);

        tc->setMiscRegNoEffect(MISCREG_TSG_BASE, _gdtStart);
        tc->setMiscRegNoEffect(MISCREG_TSG_EFF_BASE, _gdtStart);
        tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);

        // Set the LDT selector to 0 to deactivate it.
        tc->setMiscRegNoEffect(MISCREG_TSL, 0);

        Efer efer = 0;
        efer.sce = 1; // Enable system call extensions.
        efer.lme = 1; // Enable long mode.
        efer.lma = 0; // Deactivate long mode.
        efer.nxe = 1; // Enable nx support.
        efer.svme = 0; // Disable svm support for now. It isn't implemented.
        efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
        tc->setMiscReg(MISCREG_EFER, efer);

        //Set up the registers that describe the operating mode.
        CR0 cr0 = 0;
        cr0.pg = 1; // Turn on paging.
        cr0.cd = 0; // Don't disable caching.
        cr0.nw = 0; // This is bit is defined to be ignored.
        cr0.am = 0; // No alignment checking
        cr0.wp = 0; // Supervisor mode can write read only pages
        cr0.ne = 1;
        cr0.et = 1; // This should always be 1
        cr0.ts = 0; // We don't do task switching, so causing fp exceptions
                    // would be pointless.
        cr0.em = 0; // Allow x87 instructions to execute natively.
        cr0.mp = 1; // This doesn't really matter, but the manual suggests
                    // setting it to one.
        cr0.pe = 1; // We're definitely in protected mode.
        tc->setMiscReg(MISCREG_CR0, cr0);

        tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
    }
}

template<class IntType>
void
X86Process::argsInit(int pageSize,
        std::vector<AuxVector<IntType> > extraAuxvs)
{
    int intSize = sizeof(IntType);

    typedef AuxVector<IntType> auxv_t;
    std::vector<auxv_t> auxv = extraAuxvs;

    string filename;
    if (argv.size() < 1)
        filename = "";
    else
        filename = argv[0];

    //We want 16 byte alignment
    uint64_t align = 16;

    // Patch the ld_bias for dynamic executables.
    updateBias();

    // load object file into target memory
    objFile->loadSections(initVirtMem);

    enum X86CpuFeature {
        X86_OnboardFPU = 1 << 0,
        X86_VirtualModeExtensions = 1 << 1,
        X86_DebuggingExtensions = 1 << 2,
        X86_PageSizeExtensions = 1 << 3,

        X86_TimeStampCounter = 1 << 4,
        X86_ModelSpecificRegisters = 1 << 5,
        X86_PhysicalAddressExtensions = 1 << 6,
        X86_MachineCheckExtensions = 1 << 7,

        X86_CMPXCHG8Instruction = 1 << 8,
        X86_OnboardAPIC = 1 << 9,
        X86_SYSENTER_SYSEXIT = 1 << 11,

        X86_MemoryTypeRangeRegisters = 1 << 12,
        X86_PageGlobalEnable = 1 << 13,
        X86_MachineCheckArchitecture = 1 << 14,
        X86_CMOVInstruction = 1 << 15,

        X86_PageAttributeTable = 1 << 16,
        X86_36BitPSEs = 1 << 17,
        X86_ProcessorSerialNumber = 1 << 18,
        X86_CLFLUSHInstruction = 1 << 19,

        X86_DebugTraceStore = 1 << 21,
        X86_ACPIViaMSR = 1 << 22,
        X86_MultimediaExtensions = 1 << 23,

        X86_FXSAVE_FXRSTOR = 1 << 24,
        X86_StreamingSIMDExtensions = 1 << 25,
        X86_StreamingSIMDExtensions2 = 1 << 26,
        X86_CPUSelfSnoop = 1 << 27,

        X86_HyperThreading = 1 << 28,
        X86_AutomaticClockControl = 1 << 29,
        X86_IA64Processor = 1 << 30
    };

    // Setup the auxiliary vectors. These will already have endian
    // conversion. Auxiliary vectors are loaded only for elf formatted
    // executables; the auxv is responsible for passing information from
    // the OS to the interpreter.
    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
    if (elfObject) {
        uint64_t features =
            X86_OnboardFPU |
            X86_VirtualModeExtensions |
            X86_DebuggingExtensions |
            X86_PageSizeExtensions |
            X86_TimeStampCounter |
            X86_ModelSpecificRegisters |
            X86_PhysicalAddressExtensions |
            X86_MachineCheckExtensions |
            X86_CMPXCHG8Instruction |
            X86_OnboardAPIC |
            X86_SYSENTER_SYSEXIT |
            X86_MemoryTypeRangeRegisters |
            X86_PageGlobalEnable |
            X86_MachineCheckArchitecture |
            X86_CMOVInstruction |
            X86_PageAttributeTable |
            X86_36BitPSEs |
//            X86_ProcessorSerialNumber |
            X86_CLFLUSHInstruction |
//            X86_DebugTraceStore |
//            X86_ACPIViaMSR |
            X86_MultimediaExtensions |
            X86_FXSAVE_FXRSTOR |
            X86_StreamingSIMDExtensions |
            X86_StreamingSIMDExtensions2 |
//            X86_CPUSelfSnoop |
//            X86_HyperThreading |
//            X86_AutomaticClockControl |
//            X86_IA64Processor |
            0;

        //Bits which describe the system hardware capabilities
        //XXX Figure out what these should be
        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
        //The system page size
        auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
        //Frequency at which times() increments
        //Defined to be 100 in the kernel source.
        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
        // This is the virtual address of the program header tables if they
        // appear in the executable image.
        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
        // This is the size of a program header entry from the elf file.
        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
        // This is the number of program headers from the original elf file.
        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
        // This is the base address of the ELF interpreter; it should be
        // zero for static executables or contain the base address for
        // dynamic executables.
        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
        //XXX Figure out what this should be.
        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
        //The entry point to the program
        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
        //Different user and group IDs
        auxv.push_back(auxv_t(M5_AT_UID, uid()));
        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
        auxv.push_back(auxv_t(M5_AT_GID, gid()));
        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
        //Whether to enable "secure mode" in the executable
        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
        //The address of 16 "random" bytes.
        auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
        //The name of the program
        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
        //The platform string
        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
    }

    //Figure out how big the initial stack needs to be

    // A sentry NULL void pointer at the top of the stack.
    int sentry_size = intSize;

    //This is the name of the file which is present on the initial stack
    //It's purpose is to let the user space linker examine the original file.
    int file_name_size = filename.size() + 1;

    const int numRandomBytes = 16;
    int aux_data_size = numRandomBytes;

    string platform = "x86_64";
    aux_data_size += platform.size() + 1;

    int env_data_size = 0;
    for (int i = 0; i < envp.size(); ++i)
        env_data_size += envp[i].size() + 1;
    int arg_data_size = 0;
    for (int i = 0; i < argv.size(); ++i)
        arg_data_size += argv[i].size() + 1;

    //The info_block needs to be padded so it's size is a multiple of the
    //alignment mask. Also, it appears that there needs to be at least some
    //padding, so if the size is already a multiple, we need to increase it
    //anyway.
    int base_info_block_size =
        sentry_size + file_name_size + env_data_size + arg_data_size;

    int info_block_size = roundUp(base_info_block_size, align);

    int info_block_padding = info_block_size - base_info_block_size;

    //Each auxilliary vector is two 8 byte words
    int aux_array_size = intSize * 2 * (auxv.size() + 1);

    int envp_array_size = intSize * (envp.size() + 1);
    int argv_array_size = intSize * (argv.size() + 1);

    int argc_size = intSize;

    //Figure out the size of the contents of the actual initial frame
    int frame_size =
        aux_array_size +
        envp_array_size +
        argv_array_size +
        argc_size;

    //There needs to be padding after the auxiliary vector data so that the
    //very bottom of the stack is aligned properly.
    int partial_size = frame_size + aux_data_size;
    int aligned_partial_size = roundUp(partial_size, align);
    int aux_padding = aligned_partial_size - partial_size;

    int space_needed =
        info_block_size +
        aux_data_size +
        aux_padding +
        frame_size;

    stack_min = stack_base - space_needed;
    stack_min = roundDown(stack_min, align);
    stack_size = roundUp(stack_base - stack_min, pageSize);

    // map memory
    Addr stack_end = roundDown(stack_base - stack_size, pageSize);

    DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
    allocateMem(stack_end, stack_size);

    // map out initial stack contents
    IntType sentry_base = stack_base - sentry_size;
    IntType file_name_base = sentry_base - file_name_size;
    IntType env_data_base = file_name_base - env_data_size;
    IntType arg_data_base = env_data_base - arg_data_size;
    IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
    IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
    IntType envp_array_base = auxv_array_base - envp_array_size;
    IntType argv_array_base = envp_array_base - argv_array_size;
    IntType argc_base = argv_array_base - argc_size;

    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
    DPRINTF(Stack, "0x%x - file name\n", file_name_base);
    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
    DPRINTF(Stack, "0x%x - argc \n", argc_base);
    DPRINTF(Stack, "0x%x - stack min\n", stack_min);

    // write contents to stack

    // figure out argc
    IntType argc = argv.size();
    IntType guestArgc = X86ISA::htog(argc);

    //Write out the sentry void *
    IntType sentry_NULL = 0;
    initVirtMem.writeBlob(sentry_base,
            (uint8_t*)&sentry_NULL, sentry_size);

    //Write the file name
    initVirtMem.writeString(file_name_base, filename.c_str());

    //Fix up the aux vectors which point to data
    assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
    auxv[auxv.size() - 3].a_val = aux_data_base;
    assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
    auxv[auxv.size() - 2].a_val = argv_array_base;
    assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
    auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;

    //Copy the aux stuff
    for (int x = 0; x < auxv.size(); x++) {
        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
                (uint8_t*)&(auxv[x].a_type), intSize);
        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
                (uint8_t*)&(auxv[x].a_val), intSize);
    }
    //Write out the terminating zeroed auxilliary vector
    const uint64_t zero = 0;
    initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
                          (uint8_t*)&zero, intSize);
    initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
                          (uint8_t*)&zero, intSize);

    initVirtMem.writeString(aux_data_base, platform.c_str());

    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);

    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);

    ThreadContext *tc = system->getThreadContext(contextIds[0]);
    //Set the stack pointer register
    tc->setIntReg(StackPointerReg, stack_min);

    // There doesn't need to be any segment base added in since we're dealing
    // with the flat segmentation model.
    tc->pcState(getStartPC());

    //Align the "stack_min" to a page boundary.
    stack_min = roundDown(stack_min, pageSize);

//    num_processes++;
}

void
X86_64Process::argsInit(int intSize, int pageSize)
{
    std::vector<AuxVector<uint64_t> > extraAuxvs;
    extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
                vsyscallPage.base));
    X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
}

void
I386Process::argsInit(int intSize, int pageSize)
{
    std::vector<AuxVector<uint32_t> > extraAuxvs;
    //Tell the binary where the vsyscall part of the vsyscall page is.
    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
                vsyscallPage.base + vsyscallPage.vsyscallOffset));
    extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
                vsyscallPage.base));
    X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
}

void
X86Process::setSyscallReturn(ThreadContext *tc, SyscallReturn retval)
{
    tc->setIntReg(INTREG_RAX, retval.encodedValue());
}

X86ISA::IntReg
X86_64Process::getSyscallArg(ThreadContext *tc, int &i)
{
    assert(i < NumArgumentRegs);
    return tc->readIntReg(ArgumentReg[i++]);
}

void
X86_64Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
{
    assert(i < NumArgumentRegs);
    return tc->setIntReg(ArgumentReg[i], val);
}

X86ISA::IntReg
I386Process::getSyscallArg(ThreadContext *tc, int &i)
{
    assert(i < NumArgumentRegs32);
    return tc->readIntReg(ArgumentReg32[i++]);
}

X86ISA::IntReg
I386Process::getSyscallArg(ThreadContext *tc, int &i, int width)
{
    assert(width == 32 || width == 64);
    assert(i < NumArgumentRegs);
    uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
    if (width == 64)
        retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
    return retVal;
}

void
I386Process::setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
{
    assert(i < NumArgumentRegs);
    return tc->setIntReg(ArgumentReg[i], val);
}