1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
/*
* Copyright (c) 2007 The Hewlett-Packard Development Company
* Copyright (c) 2011 Advanced Micro Devices, Inc.
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#include "arch/x86/interrupts.hh"
#include "arch/x86/registers.hh"
#include "arch/x86/tlb.hh"
#include "arch/x86/utility.hh"
#include "arch/x86/x86_traits.hh"
#include "cpu/base.hh"
#include "fputils/fp80.h"
#include "sim/system.hh"
namespace X86ISA {
uint64_t
getArgument(ThreadContext *tc, int &number, uint16_t size, bool fp)
{
if (!FullSystem) {
panic("getArgument() only implemented for full system mode.\n");
} else if (fp) {
panic("getArgument(): Floating point arguments not implemented\n");
} else if (size != 8) {
panic("getArgument(): Can only handle 64-bit arguments.\n");
}
// The first 6 integer arguments are passed in registers, the rest
// are passed on the stack.
const int int_reg_map[] = {
INTREG_RDI, INTREG_RSI, INTREG_RDX,
INTREG_RCX, INTREG_R8, INTREG_R9
};
if (number < sizeof(int_reg_map) / sizeof(*int_reg_map)) {
return tc->readIntReg(int_reg_map[number]);
} else {
panic("getArgument(): Don't know how to handle stack arguments.\n");
}
}
void initCPU(ThreadContext *tc, int cpuId)
{
// This function is essentially performing a reset. The actual INIT
// interrupt does a subset of this, so we'll piggyback on some of its
// functionality.
InitInterrupt init(0);
init.invoke(tc);
PCState pc = tc->pcState();
pc.upc(0);
pc.nupc(1);
tc->pcState(pc);
// These next two loops zero internal microcode and implicit registers.
// They aren't specified by the ISA but are used internally by M5's
// implementation.
for (int index = 0; index < NumMicroIntRegs; index++) {
tc->setIntReg(INTREG_MICRO(index), 0);
}
for (int index = 0; index < NumImplicitIntRegs; index++) {
tc->setIntReg(INTREG_IMPLICIT(index), 0);
}
// Set integer register EAX to 0 to indicate that the optional BIST
// passed. No BIST actually runs, but software may still check this
// register for errors.
tc->setIntReg(INTREG_RAX, 0);
tc->setMiscReg(MISCREG_CR0, 0x0000000060000010ULL);
tc->setMiscReg(MISCREG_CR8, 0);
// TODO initialize x87, 64 bit, and 128 bit media state
tc->setMiscReg(MISCREG_MTRRCAP, 0x0508);
for (int i = 0; i < 8; i++) {
tc->setMiscReg(MISCREG_MTRR_PHYS_BASE(i), 0);
tc->setMiscReg(MISCREG_MTRR_PHYS_MASK(i), 0);
}
tc->setMiscReg(MISCREG_MTRR_FIX_64K_00000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_16K_80000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_16K_A0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_C0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_C8000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_D0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_D8000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_E0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_E8000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_F0000, 0);
tc->setMiscReg(MISCREG_MTRR_FIX_4K_F8000, 0);
tc->setMiscReg(MISCREG_DEF_TYPE, 0);
tc->setMiscReg(MISCREG_MCG_CAP, 0x104);
tc->setMiscReg(MISCREG_MCG_STATUS, 0);
tc->setMiscReg(MISCREG_MCG_CTL, 0);
for (int i = 0; i < 5; i++) {
tc->setMiscReg(MISCREG_MC_CTL(i), 0);
tc->setMiscReg(MISCREG_MC_STATUS(i), 0);
tc->setMiscReg(MISCREG_MC_ADDR(i), 0);
tc->setMiscReg(MISCREG_MC_MISC(i), 0);
}
tc->setMiscReg(MISCREG_TSC, 0);
tc->setMiscReg(MISCREG_TSC_AUX, 0);
for (int i = 0; i < 4; i++) {
tc->setMiscReg(MISCREG_PERF_EVT_SEL(i), 0);
tc->setMiscReg(MISCREG_PERF_EVT_CTR(i), 0);
}
tc->setMiscReg(MISCREG_STAR, 0);
tc->setMiscReg(MISCREG_LSTAR, 0);
tc->setMiscReg(MISCREG_CSTAR, 0);
tc->setMiscReg(MISCREG_SF_MASK, 0);
tc->setMiscReg(MISCREG_KERNEL_GS_BASE, 0);
tc->setMiscReg(MISCREG_SYSENTER_CS, 0);
tc->setMiscReg(MISCREG_SYSENTER_ESP, 0);
tc->setMiscReg(MISCREG_SYSENTER_EIP, 0);
tc->setMiscReg(MISCREG_PAT, 0x0007040600070406ULL);
tc->setMiscReg(MISCREG_SYSCFG, 0x20601);
tc->setMiscReg(MISCREG_IORR_BASE0, 0);
tc->setMiscReg(MISCREG_IORR_BASE1, 0);
tc->setMiscReg(MISCREG_IORR_MASK0, 0);
tc->setMiscReg(MISCREG_IORR_MASK1, 0);
tc->setMiscReg(MISCREG_TOP_MEM, 0x4000000);
tc->setMiscReg(MISCREG_TOP_MEM2, 0x0);
tc->setMiscReg(MISCREG_DEBUG_CTL_MSR, 0);
tc->setMiscReg(MISCREG_LAST_BRANCH_FROM_IP, 0);
tc->setMiscReg(MISCREG_LAST_BRANCH_TO_IP, 0);
tc->setMiscReg(MISCREG_LAST_EXCEPTION_FROM_IP, 0);
tc->setMiscReg(MISCREG_LAST_EXCEPTION_TO_IP, 0);
// Invalidate the caches (this should already be done for us)
LocalApicBase lApicBase = 0;
lApicBase.base = 0xFEE00000 >> 12;
lApicBase.enable = 1;
lApicBase.bsp = (cpuId == 0);
tc->setMiscReg(MISCREG_APIC_BASE, lApicBase);
Interrupts * interrupts = dynamic_cast<Interrupts *>(
tc->getCpuPtr()->getInterruptController());
assert(interrupts);
interrupts->setRegNoEffect(APIC_ID, cpuId << 24);
interrupts->setRegNoEffect(APIC_VERSION, (5 << 16) | 0x14);
// TODO Set the SMRAM base address (SMBASE) to 0x00030000
tc->setMiscReg(MISCREG_VM_CR, 0);
tc->setMiscReg(MISCREG_IGNNE, 0);
tc->setMiscReg(MISCREG_SMM_CTL, 0);
tc->setMiscReg(MISCREG_VM_HSAVE_PA, 0);
}
void startupCPU(ThreadContext *tc, int cpuId)
{
if (cpuId == 0 || !FullSystem) {
tc->activate();
} else {
// This is an application processor (AP). It should be initialized to
// look like only the BIOS POST has run on it and put then put it into
// a halted state.
tc->suspend();
}
}
void
copyMiscRegs(ThreadContext *src, ThreadContext *dest)
{
// This function assumes no side effects other than TLB invalidation
// need to be considered while copying state. That will likely not be
// true in the future.
for (int i = 0; i < NUM_MISCREGS; ++i) {
if ( ( i != MISCREG_CR1 &&
!(i > MISCREG_CR4 && i < MISCREG_CR8) &&
!(i > MISCREG_CR8 && i <= MISCREG_CR15) ) == false) {
continue;
}
dest->setMiscRegNoEffect(i, src->readMiscRegNoEffect(i));
}
// The TSC has to be updated with side-effects if the CPUs in a
// CPU switch have different frequencies.
dest->setMiscReg(MISCREG_TSC, src->readMiscReg(MISCREG_TSC));
dest->getITBPtr()->flushAll();
dest->getDTBPtr()->flushAll();
}
void
copyRegs(ThreadContext *src, ThreadContext *dest)
{
//copy int regs
for (int i = 0; i < NumIntRegs; ++i)
dest->setIntRegFlat(i, src->readIntRegFlat(i));
//copy float regs
for (int i = 0; i < NumFloatRegs; ++i)
dest->setFloatRegBitsFlat(i, src->readFloatRegBitsFlat(i));
//copy condition-code regs
for (int i = 0; i < NumCCRegs; ++i)
dest->setCCRegFlat(i, src->readCCRegFlat(i));
copyMiscRegs(src, dest);
dest->pcState(src->pcState());
}
void
skipFunction(ThreadContext *tc)
{
panic("Not implemented for x86\n");
}
uint64_t
getRFlags(ThreadContext *tc)
{
const uint64_t ncc_flags(tc->readMiscRegNoEffect(MISCREG_RFLAGS));
const uint64_t cc_flags(tc->readCCReg(X86ISA::CCREG_ZAPS));
const uint64_t cfof_bits(tc->readCCReg(X86ISA::CCREG_CFOF));
const uint64_t df_bit(tc->readCCReg(X86ISA::CCREG_DF));
// ecf (PSEUDO(3)) & ezf (PSEUDO(4)) are only visible to
// microcode, so we can safely ignore them.
// Reconstruct the real rflags state, mask out internal flags, and
// make sure reserved bits have the expected values.
return ((ncc_flags | cc_flags | cfof_bits | df_bit) & 0x3F7FD5)
| 0x2;
}
void
setRFlags(ThreadContext *tc, uint64_t val)
{
tc->setCCReg(X86ISA::CCREG_ZAPS, val & ccFlagMask);
tc->setCCReg(X86ISA::CCREG_CFOF, val & cfofMask);
tc->setCCReg(X86ISA::CCREG_DF, val & DFBit);
// Internal microcode registers (ECF & EZF)
tc->setCCReg(X86ISA::CCREG_ECF, 0);
tc->setCCReg(X86ISA::CCREG_EZF, 0);
// Update the RFLAGS misc reg with whatever didn't go into the
// magic registers.
tc->setMiscReg(MISCREG_RFLAGS, val & ~(ccFlagMask | cfofMask | DFBit));
}
uint8_t
convX87TagsToXTags(uint16_t ftw)
{
uint8_t ftwx(0);
for (int i = 0; i < 8; ++i) {
// Extract the tag for the current element on the FP stack
const unsigned tag((ftw >> (2 * i)) & 0x3);
/*
* Check the type of the current FP element. Valid values are:
* 0 == Valid
* 1 == Zero
* 2 == Special (Nan, unsupported, infinity, denormal)
* 3 == Empty
*/
// The xsave version of the tag word only keeps track of
// whether the element is empty or not. Set the corresponding
// bit in the ftwx if it's not empty,
if (tag != 0x3)
ftwx |= 1 << i;
}
return ftwx;
}
uint16_t
convX87XTagsToTags(uint8_t ftwx)
{
uint16_t ftw(0);
for (int i = 0; i < 8; ++i) {
const unsigned xtag(((ftwx >> i) & 0x1));
// The xtag for an x87 stack position is 0 for empty stack positions.
if (!xtag) {
// Set the tag word to 3 (empty) for the current element.
ftw |= 0x3 << (2 * i);
} else {
// TODO: We currently assume that non-empty elements are
// valid (0x0), but we should ideally reconstruct the full
// state (valid/zero/special).
}
}
return ftw;
}
uint16_t
genX87Tags(uint16_t ftw, uint8_t top, int8_t spm)
{
const uint8_t new_top((top + spm + 8) % 8);
if (spm > 0) {
// Removing elements from the stack. Flag the elements as empty.
for (int i = top; i != new_top; i = (i + 1 + 8) % 8)
ftw |= 0x3 << (2 * i);
} else if (spm < 0) {
// Adding elements to the stack. Flag the new elements as
// valid. We should ideally decode them and "do the right
// thing".
for (int i = new_top; i != top; i = (i + 1 + 8) % 8)
ftw &= ~(0x3 << (2 * i));
}
return ftw;
}
double
loadFloat80(const void *_mem)
{
const fp80_t *fp80((const fp80_t *)_mem);
return fp80_cvtd(*fp80);
}
void
storeFloat80(void *_mem, double value)
{
fp80_t *fp80((fp80_t *)_mem);
*fp80 = fp80_cvfd(value);
}
} // namespace X86_ISA
|