1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
|
/*
* Copyright (c) 2012, 2014, 2017-2019 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
* Steve Reinhardt
* Andreas Hansson
*/
#ifndef __BASE_ADDR_RANGE_HH__
#define __BASE_ADDR_RANGE_HH__
#include <algorithm>
#include <list>
#include <vector>
#include "base/bitfield.hh"
#include "base/cprintf.hh"
#include "base/logging.hh"
#include "base/types.hh"
/**
* The AddrRange class encapsulates an address range, and supports a
* number of tests to check if two ranges intersect, if a range
* contains a specific address etc. Besides a basic range, the
* AddrRange also support interleaved ranges, to stripe across cache
* banks, or memory controllers. The interleaving is implemented by
* allowing a number of bits of the address, at an arbitrary bit
* position, to be used as interleaving bits with an associated
* matching value. In addition, to prevent uniformly strided address
* patterns from a very biased interleaving, we also allow XOR-based
* hashing by specifying a set of bits to XOR with before matching.
*
* The AddrRange is also able to coalesce a number of interleaved
* ranges to a contiguous range.
*/
class AddrRange
{
private:
/// Private fields for the start and end of the range
/// Both _start and _end are part of the range.
Addr _start;
Addr _end;
/**
* Each mask determines the bits we need to xor to get one bit of
* sel. The first (0) mask is used to get the LSB and the last for
* the MSB of sel.
*/
std::vector<Addr> masks;
/** The value to compare sel with. */
uint8_t intlvMatch;
public:
AddrRange()
: _start(1), _end(0), intlvMatch(0)
{}
/**
* Construct an address range
*
* If the user provides a non empty vector of masks then the
* address range is interleaved. Each mask determines a set of
* bits that are xored to determine one bit of the sel value,
* starting from the least significant bit (i.e., masks[0]
* determines the least significant bit of sel, ...). If sel
* matches the provided _intlv_match then the address a is in the
* range.
*
* For example if the input mask is
* _masks = { 1 << 8 | 1 << 11 | 1 << 13,
* 1 << 15 | 1 << 17 | 1 << 19}
*
* Then a belongs to the address range if
* _start <= a < _end
* and
* sel == _intlv_match
* where
* sel[0] = a[8] ^ a[11] ^ a[13]
* sel[1] = a[15] ^ a[17] ^ a[19]
*
* @param _start The start address of this range
* @param _end The end address of this range (not included in the range)
* @param _masks The input vector of masks
* @param intlv_math The matching value of the xor operations
*/
AddrRange(Addr _start, Addr _end, const std::vector<Addr> &_masks,
uint8_t _intlv_match)
: _start(_start), _end(_end), masks(_masks),
intlvMatch(_intlv_match)
{
// sanity checks
fatal_if(!masks.empty() && _intlv_match >= ULL(1) << masks.size(),
"Match value %d does not fit in %d interleaving bits\n",
_intlv_match, masks.size());
}
/**
* Legacy constructor of AddrRange
*
* If the user provides a non-zero value in _intlv_high_bit the
* address range is interleaved.
*
* An address a belongs to the address range if
* _start <= a < _end
* and
* sel == _intlv_match
* where
* sel = sel1 ^ sel2
* sel1 = a[_intlv_low_bit:_intlv_high_bit]
* sel2 = a[_xor_low_bit:_xor_high_bit]
* _intlv_low_bit = _intlv_high_bit - intv_bits
* _xor_low_bit = _xor_high_bit - intv_bits
*
* @param _start The start address of this range
* @param _end The end address of this range (not included in the range)
* @param _intlv_high_bit The MSB of the intlv bits (disabled if 0)
* @param _xor_high_bit The MSB of the xor bit (disabled if 0)
* @param intlv_math The matching value of the xor operations
*/
AddrRange(Addr _start, Addr _end, uint8_t _intlv_high_bit,
uint8_t _xor_high_bit, uint8_t _intlv_bits,
uint8_t _intlv_match)
: _start(_start), _end(_end), masks(_intlv_bits),
intlvMatch(_intlv_match)
{
// sanity checks
fatal_if(_intlv_bits && _intlv_match >= ULL(1) << _intlv_bits,
"Match value %d does not fit in %d interleaving bits\n",
_intlv_match, _intlv_bits);
// ignore the XOR bits if not interleaving
if (_intlv_bits && _xor_high_bit) {
if (_xor_high_bit == _intlv_high_bit) {
fatal("XOR and interleave high bit must be different\n");
} else if (_xor_high_bit > _intlv_high_bit) {
if ((_xor_high_bit - _intlv_high_bit) < _intlv_bits)
fatal("XOR and interleave high bit must be at least "
"%d bits apart\n", _intlv_bits);
} else {
if ((_intlv_high_bit - _xor_high_bit) < _intlv_bits) {
fatal("Interleave and XOR high bit must be at least "
"%d bits apart\n", _intlv_bits);
}
}
}
for (auto i = 0; i < _intlv_bits; i++) {
uint8_t bit1 = _intlv_high_bit - i;
Addr mask = (1ULL << bit1);
if (_xor_high_bit) {
uint8_t bit2 = _xor_high_bit - i;
mask |= (1ULL << bit2);
}
masks[_intlv_bits - i - 1] = mask;
}
}
AddrRange(Addr _start, Addr _end)
: _start(_start), _end(_end), intlvMatch(0)
{}
/**
* Create an address range by merging a collection of interleaved
* ranges.
*
* @param ranges Interleaved ranges to be merged
*/
AddrRange(const std::vector<AddrRange>& ranges)
: _start(1), _end(0), intlvMatch(0)
{
if (!ranges.empty()) {
// get the values from the first one and check the others
_start = ranges.front()._start;
_end = ranges.front()._end;
masks = ranges.front().masks;
intlvMatch = ranges.front().intlvMatch;
}
// either merge if got all ranges or keep this equal to the single
// interleaved range
if (ranges.size() > 1) {
if (ranges.size() != (ULL(1) << masks.size()))
fatal("Got %d ranges spanning %d interleaving bits\n",
ranges.size(), masks.size());
uint8_t match = 0;
for (const auto& r : ranges) {
if (!mergesWith(r))
fatal("Can only merge ranges with the same start, end "
"and interleaving bits, %s %s\n", to_string(),
r.to_string());
if (r.intlvMatch != match)
fatal("Expected interleave match %d but got %d when "
"merging\n", match, r.intlvMatch);
++match;
}
masks.clear();
intlvMatch = 0;
}
}
/**
* Determine if the range is interleaved or not.
*
* @return true if interleaved
*/
bool interleaved() const { return masks.size() > 0; }
/**
* Determing the interleaving granularity of the range.
*
* @return The size of the regions created by the interleaving bits
*/
uint64_t granularity() const
{
if (interleaved()) {
auto combined_mask = 0;
for (auto mask: masks) {
combined_mask |= mask;
}
const uint8_t lowest_bit = ctz64(combined_mask);
return ULL(1) << lowest_bit;
} else {
return size();
}
}
/**
* Determine the number of interleaved address stripes this range
* is part of.
*
* @return The number of stripes spanned by the interleaving bits
*/
uint32_t stripes() const { return ULL(1) << masks.size(); }
/**
* Get the size of the address range. For a case where
* interleaving is used we make the simplifying assumption that
* the size is a divisible by the size of the interleaving slice.
*/
Addr size() const
{
return (_end - _start + 1) >> masks.size();
}
/**
* Determine if the range is valid.
*/
bool valid() const { return _start <= _end; }
/**
* Get the start address of the range.
*/
Addr start() const { return _start; }
/**
* Get the end address of the range.
*/
Addr end() const { return _end; }
/**
* Get a string representation of the range. This could
* alternatively be implemented as a operator<<, but at the moment
* that seems like overkill.
*/
std::string to_string() const
{
if (interleaved()) {
std::string str;
for (int i = 0; i < masks.size(); i++) {
str += " ";
Addr mask = masks[i];
while (mask) {
auto bit = ctz64(mask);
mask &= ~(1ULL << bit);
str += csprintf("a[%d]^", bit);
}
str += csprintf("\b=%d", bits(intlvMatch, i));
}
return csprintf("[%#llx:%#llx]%s", _start, _end, str);
} else {
return csprintf("[%#llx:%#llx]", _start, _end);
}
}
/**
* Determine if another range merges with the current one, i.e. if
* they are part of the same contigous range and have the same
* interleaving bits.
*
* @param r Range to evaluate merging with
* @return true if the two ranges would merge
*/
bool mergesWith(const AddrRange& r) const
{
return r._start == _start && r._end == _end &&
r.masks == masks;
}
/**
* Determine if another range intersects this one, i.e. if there
* is an address that is both in this range and the other
* range. No check is made to ensure either range is valid.
*
* @param r Range to intersect with
* @return true if the intersection of the two ranges is not empty
*/
bool intersects(const AddrRange& r) const
{
if (_start > r._end || _end < r._start)
// start with the simple case of no overlap at all,
// applicable even if we have interleaved ranges
return false;
else if (!interleaved() && !r.interleaved())
// if neither range is interleaved, we are done
return true;
// now it gets complicated, focus on the cases we care about
if (r.size() == 1)
// keep it simple and check if the address is within
// this range
return contains(r.start());
else if (mergesWith(r))
// restrict the check to ranges that belong to the
// same chunk
return intlvMatch == r.intlvMatch;
else
panic("Cannot test intersection of %s and %s\n",
to_string(), r.to_string());
}
/**
* Determine if this range is a subset of another range, i.e. if
* every address in this range is also in the other range. No
* check is made to ensure either range is valid.
*
* @param r Range to compare with
* @return true if the this range is a subset of the other one
*/
bool isSubset(const AddrRange& r) const
{
if (interleaved())
panic("Cannot test subset of interleaved range %s\n", to_string());
// This address range is not interleaved and therefore it
// suffices to check the upper bound, the lower bound and
// whether it would fit in a continuous segment of the input
// addr range.
if (r.interleaved()) {
return r.contains(_start) && r.contains(_end) &&
size() <= r.granularity();
} else {
return _start >= r._start && _end <= r._end;
}
}
/**
* Determine if the range contains an address.
*
* @param a Address to compare with
* @return true if the address is in the range
*/
bool contains(const Addr& a) const
{
// check if the address is in the range and if there is either
// no interleaving, or with interleaving also if the selected
// bits from the address match the interleaving value
bool in_range = a >= _start && a <= _end;
if (in_range) {
auto sel = 0;
for (int i = 0; i < masks.size(); i++) {
Addr masked = a & masks[i];
// The result of an xor operation is 1 if the number
// of bits set is odd or 0 othersize, thefore it
// suffices to count the number of bits set to
// determine the i-th bit of sel.
sel |= (popCount(masked) % 2) << i;
}
return sel == intlvMatch;
}
return false;
}
/**
* Remove the interleaving bits from an input address.
*
* This function returns a new address in a continous range [
* start, start + size / intlv_bits). We can achieve this by
* discarding the LSB in each mask.
*
* e.g., if the input address is of the form:
* ------------------------------------
* | a_high | x1 | a_mid | x0 | a_low |
* ------------------------------------
* where x0 is the LSB set in masks[0]
* and x1 is the LSB set in masks[1]
*
* this function will return:
* ---------------------------------
* | 0 | a_high | a_mid | a_low |
* ---------------------------------
*
* @param the input address
* @return the new address
*/
inline Addr removeIntlvBits(Addr a) const
{
// Get the LSB set from each mask
int masks_lsb[masks.size()];
for (int i = 0; i < masks.size(); i++) {
masks_lsb[i] = ctz64(masks[i]);
}
// we need to sort the list of bits we will discard as we
// discard them one by one starting.
std::sort(masks_lsb, masks_lsb + masks.size());
for (int i = 0; i < masks.size(); i++) {
const int intlv_bit = masks_lsb[i];
if (intlv_bit > 0) {
// on every iteration we remove one bit from the input
// address, and therefore the lowest invtl_bit has
// also shifted to the right by i positions.
a = insertBits(a >> 1, intlv_bit - i - 1, 0, a);
} else {
a >>= 1;
}
}
return a;
}
/**
* This method adds the interleaving bits removed by
* removeIntlvBits.
*/
inline Addr addIntlvBits(Addr a) const
{
// Get the LSB set from each mask
int masks_lsb[masks.size()];
for (int i = 0; i < masks.size(); i++) {
masks_lsb[i] = ctz64(masks[i]);
}
// Add bits one-by-one from the LSB side.
std::sort(masks_lsb, masks_lsb + masks.size());
for (int i = 0; i < masks.size(); i++) {
const int intlv_bit = masks_lsb[i];
if (intlv_bit > 0) {
// on every iteration we add one bit from the input
// address, and therefore the lowest invtl_bit has
// also shifted to the left by i positions.
a = insertBits(a << 1, intlv_bit + i - 1, 0, a);
} else {
a <<= 1;
}
}
for (int i = 0; i < masks.size(); i++) {
const int lsb = ctz64(masks[i]);
const Addr intlv_bit = bits(intlvMatch, i);
// Calculate the mask ignoring the LSB
const Addr masked = a & masks[i] & ~(1 << lsb);
// Set the LSB of the mask to whatever satisfies the selector bit
a = insertBits(a, lsb, intlv_bit ^ popCount(masked));
}
return a;
}
/**
* Determine the offset of an address within the range.
*
* This function returns the offset of the given address from the
* starting address discarding any bits that are used for
* interleaving. This way we can convert the input address to a
* new unique address in a continuous range that starts from 0.
*
* @param the input address
* @return the flat offset in the address range
*/
Addr getOffset(const Addr& a) const
{
bool in_range = a >= _start && a <= _end;
if (!in_range) {
return MaxAddr;
}
if (interleaved()) {
return removeIntlvBits(a) - removeIntlvBits(_start);
} else {
return a - _start;
}
}
/**
* Less-than operator used to turn an STL map into a binary search
* tree of non-overlapping address ranges.
*
* @param r Range to compare with
* @return true if the start address is less than that of the other range
*/
bool operator<(const AddrRange& r) const
{
if (_start != r._start)
return _start < r._start;
else
// for now assume that the end is also the same, and that
// we are looking at the same interleaving bits
return intlvMatch < r.intlvMatch;
}
bool operator==(const AddrRange& r) const
{
if (_start != r._start) return false;
if (_end != r._end) return false;
if (masks != r.masks) return false;
if (intlvMatch != r.intlvMatch) return false;
return true;
}
bool operator!=(const AddrRange& r) const
{
return !(*this == r);
}
};
/**
* Convenience typedef for a collection of address ranges
*/
typedef std::list<AddrRange> AddrRangeList;
inline AddrRange
RangeEx(Addr start, Addr end)
{ return AddrRange(start, end - 1); }
inline AddrRange
RangeIn(Addr start, Addr end)
{ return AddrRange(start, end); }
inline AddrRange
RangeSize(Addr start, Addr size)
{ return AddrRange(start, start + size - 1); }
#endif // __BASE_ADDR_RANGE_HH__
|