1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/*
* Copyright (c) 2018 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Giacomo Travaglini
*/
#ifndef __BASE_COROUTINE_HH__
#define __BASE_COROUTINE_HH__
#include <functional>
#include <stack>
#include "base/fiber.hh"
namespace m5
{
/**
* This template defines a Coroutine wrapper type with a Boost-like
* interface. It is built on top of the gem5 fiber class.
* The two template parameters (Arg and Ret) are the coroutine
* argument and coroutine return types which are passed between
* the coroutine and the caller via operator() and get() method.
* This implementation doesn't support passing multiple values,
* so a tuple must be used in that scenario.
*
* Most methods are templatized since it is relevant to distinguish
* the cases where one or both of the template parameters are void
*/
template <typename Arg, typename Ret>
class Coroutine : public Fiber
{
// This empty struct type is meant to replace coroutine channels
// in case the channel should be void (Coroutine template parameters
// are void. (See following ArgChannel, RetChannel typedef)
struct Empty {};
using ArgChannel = typename std::conditional<
std::is_same<Arg, void>::value, Empty, std::stack<Arg>>::type;
using RetChannel = typename std::conditional<
std::is_same<Ret, void>::value, Empty, std::stack<Ret>>::type;
public:
/**
* CallerType:
* A reference to an object of this class will be passed
* to the coroutine task. This is the way it is possible
* for the coroutine to interface (e.g. switch back)
* to the coroutine caller.
*/
class CallerType
{
friend class Coroutine;
protected:
CallerType(Coroutine& _coro) : coro(_coro), callerFiber(nullptr) {}
public:
/**
* operator() is the way we can jump outside the coroutine
* and return a value to the caller.
*
* This method is generated only if the coroutine returns
* a value (Ret != void)
*/
template <typename T = Ret>
CallerType&
operator()(typename std::enable_if<
!std::is_same<T, void>::value, T>::type param)
{
retChannel.push(param);
callerFiber->run();
return *this;
}
/**
* operator() is the way we can jump outside the coroutine
*
* This method is generated only if the coroutine doesn't
* return a value (Ret = void)
*/
template <typename T = Ret>
typename std::enable_if<std::is_same<T, void>::value,
CallerType>::type&
operator()()
{
callerFiber->run();
return *this;
}
/**
* get() is the way we can extrapolate arguments from the
* coroutine caller.
* The coroutine blocks, waiting for the value, unless it is already
* available; otherwise caller execution is resumed,
* and coroutine won't execute until a value is pushed
* from the caller.
*
* @return arg coroutine argument
*/
template <typename T = Arg>
typename std::enable_if<!std::is_same<T, void>::value, T>::type
get()
{
auto& args_channel = coro.argsChannel;
while (args_channel.empty()) {
callerFiber->run();
}
auto ret = args_channel.top();
args_channel.pop();
return ret;
}
private:
Coroutine& coro;
Fiber* callerFiber;
RetChannel retChannel;
};
Coroutine() = delete;
Coroutine(const Coroutine& rhs) = delete;
Coroutine& operator=(const Coroutine& rhs) = delete;
/**
* Coroutine constructor.
* The only way to construct a coroutine is to pass it the routine
* it needs to run. The first argument of the function should be a
* reference to the Coroutine<Arg,Ret>::caller_type which the
* routine will use as a way for yielding to the caller.
* The optional second boolean argument controls if the Coroutine
* should be run on creation, which mimics Boost's Coroutine
* semantics by default. This can be disabled as an optimization to
* avoid unnecessary context switches on Coroutine creation.
*
* @param f task run by the coroutine
* @param run_coroutine set to false to disable running the coroutine
* immediately after it is created
*/
Coroutine(std::function<void(CallerType&)> f, bool run_coroutine = true)
: Fiber(), task(f), caller(*this)
{
// When desired, run the Coroutine after it is created
if (run_coroutine)
this->call();
}
virtual ~Coroutine() {}
public:
/** Coroutine interface */
/**
* operator() is the way we can jump inside the coroutine
* and passing arguments.
*
* This method is generated only if the coroutine takes
* arguments (Arg != void)
*/
template <typename T = Arg>
Coroutine&
operator()(typename std::enable_if<
!std::is_same<T, void>::value, T>::type param)
{
argsChannel.push(param);
this->call();
return *this;
}
/**
* operator() is the way we can jump inside the coroutine.
*
* This method is generated only if the coroutine takes
* no arguments. (Arg = void)
*/
template <typename T = Arg>
typename std::enable_if<std::is_same<T, void>::value, Coroutine>::type&
operator()()
{
this->call();
return *this;
}
/**
* get() is the way we can extrapolate return values
* (yielded) from the coroutine.
* The caller blocks, waiting for the value, unless it is already
* available; otherwise coroutine execution is resumed,
* and caller won't execute until a value is yielded back
* from the coroutine.
*
* @return ret yielded value
*/
template <typename T = Ret>
typename std::enable_if<!std::is_same<T, void>::value, T>::type
get()
{
auto& ret_channel = caller.retChannel;
while (ret_channel.empty()) {
this->call();
}
auto ret = ret_channel.top();
ret_channel.pop();
return ret;
}
/** Check if coroutine is still running */
operator bool() const { return !this->finished(); }
private:
/**
* Overriding base (Fiber) main.
* This method will be automatically called by the Fiber
* running engine and it is a simple wrapper for the task
* that the coroutine is supposed to run.
*/
void main() override { this->task(caller); }
void
call()
{
caller.callerFiber = currentFiber();
run();
}
private:
/** Arguments for the coroutine */
ArgChannel argsChannel;
/** Coroutine task */
std::function<void(CallerType&)> task;
/** Coroutine caller */
CallerType caller;
};
} //namespace m5
#endif // __BASE_COROUTINE_HH__
|