1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
/*
* Copyright (c) 2017 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
*/
#ifndef __BASE_REFCNT_HH__
#define __BASE_REFCNT_HH__
#include <type_traits>
/**
* @file base/refcnt.hh
*
* Classes for managing reference counted objects.
*/
/**
* Derive from RefCounted if you want to enable reference counting of
* this class. If you want to use automatic reference counting, you
* should use RefCountingPtr<T> instead of regular pointers.
*/
class RefCounted
{
private:
// The reference count is mutable because one may want to
// reference count a const pointer. This really is OK because
// const is about logical constness of the object not really about
// strictly disallowing an object to change.
mutable int count;
private:
// Don't allow a default copy constructor or copy operator on
// these objects because the default operation will copy the
// reference count as well and we certainly don't want that.
RefCounted(const RefCounted &);
RefCounted &operator=(const RefCounted &);
public:
/**
* We initialize the reference count to zero and the first object
* to take ownership of it must increment it to one.
*
* @attention A memory leak will occur if you never assign a newly
* constructed object to a reference counting pointer.
*/
RefCounted() : count(0) {}
/**
* We make the destructor virtual because we're likely to have
* virtual functions on reference counted objects.
*
* @todo Even if this were true, does it matter? Shouldn't the
* derived class indicate this? This only matters if we would
* ever choose to delete a "RefCounted *" which I doubt we'd ever
* do. We don't ever delete a "void *".
*/
virtual ~RefCounted() {}
/// Increment the reference count
void incref() const { ++count; }
/// Decrement the reference count and destroy the object if all
/// references are gone.
void decref() const { if (--count <= 0) delete this; }
};
/**
* If you want a reference counting pointer to a mutable object,
* create it like this:
* @code
* typedef RefCountingPtr<Foo> FooPtr;
* @endcode
*
* @attention Do not use "const FooPtr"
* To create a reference counting pointer to a const object, use this:
* @code
* typedef RefCountingPtr<const Foo> ConstFooPtr;
* @endcode
*
* These two usages are analogous to iterator and const_iterator in the stl.
*/
template <class T>
class RefCountingPtr
{
protected:
/** Convenience aliases for const/non-const versions of T w/ friendship. */
/** @{ */
static constexpr auto TisConst = std::is_const<T>::value;
using ConstT = typename std::conditional<TisConst,
RefCountingPtr<T>,
RefCountingPtr<typename std::add_const<T>::type>>::type;
friend ConstT;
using NonConstT = typename std::conditional<TisConst,
RefCountingPtr<typename std::remove_const<T>::type>,
RefCountingPtr<T>>::type;
friend NonConstT;
/** @} */
/// The stored pointer.
/// Arguably this should be private.
T *data;
/**
* Copy a new pointer value and increment the reference count if
* it is a valid pointer. Note, this does not delete the
* reference any existing object.
* @param d Pointer to store.
*/
void
copy(T *d)
{
data = d;
if (data)
data->incref();
}
/**
* Delete the reference to any existing object if it is non NULL.
* @attention this doesn't clear the pointer value, so a double
* decref could happen if not careful.
*/
void
del()
{
if (data)
data->decref();
}
/**
* Drop the old reference and change it to something new.
*/
void
set(T *d)
{
// Need to check if we're actually changing because otherwise
// we could delete the last reference before adding the new
// reference.
if (data != d) {
del();
copy(d);
}
}
public:
/// Create an empty reference counting pointer.
RefCountingPtr() : data(0) {}
/// Create a new reference counting pointer to some object
/// (probably something newly created). Adds a reference.
RefCountingPtr(T *data) { copy(data); }
/// Create a new reference counting pointer by copying another
/// one. Adds a reference.
RefCountingPtr(const RefCountingPtr &r) { copy(r.data); }
/** Move-constructor.
* Does not add a reference.
*/
RefCountingPtr(RefCountingPtr&& r)
{
data = r.data;
r.data = nullptr;
}
template <bool B = TisConst>
RefCountingPtr(const NonConstT &r) { copy(r.data); }
/// Destroy the pointer and any reference it may hold.
~RefCountingPtr() { del(); }
// The following pointer access functions are const because they
// don't actually change the pointer, though the user could change
// what is pointed to. This is analagous to a "Foo * const".
/// Access a member variable.
T *operator->() const { return data; }
/// Dereference the pointer.
T &operator*() const { return *data; }
/// Directly access the pointer itself without taking a reference.
T *get() const { return data; }
template <bool B = TisConst>
operator RefCountingPtr<typename std::enable_if<!B, ConstT>::type>()
{
return RefCountingPtr<const T>(*this);
}
/// Assign a new value to the pointer
const RefCountingPtr &operator=(T *p) { set(p); return *this; }
/// Copy the pointer from another RefCountingPtr
const RefCountingPtr &operator=(const RefCountingPtr &r)
{ return operator=(r.data); }
/// Move-assign the pointer from another RefCountingPtr
const RefCountingPtr &operator=(RefCountingPtr&& r)
{
/* This happens regardless of whether the pointer is the same or not,
* because of the move semantics, the rvalue needs to be 'destroyed'.
*/
del();
data = r.data;
r.data = nullptr;
return *this;
}
/// Check if the pointer is empty
bool operator!() const { return data == 0; }
/// Check if the pointer is non-empty
operator bool() const { return data != 0; }
};
/// Check for equality of two reference counting pointers.
template<class T>
inline bool operator==(const RefCountingPtr<T> &l, const RefCountingPtr<T> &r)
{ return l.get() == r.get(); }
/// Check for equality of of a reference counting pointers and a
/// regular pointer
template<class T>
inline bool operator==(const RefCountingPtr<T> &l, const T *r)
{ return l.get() == r; }
/// Check for equality of of a reference counting pointers and a
/// regular pointer
template<class T>
inline bool operator==(const T *l, const RefCountingPtr<T> &r)
{ return l == r.get(); }
/// Check for inequality of two reference counting pointers.
template<class T>
inline bool operator!=(const RefCountingPtr<T> &l, const RefCountingPtr<T> &r)
{ return l.get() != r.get(); }
/// Check for inequality of of a reference counting pointers and a
/// regular pointer
template<class T>
inline bool operator!=(const RefCountingPtr<T> &l, const T *r)
{ return l.get() != r; }
/// Check for inequality of of a reference counting pointers and a
/// regular pointer
template<class T>
inline bool operator!=(const T *l, const RefCountingPtr<T> &r)
{ return l != r.get(); }
#endif // __BASE_REFCNT_HH__
|