1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
|
/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_BASE_DYN_INST_HH__
#define __CPU_BASE_DYN_INST_HH__
#include <bitset>
#include <list>
#include <string>
#include "arch/faults.hh"
#include "base/fast_alloc.hh"
#include "base/trace.hh"
#include "config/full_system.hh"
#include "cpu/exetrace.hh"
#include "cpu/inst_seq.hh"
#include "cpu/op_class.hh"
#include "cpu/static_inst.hh"
#include "mem/packet.hh"
#include "sim/system.hh"
/**
* @file
* Defines a dynamic instruction context.
*/
// Forward declaration.
class StaticInstPtr;
template <class Impl>
class BaseDynInst : public FastAlloc, public RefCounted
{
public:
// Typedef for the CPU.
typedef typename Impl::CPUType ImplCPU;
typedef typename ImplCPU::ImplState ImplState;
// Binary machine instruction type.
typedef TheISA::MachInst MachInst;
// Extended machine instruction type
typedef TheISA::ExtMachInst ExtMachInst;
// Logical register index type.
typedef TheISA::RegIndex RegIndex;
// Integer register type.
typedef TheISA::IntReg IntReg;
// Floating point register type.
typedef TheISA::FloatReg FloatReg;
// The DynInstPtr type.
typedef typename Impl::DynInstPtr DynInstPtr;
// The list of instructions iterator type.
typedef typename std::list<DynInstPtr>::iterator ListIt;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
};
/** The StaticInst used by this BaseDynInst. */
StaticInstPtr staticInst;
////////////////////////////////////////////
//
// INSTRUCTION EXECUTION
//
////////////////////////////////////////////
/** InstRecord that tracks this instructions. */
Trace::InstRecord *traceData;
/**
* Does a read to a given address.
* @param addr The address to read.
* @param data The read's data is written into this parameter.
* @param flags The request's flags.
* @return Returns any fault due to the read.
*/
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
/**
* Does a write to a given address.
* @param data The data to be written.
* @param addr The address to write to.
* @param flags The request's flags.
* @param res The result of the write (for load locked/store conditionals).
* @return Returns any fault due to the write.
*/
template <class T>
Fault write(T data, Addr addr, unsigned flags,
uint64_t *res);
void prefetch(Addr addr, unsigned flags);
void writeHint(Addr addr, int size, unsigned flags);
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
/** @todo: Consider making this private. */
public:
/** The sequence number of the instruction. */
InstSeqNum seqNum;
enum Status {
IqEntry, /// Instruction is in the IQ
RobEntry, /// Instruction is in the ROB
LsqEntry, /// Instruction is in the LSQ
Completed, /// Instruction has completed
ResultReady, /// Instruction has its result
CanIssue, /// Instruction can issue and execute
Issued, /// Instruction has issued
Executed, /// Instruction has executed
CanCommit, /// Instruction can commit
AtCommit, /// Instruction has reached commit
Committed, /// Instruction has committed
Squashed, /// Instruction is squashed
SquashedInIQ, /// Instruction is squashed in the IQ
SquashedInLSQ, /// Instruction is squashed in the LSQ
SquashedInROB, /// Instruction is squashed in the ROB
RecoverInst, /// Is a recover instruction
BlockingInst, /// Is a blocking instruction
ThreadsyncWait, /// Is a thread synchronization instruction
SerializeBefore, /// Needs to serialize on
/// instructions ahead of it
SerializeAfter, /// Needs to serialize instructions behind it
SerializeHandled, /// Serialization has been handled
NumStatus
};
/** The status of this BaseDynInst. Several bits can be set. */
std::bitset<NumStatus> status;
/** The thread this instruction is from. */
short threadNumber;
/** data address space ID, for loads & stores. */
short asid;
/** How many source registers are ready. */
unsigned readyRegs;
/** Pointer to the Impl's CPU object. */
ImplCPU *cpu;
/** Pointer to the thread state. */
ImplState *thread;
/** The kind of fault this instruction has generated. */
Fault fault;
/** The memory request. */
Request *req;
/** Pointer to the data for the memory access. */
uint8_t *memData;
/** The effective virtual address (lds & stores only). */
Addr effAddr;
/** The effective physical address. */
Addr physEffAddr;
/** Effective virtual address for a copy source. */
Addr copySrcEffAddr;
/** Effective physical address for a copy source. */
Addr copySrcPhysEffAddr;
/** The memory request flags (from translation). */
unsigned memReqFlags;
union Result {
uint64_t integer;
float fp;
double dbl;
};
/** The result of the instruction; assumes for now that there's only one
* destination register.
*/
Result instResult;
/** PC of this instruction. */
Addr PC;
/** Next non-speculative PC. It is not filled in at fetch, but rather
* once the target of the branch is truly known (either decode or
* execute).
*/
Addr nextPC;
/** Next non-speculative NPC. Target PC for Mips or Sparc. */
Addr nextNPC;
/** Predicted next PC. */
Addr predPC;
/** Count of total number of dynamic instructions. */
static int instcount;
#ifdef DEBUG
void dumpSNList();
#endif
/** Whether or not the source register is ready.
* @todo: Not sure this should be here vs the derived class.
*/
bool _readySrcRegIdx[MaxInstSrcRegs];
public:
/** BaseDynInst constructor given a binary instruction.
* @param inst The binary instruction.
* @param PC The PC of the instruction.
* @param pred_PC The predicted next PC.
* @param seq_num The sequence number of the instruction.
* @param cpu Pointer to the instruction's CPU.
*/
BaseDynInst(ExtMachInst inst, Addr PC, Addr pred_PC, InstSeqNum seq_num,
ImplCPU *cpu);
/** BaseDynInst constructor given a StaticInst pointer.
* @param _staticInst The StaticInst for this BaseDynInst.
*/
BaseDynInst(StaticInstPtr &_staticInst);
/** BaseDynInst destructor. */
~BaseDynInst();
private:
/** Function to initialize variables in the constructors. */
void initVars();
public:
/** Dumps out contents of this BaseDynInst. */
void dump();
/** Dumps out contents of this BaseDynInst into given string. */
void dump(std::string &outstring);
/** Returns the fault type. */
Fault getFault() { return fault; }
/** Checks whether or not this instruction has had its branch target
* calculated yet. For now it is not utilized and is hacked to be
* always false.
* @todo: Actually use this instruction.
*/
bool doneTargCalc() { return false; }
/** Returns the next PC. This could be the speculative next PC if it is
* called prior to the actual branch target being calculated.
*/
Addr readNextPC() { return nextPC; }
/** Returns the next NPC. This could be the speculative next NPC if it is
* called prior to the actual branch target being calculated.
*/
Addr readNextNPC() { return nextNPC; }
/** Set the predicted target of this current instruction. */
void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; }
/** Returns the predicted target of the branch. */
Addr readPredTarg() { return predPC; }
/** Returns whether the instruction was predicted taken or not. */
bool predTaken()
#if ISA_HAS_DELAY_SLOT
{ return predPC != (nextPC + sizeof(MachInst)); }
#else
{ return predPC != (PC + sizeof(MachInst)); }
#endif
/** Returns whether the instruction mispredicted. */
bool mispredicted()
#if ISA_HAS_DELAY_SLOT
{ return predPC != nextNPC; }
#else
{ return predPC != nextPC; }
#endif
//
// Instruction types. Forward checks to StaticInst object.
//
bool isNop() const { return staticInst->isNop(); }
bool isMemRef() const { return staticInst->isMemRef(); }
bool isLoad() const { return staticInst->isLoad(); }
bool isStore() const { return staticInst->isStore(); }
bool isStoreConditional() const
{ return staticInst->isStoreConditional(); }
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
bool isCopy() const { return staticInst->isCopy(); }
bool isInteger() const { return staticInst->isInteger(); }
bool isFloating() const { return staticInst->isFloating(); }
bool isControl() const { return staticInst->isControl(); }
bool isCall() const { return staticInst->isCall(); }
bool isReturn() const { return staticInst->isReturn(); }
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
bool isThreadSync() const { return staticInst->isThreadSync(); }
bool isSerializing() const { return staticInst->isSerializing(); }
bool isSerializeBefore() const
{ return staticInst->isSerializeBefore() || status[SerializeBefore]; }
bool isSerializeAfter() const
{ return staticInst->isSerializeAfter() || status[SerializeAfter]; }
bool isMemBarrier() const { return staticInst->isMemBarrier(); }
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
bool isQuiesce() const { return staticInst->isQuiesce(); }
bool isIprAccess() const { return staticInst->isIprAccess(); }
bool isUnverifiable() const { return staticInst->isUnverifiable(); }
/** Temporarily sets this instruction as a serialize before instruction. */
void setSerializeBefore() { status.set(SerializeBefore); }
/** Clears the serializeBefore part of this instruction. */
void clearSerializeBefore() { status.reset(SerializeBefore); }
/** Checks if this serializeBefore is only temporarily set. */
bool isTempSerializeBefore() { return status[SerializeBefore]; }
/** Temporarily sets this instruction as a serialize after instruction. */
void setSerializeAfter() { status.set(SerializeAfter); }
/** Clears the serializeAfter part of this instruction.*/
void clearSerializeAfter() { status.reset(SerializeAfter); }
/** Checks if this serializeAfter is only temporarily set. */
bool isTempSerializeAfter() { return status[SerializeAfter]; }
/** Sets the serialization part of this instruction as handled. */
void setSerializeHandled() { status.set(SerializeHandled); }
/** Checks if the serialization part of this instruction has been
* handled. This does not apply to the temporary serializing
* state; it only applies to this instruction's own permanent
* serializing state.
*/
bool isSerializeHandled() { return status[SerializeHandled]; }
/** Returns the opclass of this instruction. */
OpClass opClass() const { return staticInst->opClass(); }
/** Returns the branch target address. */
Addr branchTarget() const { return staticInst->branchTarget(PC); }
/** Returns the number of source registers. */
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
/** Returns the number of destination registers. */
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
// the following are used to track physical register usage
// for machines with separate int & FP reg files
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
/** Returns the logical register index of the i'th destination register. */
RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
/** Returns the logical register index of the i'th source register. */
RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
/** Returns the result of an integer instruction. */
uint64_t readIntResult() { return instResult.integer; }
/** Returns the result of a floating point instruction. */
float readFloatResult() { return instResult.fp; }
/** Returns the result of a floating point (double) instruction. */
double readDoubleResult() { return instResult.dbl; }
/** Records an integer register being set to a value. */
void setIntReg(const StaticInst *si, int idx, uint64_t val)
{
instResult.integer = val;
}
/** Records an fp register being set to a value. */
void setFloatReg(const StaticInst *si, int idx, FloatReg val, int width)
{
if (width == 32)
instResult.fp = val;
else if (width == 64)
instResult.dbl = val;
else
panic("Unsupported width!");
}
/** Records an fp register being set to a value. */
void setFloatReg(const StaticInst *si, int idx, FloatReg val)
{
instResult.fp = val;
}
/** Records an fp register being set to an integer value. */
void setFloatRegBits(const StaticInst *si, int idx, uint64_t val, int width)
{
instResult.integer = val;
}
/** Records an fp register being set to an integer value. */
void setFloatRegBits(const StaticInst *si, int idx, uint64_t val)
{
instResult.integer = val;
}
/** Records that one of the source registers is ready. */
void markSrcRegReady();
/** Marks a specific register as ready. */
void markSrcRegReady(RegIndex src_idx);
/** Returns if a source register is ready. */
bool isReadySrcRegIdx(int idx) const
{
return this->_readySrcRegIdx[idx];
}
/** Sets this instruction as completed. */
void setCompleted() { status.set(Completed); }
/** Returns whether or not this instruction is completed. */
bool isCompleted() const { return status[Completed]; }
/** Marks the result as ready. */
void setResultReady() { status.set(ResultReady); }
/** Returns whether or not the result is ready. */
bool isResultReady() const { return status[ResultReady]; }
/** Sets this instruction as ready to issue. */
void setCanIssue() { status.set(CanIssue); }
/** Returns whether or not this instruction is ready to issue. */
bool readyToIssue() const { return status[CanIssue]; }
/** Sets this instruction as issued from the IQ. */
void setIssued() { status.set(Issued); }
/** Returns whether or not this instruction has issued. */
bool isIssued() const { return status[Issued]; }
/** Sets this instruction as executed. */
void setExecuted() { status.set(Executed); }
/** Returns whether or not this instruction has executed. */
bool isExecuted() const { return status[Executed]; }
/** Sets this instruction as ready to commit. */
void setCanCommit() { status.set(CanCommit); }
/** Clears this instruction as being ready to commit. */
void clearCanCommit() { status.reset(CanCommit); }
/** Returns whether or not this instruction is ready to commit. */
bool readyToCommit() const { return status[CanCommit]; }
void setAtCommit() { status.set(AtCommit); }
bool isAtCommit() { return status[AtCommit]; }
/** Sets this instruction as committed. */
void setCommitted() { status.set(Committed); }
/** Returns whether or not this instruction is committed. */
bool isCommitted() const { return status[Committed]; }
/** Sets this instruction as squashed. */
void setSquashed() { status.set(Squashed); }
/** Returns whether or not this instruction is squashed. */
bool isSquashed() const { return status[Squashed]; }
//Instruction Queue Entry
//-----------------------
/** Sets this instruction as a entry the IQ. */
void setInIQ() { status.set(IqEntry); }
/** Sets this instruction as a entry the IQ. */
void clearInIQ() { status.reset(IqEntry); }
/** Returns whether or not this instruction has issued. */
bool isInIQ() const { return status[IqEntry]; }
/** Sets this instruction as squashed in the IQ. */
void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
/** Returns whether or not this instruction is squashed in the IQ. */
bool isSquashedInIQ() const { return status[SquashedInIQ]; }
//Load / Store Queue Functions
//-----------------------
/** Sets this instruction as a entry the LSQ. */
void setInLSQ() { status.set(LsqEntry); }
/** Sets this instruction as a entry the LSQ. */
void removeInLSQ() { status.reset(LsqEntry); }
/** Returns whether or not this instruction is in the LSQ. */
bool isInLSQ() const { return status[LsqEntry]; }
/** Sets this instruction as squashed in the LSQ. */
void setSquashedInLSQ() { status.set(SquashedInLSQ);}
/** Returns whether or not this instruction is squashed in the LSQ. */
bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
//Reorder Buffer Functions
//-----------------------
/** Sets this instruction as a entry the ROB. */
void setInROB() { status.set(RobEntry); }
/** Sets this instruction as a entry the ROB. */
void clearInROB() { status.reset(RobEntry); }
/** Returns whether or not this instruction is in the ROB. */
bool isInROB() const { return status[RobEntry]; }
/** Sets this instruction as squashed in the ROB. */
void setSquashedInROB() { status.set(SquashedInROB); }
/** Returns whether or not this instruction is squashed in the ROB. */
bool isSquashedInROB() const { return status[SquashedInROB]; }
/** Read the PC of this instruction. */
const Addr readPC() const { return PC; }
/** Set the next PC of this instruction (its actual target). */
void setNextPC(uint64_t val)
{
nextPC = val;
}
/** Set the next NPC of this instruction (the target in Mips or Sparc).*/
void setNextNPC(uint64_t val)
{
nextNPC = val;
}
/** Sets the ASID. */
void setASID(short addr_space_id) { asid = addr_space_id; }
/** Sets the thread id. */
void setTid(unsigned tid) { threadNumber = tid; }
/** Sets the pointer to the thread state. */
void setThreadState(ImplState *state) { thread = state; }
/** Returns the thread context. */
ThreadContext *tcBase() { return thread->getTC(); }
private:
/** Instruction effective address.
* @todo: Consider if this is necessary or not.
*/
Addr instEffAddr;
/** Whether or not the effective address calculation is completed.
* @todo: Consider if this is necessary or not.
*/
bool eaCalcDone;
public:
/** Sets the effective address. */
void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
/** Returns the effective address. */
const Addr &getEA() const { return instEffAddr; }
/** Returns whether or not the eff. addr. calculation has been completed. */
bool doneEACalc() { return eaCalcDone; }
/** Returns whether or not the eff. addr. source registers are ready. */
bool eaSrcsReady();
/** Whether or not the memory operation is done. */
bool memOpDone;
public:
/** Load queue index. */
int16_t lqIdx;
/** Store queue index. */
int16_t sqIdx;
/** Iterator pointing to this BaseDynInst in the list of all insts. */
ListIt instListIt;
/** Returns iterator to this instruction in the list of all insts. */
ListIt &getInstListIt() { return instListIt; }
/** Sets iterator for this instruction in the list of all insts. */
void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
};
template<class Impl>
template<class T>
inline Fault
BaseDynInst<Impl>::read(Addr addr, T &data, unsigned flags)
{
// Sometimes reads will get retried, so they may come through here
// twice.
if (!req) {
req = new Request();
req->setVirt(asid, addr, sizeof(T), flags, this->PC);
req->setThreadContext(thread->readCpuId(), threadNumber);
} else {
assert(addr == req->getVaddr());
}
if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
TheISA::VMPageSize) {
return TheISA::genAlignmentFault();
}
fault = cpu->translateDataReadReq(req, thread);
if (fault == NoFault) {
effAddr = req->getVaddr();
physEffAddr = req->getPaddr();
memReqFlags = req->getFlags();
#if 0
if (cpu->system->memctrl->badaddr(physEffAddr)) {
fault = TheISA::genMachineCheckFault();
data = (T)-1;
this->setExecuted();
} else {
fault = cpu->read(req, data, lqIdx);
}
#else
fault = cpu->read(req, data, lqIdx);
#endif
} else {
// Return a fixed value to keep simulation deterministic even
// along misspeculated paths.
data = (T)-1;
// Commit will have to clean up whatever happened. Set this
// instruction as executed.
this->setExecuted();
}
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
return fault;
}
template<class Impl>
template<class T>
inline Fault
BaseDynInst<Impl>::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
if (traceData) {
traceData->setAddr(addr);
traceData->setData(data);
}
assert(req == NULL);
req = new Request();
req->setVirt(asid, addr, sizeof(T), flags, this->PC);
req->setThreadContext(thread->readCpuId(), threadNumber);
if ((req->getVaddr() & (TheISA::VMPageSize - 1)) + req->getSize() >
TheISA::VMPageSize) {
return TheISA::genAlignmentFault();
}
fault = cpu->translateDataWriteReq(req, thread);
if (fault == NoFault) {
effAddr = req->getVaddr();
physEffAddr = req->getPaddr();
memReqFlags = req->getFlags();
#if 0
if (cpu->system->memctrl->badaddr(physEffAddr)) {
fault = TheISA::genMachineCheckFault();
} else {
fault = cpu->write(req, data, sqIdx);
}
#else
fault = cpu->write(req, data, sqIdx);
#endif
}
if (res) {
// always return some result to keep misspeculated paths
// (which will ignore faults) deterministic
*res = (fault == NoFault) ? req->getScResult() : 0;
}
return fault;
}
#endif // __CPU_BASE_DYN_INST_HH__
|