summaryrefslogtreecommitdiff
path: root/src/cpu/base_dyn_inst.hh
blob: a8e619cd941186cc3c1a96e7c5b3e4c7e6f3ed87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
/*
 * Copyright (c) 2011,2013,2016 ARM Limited
 * Copyright (c) 2013 Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2004-2006 The Regents of The University of Michigan
 * Copyright (c) 2009 The University of Edinburgh
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Kevin Lim
 *          Timothy M. Jones
 */

#ifndef __CPU_BASE_DYN_INST_HH__
#define __CPU_BASE_DYN_INST_HH__

#include <array>
#include <bitset>
#include <list>
#include <queue>
#include <string>

#include "arch/generic/tlb.hh"
#include "arch/utility.hh"
#include "base/trace.hh"
#include "config/the_isa.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/inst_res.hh"
#include "cpu/inst_seq.hh"
#include "cpu/o3/comm.hh"
#include "cpu/op_class.hh"
#include "cpu/static_inst.hh"
#include "cpu/translation.hh"
#include "mem/packet.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/system.hh"

/**
 * @file
 * Defines a dynamic instruction context.
 */

template <class Impl>
class BaseDynInst : public ExecContext, public RefCounted
{
  public:
    // Typedef for the CPU.
    typedef typename Impl::CPUType ImplCPU;
    typedef typename ImplCPU::ImplState ImplState;

    // The DynInstPtr type.
    typedef typename Impl::DynInstPtr DynInstPtr;
    typedef RefCountingPtr<BaseDynInst<Impl> > BaseDynInstPtr;

    // The list of instructions iterator type.
    typedef typename std::list<DynInstPtr>::iterator ListIt;

    enum {
        MaxInstSrcRegs = TheISA::MaxInstSrcRegs,        /// Max source regs
        MaxInstDestRegs = TheISA::MaxInstDestRegs       /// Max dest regs
    };

  protected:
    enum Status {
        IqEntry,                 /// Instruction is in the IQ
        RobEntry,                /// Instruction is in the ROB
        LsqEntry,                /// Instruction is in the LSQ
        Completed,               /// Instruction has completed
        ResultReady,             /// Instruction has its result
        CanIssue,                /// Instruction can issue and execute
        Issued,                  /// Instruction has issued
        Executed,                /// Instruction has executed
        CanCommit,               /// Instruction can commit
        AtCommit,                /// Instruction has reached commit
        Committed,               /// Instruction has committed
        Squashed,                /// Instruction is squashed
        SquashedInIQ,            /// Instruction is squashed in the IQ
        SquashedInLSQ,           /// Instruction is squashed in the LSQ
        SquashedInROB,           /// Instruction is squashed in the ROB
        RecoverInst,             /// Is a recover instruction
        BlockingInst,            /// Is a blocking instruction
        ThreadsyncWait,          /// Is a thread synchronization instruction
        SerializeBefore,         /// Needs to serialize on
                                 /// instructions ahead of it
        SerializeAfter,          /// Needs to serialize instructions behind it
        SerializeHandled,        /// Serialization has been handled
        NumStatus
    };

    enum Flags {
        TranslationStarted,
        TranslationCompleted,
        PossibleLoadViolation,
        HitExternalSnoop,
        EffAddrValid,
        RecordResult,
        Predicate,
        PredTaken,
        /** Whether or not the effective address calculation is completed.
         *  @todo: Consider if this is necessary or not.
         */
        EACalcDone,
        IsStrictlyOrdered,
        ReqMade,
        MemOpDone,
        MaxFlags
    };

  public:
    /** The sequence number of the instruction. */
    InstSeqNum seqNum;

    /** The StaticInst used by this BaseDynInst. */
    const StaticInstPtr staticInst;

    /** Pointer to the Impl's CPU object. */
    ImplCPU *cpu;

    BaseCPU *getCpuPtr() { return cpu; }

    /** Pointer to the thread state. */
    ImplState *thread;

    /** The kind of fault this instruction has generated. */
    Fault fault;

    /** InstRecord that tracks this instructions. */
    Trace::InstRecord *traceData;

  protected:
    /** The result of the instruction; assumes an instruction can have many
     *  destination registers.
     */
    std::queue<InstResult> instResult;

    /** PC state for this instruction. */
    TheISA::PCState pc;

    /* An amalgamation of a lot of boolean values into one */
    std::bitset<MaxFlags> instFlags;

    /** The status of this BaseDynInst.  Several bits can be set. */
    std::bitset<NumStatus> status;

     /** Whether or not the source register is ready.
     *  @todo: Not sure this should be here vs the derived class.
     */
    std::bitset<MaxInstSrcRegs> _readySrcRegIdx;

  public:
    /** The thread this instruction is from. */
    ThreadID threadNumber;

    /** Iterator pointing to this BaseDynInst in the list of all insts. */
    ListIt instListIt;

    ////////////////////// Branch Data ///////////////
    /** Predicted PC state after this instruction. */
    TheISA::PCState predPC;

    /** The Macroop if one exists */
    const StaticInstPtr macroop;

    /** How many source registers are ready. */
    uint8_t readyRegs;

  public:
    /////////////////////// Load Store Data //////////////////////
    /** The effective virtual address (lds & stores only). */
    Addr effAddr;

    /** The effective physical address. */
    Addr physEffAddrLow;

    /** The effective physical address
     *  of the second request for a split request
     */
    Addr physEffAddrHigh;

    /** The memory request flags (from translation). */
    unsigned memReqFlags;

    /** data address space ID, for loads & stores. */
    short asid;

    /** The size of the request */
    uint8_t effSize;

    /** Pointer to the data for the memory access. */
    uint8_t *memData;

    /** Load queue index. */
    int16_t lqIdx;

    /** Store queue index. */
    int16_t sqIdx;


    /////////////////////// TLB Miss //////////////////////
    /**
     * Saved memory requests (needed when the DTB address translation is
     * delayed due to a hw page table walk).
     */
    RequestPtr savedReq;
    RequestPtr savedSreqLow;
    RequestPtr savedSreqHigh;

    /////////////////////// Checker //////////////////////
    // Need a copy of main request pointer to verify on writes.
    RequestPtr reqToVerify;

  private:
    /** Instruction effective address.
     *  @todo: Consider if this is necessary or not.
     */
    Addr instEffAddr;

  protected:
    /** Flattened register index of the destination registers of this
     *  instruction.
     */
    std::array<RegId, TheISA::MaxInstDestRegs> _flatDestRegIdx;

    /** Physical register index of the destination registers of this
     *  instruction.
     */
    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _destRegIdx;

    /** Physical register index of the source registers of this
     *  instruction.
     */
    std::array<PhysRegIdPtr, TheISA::MaxInstSrcRegs> _srcRegIdx;

    /** Physical register index of the previous producers of the
     *  architected destinations.
     */
    std::array<PhysRegIdPtr, TheISA::MaxInstDestRegs> _prevDestRegIdx;


  public:
    /** Records changes to result? */
    void recordResult(bool f) { instFlags[RecordResult] = f; }

    /** Is the effective virtual address valid. */
    bool effAddrValid() const { return instFlags[EffAddrValid]; }

    /** Whether or not the memory operation is done. */
    bool memOpDone() const { return instFlags[MemOpDone]; }
    void memOpDone(bool f) { instFlags[MemOpDone] = f; }


    ////////////////////////////////////////////
    //
    // INSTRUCTION EXECUTION
    //
    ////////////////////////////////////////////

    void demapPage(Addr vaddr, uint64_t asn)
    {
        cpu->demapPage(vaddr, asn);
    }
    void demapInstPage(Addr vaddr, uint64_t asn)
    {
        cpu->demapPage(vaddr, asn);
    }
    void demapDataPage(Addr vaddr, uint64_t asn)
    {
        cpu->demapPage(vaddr, asn);
    }

    Fault initiateMemRead(Addr addr, unsigned size, Request::Flags flags);

    Fault writeMem(uint8_t *data, unsigned size, Addr addr,
                   Request::Flags flags, uint64_t *res);

    /** Splits a request in two if it crosses a dcache block. */
    void splitRequest(RequestPtr req, RequestPtr &sreqLow,
                      RequestPtr &sreqHigh);

    /** Initiate a DTB address translation. */
    void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
                             RequestPtr sreqHigh, uint64_t *res,
                             BaseTLB::Mode mode);

    /** Finish a DTB address translation. */
    void finishTranslation(WholeTranslationState *state);

    /** True if the DTB address translation has started. */
    bool translationStarted() const { return instFlags[TranslationStarted]; }
    void translationStarted(bool f) { instFlags[TranslationStarted] = f; }

    /** True if the DTB address translation has completed. */
    bool translationCompleted() const { return instFlags[TranslationCompleted]; }
    void translationCompleted(bool f) { instFlags[TranslationCompleted] = f; }

    /** True if this address was found to match a previous load and they issued
     * out of order. If that happend, then it's only a problem if an incoming
     * snoop invalidate modifies the line, in which case we need to squash.
     * If nothing modified the line the order doesn't matter.
     */
    bool possibleLoadViolation() const { return instFlags[PossibleLoadViolation]; }
    void possibleLoadViolation(bool f) { instFlags[PossibleLoadViolation] = f; }

    /** True if the address hit a external snoop while sitting in the LSQ.
     * If this is true and a older instruction sees it, this instruction must
     * reexecute
     */
    bool hitExternalSnoop() const { return instFlags[HitExternalSnoop]; }
    void hitExternalSnoop(bool f) { instFlags[HitExternalSnoop] = f; }

    /**
     * Returns true if the DTB address translation is being delayed due to a hw
     * page table walk.
     */
    bool isTranslationDelayed() const
    {
        return (translationStarted() && !translationCompleted());
    }

  public:
#ifdef DEBUG
    void dumpSNList();
#endif

    /** Returns the physical register index of the i'th destination
     *  register.
     */
    PhysRegIdPtr renamedDestRegIdx(int idx) const
    {
        return _destRegIdx[idx];
    }

    /** Returns the physical register index of the i'th source register. */
    PhysRegIdPtr renamedSrcRegIdx(int idx) const
    {
        assert(TheISA::MaxInstSrcRegs > idx);
        return _srcRegIdx[idx];
    }

    /** Returns the flattened register index of the i'th destination
     *  register.
     */
    const RegId& flattenedDestRegIdx(int idx) const
    {
        return _flatDestRegIdx[idx];
    }

    /** Returns the physical register index of the previous physical register
     *  that remapped to the same logical register index.
     */
    PhysRegIdPtr prevDestRegIdx(int idx) const
    {
        return _prevDestRegIdx[idx];
    }

    /** Renames a destination register to a physical register.  Also records
     *  the previous physical register that the logical register mapped to.
     */
    void renameDestReg(int idx,
                       PhysRegIdPtr renamed_dest,
                       PhysRegIdPtr previous_rename)
    {
        _destRegIdx[idx] = renamed_dest;
        _prevDestRegIdx[idx] = previous_rename;
    }

    /** Renames a source logical register to the physical register which
     *  has/will produce that logical register's result.
     *  @todo: add in whether or not the source register is ready.
     */
    void renameSrcReg(int idx, PhysRegIdPtr renamed_src)
    {
        _srcRegIdx[idx] = renamed_src;
    }

    /** Flattens a destination architectural register index into a logical
     * index.
     */
    void flattenDestReg(int idx, const RegId& flattened_dest)
    {
        _flatDestRegIdx[idx] = flattened_dest;
    }
    /** BaseDynInst constructor given a binary instruction.
     *  @param staticInst A StaticInstPtr to the underlying instruction.
     *  @param pc The PC state for the instruction.
     *  @param predPC The predicted next PC state for the instruction.
     *  @param seq_num The sequence number of the instruction.
     *  @param cpu Pointer to the instruction's CPU.
     */
    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop,
                TheISA::PCState pc, TheISA::PCState predPC,
                InstSeqNum seq_num, ImplCPU *cpu);

    /** BaseDynInst constructor given a StaticInst pointer.
     *  @param _staticInst The StaticInst for this BaseDynInst.
     */
    BaseDynInst(const StaticInstPtr &staticInst, const StaticInstPtr &macroop);

    /** BaseDynInst destructor. */
    ~BaseDynInst();

  private:
    /** Function to initialize variables in the constructors. */
    void initVars();

  public:
    /** Dumps out contents of this BaseDynInst. */
    void dump();

    /** Dumps out contents of this BaseDynInst into given string. */
    void dump(std::string &outstring);

    /** Read this CPU's ID. */
    int cpuId() const { return cpu->cpuId(); }

    /** Read this CPU's Socket ID. */
    uint32_t socketId() const { return cpu->socketId(); }

    /** Read this CPU's data requestor ID */
    MasterID masterId() const { return cpu->dataMasterId(); }

    /** Read this context's system-wide ID **/
    ContextID contextId() const { return thread->contextId(); }

    /** Returns the fault type. */
    Fault getFault() const { return fault; }

    /** Checks whether or not this instruction has had its branch target
     *  calculated yet.  For now it is not utilized and is hacked to be
     *  always false.
     *  @todo: Actually use this instruction.
     */
    bool doneTargCalc() { return false; }

    /** Set the predicted target of this current instruction. */
    void setPredTarg(const TheISA::PCState &_predPC)
    {
        predPC = _predPC;
    }

    const TheISA::PCState &readPredTarg() { return predPC; }

    /** Returns the predicted PC immediately after the branch. */
    Addr predInstAddr() { return predPC.instAddr(); }

    /** Returns the predicted PC two instructions after the branch */
    Addr predNextInstAddr() { return predPC.nextInstAddr(); }

    /** Returns the predicted micro PC after the branch */
    Addr predMicroPC() { return predPC.microPC(); }

    /** Returns whether the instruction was predicted taken or not. */
    bool readPredTaken()
    {
        return instFlags[PredTaken];
    }

    void setPredTaken(bool predicted_taken)
    {
        instFlags[PredTaken] = predicted_taken;
    }

    /** Returns whether the instruction mispredicted. */
    bool mispredicted()
    {
        TheISA::PCState tempPC = pc;
        TheISA::advancePC(tempPC, staticInst);
        return !(tempPC == predPC);
    }

    //
    //  Instruction types.  Forward checks to StaticInst object.
    //
    bool isNop()          const { return staticInst->isNop(); }
    bool isMemRef()       const { return staticInst->isMemRef(); }
    bool isLoad()         const { return staticInst->isLoad(); }
    bool isStore()        const { return staticInst->isStore(); }
    bool isStoreConditional() const
    { return staticInst->isStoreConditional(); }
    bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
    bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
    bool isInteger()      const { return staticInst->isInteger(); }
    bool isFloating()     const { return staticInst->isFloating(); }
    bool isControl()      const { return staticInst->isControl(); }
    bool isCall()         const { return staticInst->isCall(); }
    bool isReturn()       const { return staticInst->isReturn(); }
    bool isDirectCtrl()   const { return staticInst->isDirectCtrl(); }
    bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
    bool isCondCtrl()     const { return staticInst->isCondCtrl(); }
    bool isUncondCtrl()   const { return staticInst->isUncondCtrl(); }
    bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
    bool isThreadSync()   const { return staticInst->isThreadSync(); }
    bool isSerializing()  const { return staticInst->isSerializing(); }
    bool isSerializeBefore() const
    { return staticInst->isSerializeBefore() || status[SerializeBefore]; }
    bool isSerializeAfter() const
    { return staticInst->isSerializeAfter() || status[SerializeAfter]; }
    bool isSquashAfter() const { return staticInst->isSquashAfter(); }
    bool isMemBarrier()   const { return staticInst->isMemBarrier(); }
    bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
    bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
    bool isQuiesce() const { return staticInst->isQuiesce(); }
    bool isIprAccess() const { return staticInst->isIprAccess(); }
    bool isUnverifiable() const { return staticInst->isUnverifiable(); }
    bool isSyscall() const { return staticInst->isSyscall(); }
    bool isMacroop() const { return staticInst->isMacroop(); }
    bool isMicroop() const { return staticInst->isMicroop(); }
    bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
    bool isLastMicroop() const { return staticInst->isLastMicroop(); }
    bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
    bool isMicroBranch() const { return staticInst->isMicroBranch(); }

    /** Temporarily sets this instruction as a serialize before instruction. */
    void setSerializeBefore() { status.set(SerializeBefore); }

    /** Clears the serializeBefore part of this instruction. */
    void clearSerializeBefore() { status.reset(SerializeBefore); }

    /** Checks if this serializeBefore is only temporarily set. */
    bool isTempSerializeBefore() { return status[SerializeBefore]; }

    /** Temporarily sets this instruction as a serialize after instruction. */
    void setSerializeAfter() { status.set(SerializeAfter); }

    /** Clears the serializeAfter part of this instruction.*/
    void clearSerializeAfter() { status.reset(SerializeAfter); }

    /** Checks if this serializeAfter is only temporarily set. */
    bool isTempSerializeAfter() { return status[SerializeAfter]; }

    /** Sets the serialization part of this instruction as handled. */
    void setSerializeHandled() { status.set(SerializeHandled); }

    /** Checks if the serialization part of this instruction has been
     *  handled.  This does not apply to the temporary serializing
     *  state; it only applies to this instruction's own permanent
     *  serializing state.
     */
    bool isSerializeHandled() { return status[SerializeHandled]; }

    /** Returns the opclass of this instruction. */
    OpClass opClass() const { return staticInst->opClass(); }

    /** Returns the branch target address. */
    TheISA::PCState branchTarget() const
    { return staticInst->branchTarget(pc); }

    /** Returns the number of source registers. */
    int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }

    /** Returns the number of destination registers. */
    int8_t numDestRegs() const { return staticInst->numDestRegs(); }

    // the following are used to track physical register usage
    // for machines with separate int & FP reg files
    int8_t numFPDestRegs()  const { return staticInst->numFPDestRegs(); }
    int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
    int8_t numCCDestRegs() const { return staticInst->numCCDestRegs(); }

    /** Returns the logical register index of the i'th destination register. */
    const RegId& destRegIdx(int i) const { return staticInst->destRegIdx(i); }

    /** Returns the logical register index of the i'th source register. */
    const RegId& srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }

    /** Return the size of the instResult queue. */
    uint8_t resultSize() { return instResult.size(); }

    /** Pops a result off the instResult queue.
     * If the result stack is empty, return the default value.
     * */
    InstResult popResult(InstResult dflt = InstResult())
    {
        if (!instResult.empty()) {
            InstResult t = instResult.front();
            instResult.pop();
            return t;
        }
        return dflt;
    }

    /** Pushes a result onto the instResult queue. */
    template<typename T>
    void setScalarResult(T&& t)
    {
        if (instFlags[RecordResult]) {
            instResult.push(InstResult(std::forward<T>(t),
                        InstResult::ResultType::Scalar));
        }
    }

    /** Records an integer register being set to a value. */
    void setIntRegOperand(const StaticInst *si, int idx, IntReg val)
    {
        setScalarResult(val);
    }

    /** Records a CC register being set to a value. */
    void setCCRegOperand(const StaticInst *si, int idx, CCReg val)
    {
        setScalarResult(val);
    }

    /** Records an fp register being set to a value. */
    void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
    {
        setScalarResult(val);
    }

    /** Records an fp register being set to an integer value. */
    void
    setFloatRegOperandBits(const StaticInst *si, int idx, FloatRegBits val)
    {
        setScalarResult(val);
    }

    /** Records that one of the source registers is ready. */
    void markSrcRegReady();

    /** Marks a specific register as ready. */
    void markSrcRegReady(RegIndex src_idx);

    /** Returns if a source register is ready. */
    bool isReadySrcRegIdx(int idx) const
    {
        return this->_readySrcRegIdx[idx];
    }

    /** Sets this instruction as completed. */
    void setCompleted() { status.set(Completed); }

    /** Returns whether or not this instruction is completed. */
    bool isCompleted() const { return status[Completed]; }

    /** Marks the result as ready. */
    void setResultReady() { status.set(ResultReady); }

    /** Returns whether or not the result is ready. */
    bool isResultReady() const { return status[ResultReady]; }

    /** Sets this instruction as ready to issue. */
    void setCanIssue() { status.set(CanIssue); }

    /** Returns whether or not this instruction is ready to issue. */
    bool readyToIssue() const { return status[CanIssue]; }

    /** Clears this instruction being able to issue. */
    void clearCanIssue() { status.reset(CanIssue); }

    /** Sets this instruction as issued from the IQ. */
    void setIssued() { status.set(Issued); }

    /** Returns whether or not this instruction has issued. */
    bool isIssued() const { return status[Issued]; }

    /** Clears this instruction as being issued. */
    void clearIssued() { status.reset(Issued); }

    /** Sets this instruction as executed. */
    void setExecuted() { status.set(Executed); }

    /** Returns whether or not this instruction has executed. */
    bool isExecuted() const { return status[Executed]; }

    /** Sets this instruction as ready to commit. */
    void setCanCommit() { status.set(CanCommit); }

    /** Clears this instruction as being ready to commit. */
    void clearCanCommit() { status.reset(CanCommit); }

    /** Returns whether or not this instruction is ready to commit. */
    bool readyToCommit() const { return status[CanCommit]; }

    void setAtCommit() { status.set(AtCommit); }

    bool isAtCommit() { return status[AtCommit]; }

    /** Sets this instruction as committed. */
    void setCommitted() { status.set(Committed); }

    /** Returns whether or not this instruction is committed. */
    bool isCommitted() const { return status[Committed]; }

    /** Sets this instruction as squashed. */
    void setSquashed() { status.set(Squashed); }

    /** Returns whether or not this instruction is squashed. */
    bool isSquashed() const { return status[Squashed]; }

    //Instruction Queue Entry
    //-----------------------
    /** Sets this instruction as a entry the IQ. */
    void setInIQ() { status.set(IqEntry); }

    /** Sets this instruction as a entry the IQ. */
    void clearInIQ() { status.reset(IqEntry); }

    /** Returns whether or not this instruction has issued. */
    bool isInIQ() const { return status[IqEntry]; }

    /** Sets this instruction as squashed in the IQ. */
    void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}

    /** Returns whether or not this instruction is squashed in the IQ. */
    bool isSquashedInIQ() const { return status[SquashedInIQ]; }


    //Load / Store Queue Functions
    //-----------------------
    /** Sets this instruction as a entry the LSQ. */
    void setInLSQ() { status.set(LsqEntry); }

    /** Sets this instruction as a entry the LSQ. */
    void removeInLSQ() { status.reset(LsqEntry); }

    /** Returns whether or not this instruction is in the LSQ. */
    bool isInLSQ() const { return status[LsqEntry]; }

    /** Sets this instruction as squashed in the LSQ. */
    void setSquashedInLSQ() { status.set(SquashedInLSQ);}

    /** Returns whether or not this instruction is squashed in the LSQ. */
    bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }


    //Reorder Buffer Functions
    //-----------------------
    /** Sets this instruction as a entry the ROB. */
    void setInROB() { status.set(RobEntry); }

    /** Sets this instruction as a entry the ROB. */
    void clearInROB() { status.reset(RobEntry); }

    /** Returns whether or not this instruction is in the ROB. */
    bool isInROB() const { return status[RobEntry]; }

    /** Sets this instruction as squashed in the ROB. */
    void setSquashedInROB() { status.set(SquashedInROB); }

    /** Returns whether or not this instruction is squashed in the ROB. */
    bool isSquashedInROB() const { return status[SquashedInROB]; }

    /** Read the PC state of this instruction. */
    TheISA::PCState pcState() const { return pc; }

    /** Set the PC state of this instruction. */
    void pcState(const TheISA::PCState &val) { pc = val; }

    /** Read the PC of this instruction. */
    Addr instAddr() const { return pc.instAddr(); }

    /** Read the PC of the next instruction. */
    Addr nextInstAddr() const { return pc.nextInstAddr(); }

    /**Read the micro PC of this instruction. */
    Addr microPC() const { return pc.microPC(); }

    bool readPredicate()
    {
        return instFlags[Predicate];
    }

    void setPredicate(bool val)
    {
        instFlags[Predicate] = val;

        if (traceData) {
            traceData->setPredicate(val);
        }
    }

    /** Sets the ASID. */
    void setASID(short addr_space_id) { asid = addr_space_id; }

    /** Sets the thread id. */
    void setTid(ThreadID tid) { threadNumber = tid; }

    /** Sets the pointer to the thread state. */
    void setThreadState(ImplState *state) { thread = state; }

    /** Returns the thread context. */
    ThreadContext *tcBase() { return thread->getTC(); }

  public:
    /** Sets the effective address. */
    void setEA(Addr ea) { instEffAddr = ea; instFlags[EACalcDone] = true; }

    /** Returns the effective address. */
    Addr getEA() const { return instEffAddr; }

    /** Returns whether or not the eff. addr. calculation has been completed. */
    bool doneEACalc() { return instFlags[EACalcDone]; }

    /** Returns whether or not the eff. addr. source registers are ready. */
    bool eaSrcsReady();

    /** Is this instruction's memory access strictly ordered? */
    bool strictlyOrdered() const { return instFlags[IsStrictlyOrdered]; }

    /** Has this instruction generated a memory request. */
    bool hasRequest() { return instFlags[ReqMade]; }

    /** Returns iterator to this instruction in the list of all insts. */
    ListIt &getInstListIt() { return instListIt; }

    /** Sets iterator for this instruction in the list of all insts. */
    void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }

  public:
    /** Returns the number of consecutive store conditional failures. */
    unsigned int readStCondFailures() const
    { return thread->storeCondFailures; }

    /** Sets the number of consecutive store conditional failures. */
    void setStCondFailures(unsigned int sc_failures)
    { thread->storeCondFailures = sc_failures; }

  public:
    // monitor/mwait funtions
    void armMonitor(Addr address) { cpu->armMonitor(threadNumber, address); }
    bool mwait(PacketPtr pkt) { return cpu->mwait(threadNumber, pkt); }
    void mwaitAtomic(ThreadContext *tc)
    { return cpu->mwaitAtomic(threadNumber, tc, cpu->dtb); }
    AddressMonitor *getAddrMonitor()
    { return cpu->getCpuAddrMonitor(threadNumber); }
};

template<class Impl>
Fault
BaseDynInst<Impl>::initiateMemRead(Addr addr, unsigned size,
                                   Request::Flags flags)
{
    instFlags[ReqMade] = true;
    Request *req = NULL;
    Request *sreqLow = NULL;
    Request *sreqHigh = NULL;

    if (instFlags[ReqMade] && translationStarted()) {
        req = savedReq;
        sreqLow = savedSreqLow;
        sreqHigh = savedSreqHigh;
    } else {
        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
                          thread->contextId());

        req->taskId(cpu->taskId());

        // Only split the request if the ISA supports unaligned accesses.
        if (TheISA::HasUnalignedMemAcc) {
            splitRequest(req, sreqLow, sreqHigh);
        }
        initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
    }

    if (translationCompleted()) {
        if (fault == NoFault) {
            effAddr = req->getVaddr();
            effSize = size;
            instFlags[EffAddrValid] = true;

            if (cpu->checker) {
                if (reqToVerify != NULL) {
                    delete reqToVerify;
                }
                reqToVerify = new Request(*req);
            }
            fault = cpu->read(req, sreqLow, sreqHigh, lqIdx);
        } else {
            // Commit will have to clean up whatever happened.  Set this
            // instruction as executed.
            this->setExecuted();
        }
    }

    if (traceData)
        traceData->setMem(addr, size, flags);

    return fault;
}

template<class Impl>
Fault
BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size, Addr addr,
                            Request::Flags flags, uint64_t *res)
{
    if (traceData)
        traceData->setMem(addr, size, flags);

    instFlags[ReqMade] = true;
    Request *req = NULL;
    Request *sreqLow = NULL;
    Request *sreqHigh = NULL;

    if (instFlags[ReqMade] && translationStarted()) {
        req = savedReq;
        sreqLow = savedSreqLow;
        sreqHigh = savedSreqHigh;
    } else {
        req = new Request(asid, addr, size, flags, masterId(), this->pc.instAddr(),
                          thread->contextId());

        req->taskId(cpu->taskId());

        // Only split the request if the ISA supports unaligned accesses.
        if (TheISA::HasUnalignedMemAcc) {
            splitRequest(req, sreqLow, sreqHigh);
        }
        initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
    }

    if (fault == NoFault && translationCompleted()) {
        effAddr = req->getVaddr();
        effSize = size;
        instFlags[EffAddrValid] = true;

        if (cpu->checker) {
            if (reqToVerify != NULL) {
                delete reqToVerify;
            }
            reqToVerify = new Request(*req);
        }
        fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
    }

    return fault;
}

template<class Impl>
inline void
BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
                                RequestPtr &sreqHigh)
{
    // Check to see if the request crosses the next level block boundary.
    unsigned block_size = cpu->cacheLineSize();
    Addr addr = req->getVaddr();
    Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
    assert(split_addr <= addr || split_addr - addr < block_size);

    // Spans two blocks.
    if (split_addr > addr) {
        req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
    }
}

template<class Impl>
inline void
BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
                                       RequestPtr sreqHigh, uint64_t *res,
                                       BaseTLB::Mode mode)
{
    translationStarted(true);

    if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
        WholeTranslationState *state =
            new WholeTranslationState(req, NULL, res, mode);

        // One translation if the request isn't split.
        DataTranslation<BaseDynInstPtr> *trans =
            new DataTranslation<BaseDynInstPtr>(this, state);

        cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);

        if (!translationCompleted()) {
            // The translation isn't yet complete, so we can't possibly have a
            // fault. Overwrite any existing fault we might have from a previous
            // execution of this instruction (e.g. an uncachable load that
            // couldn't execute because it wasn't at the head of the ROB).
            fault = NoFault;

            // Save memory requests.
            savedReq = state->mainReq;
            savedSreqLow = state->sreqLow;
            savedSreqHigh = state->sreqHigh;
        }
    } else {
        WholeTranslationState *state =
            new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);

        // Two translations when the request is split.
        DataTranslation<BaseDynInstPtr> *stransLow =
            new DataTranslation<BaseDynInstPtr>(this, state, 0);
        DataTranslation<BaseDynInstPtr> *stransHigh =
            new DataTranslation<BaseDynInstPtr>(this, state, 1);

        cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
        cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);

        if (!translationCompleted()) {
            // The translation isn't yet complete, so we can't possibly have a
            // fault. Overwrite any existing fault we might have from a previous
            // execution of this instruction (e.g. an uncachable load that
            // couldn't execute because it wasn't at the head of the ROB).
            fault = NoFault;

            // Save memory requests.
            savedReq = state->mainReq;
            savedSreqLow = state->sreqLow;
            savedSreqHigh = state->sreqHigh;
        }
    }
}

template<class Impl>
inline void
BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
{
    fault = state->getFault();

    instFlags[IsStrictlyOrdered] = state->isStrictlyOrdered();

    if (fault == NoFault) {
        // save Paddr for a single req
        physEffAddrLow = state->getPaddr();

        // case for the request that has been split
        if (state->isSplit) {
          physEffAddrLow = state->sreqLow->getPaddr();
          physEffAddrHigh = state->sreqHigh->getPaddr();
        }

        memReqFlags = state->getFlags();

        if (state->mainReq->isCondSwap()) {
            assert(state->res);
            state->mainReq->setExtraData(*state->res);
        }

    } else {
        state->deleteReqs();
    }
    delete state;

    translationCompleted(true);
}

#endif // __CPU_BASE_DYN_INST_HH__