1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
|
/*
* Copyright (c) 2011 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_CHECKER_CPU_HH__
#define __CPU_CHECKER_CPU_HH__
#include <list>
#include <map>
#include <queue>
#include "arch/types.hh"
#include "base/statistics.hh"
#include "cpu/base.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/exec_context.hh"
#include "cpu/pc_event.hh"
#include "cpu/simple_thread.hh"
#include "cpu/static_inst.hh"
#include "debug/Checker.hh"
#include "mem/request.hh"
#include "params/CheckerCPU.hh"
#include "sim/eventq.hh"
// forward declarations
namespace TheISA
{
class TLB;
}
template <class>
class BaseDynInst;
class ThreadContext;
class Request;
/**
* CheckerCPU class. Dynamically verifies instructions as they are
* completed by making sure that the instruction and its results match
* the independent execution of the benchmark inside the checker. The
* checker verifies instructions in order, regardless of the order in
* which instructions complete. There are certain results that can
* not be verified, specifically the result of a store conditional or
* the values of uncached accesses. In these cases, and with
* instructions marked as "IsUnverifiable", the checker assumes that
* the value from the main CPU's execution is correct and simply
* copies that value. It provides a CheckerThreadContext (see
* checker/thread_context.hh) that provides hooks for updating the
* Checker's state through any ThreadContext accesses. This allows the
* checker to be able to correctly verify instructions, even with
* external accesses to the ThreadContext that change state.
*/
class CheckerCPU : public BaseCPU, public ExecContext
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
typedef TheISA::MiscReg MiscReg;
/** id attached to all issued requests */
MasterID masterId;
public:
void init() override;
typedef CheckerCPUParams Params;
CheckerCPU(Params *p);
virtual ~CheckerCPU();
void setSystem(System *system);
void setIcachePort(MasterPort *icache_port);
void setDcachePort(MasterPort *dcache_port);
MasterPort &getDataPort() override
{
// the checker does not have ports on its own so return the
// data port of the actual CPU core
assert(dcachePort);
return *dcachePort;
}
MasterPort &getInstPort() override
{
// the checker does not have ports on its own so return the
// data port of the actual CPU core
assert(icachePort);
return *icachePort;
}
protected:
std::vector<Process*> workload;
System *systemPtr;
MasterPort *icachePort;
MasterPort *dcachePort;
ThreadContext *tc;
TheISA::TLB *itb;
TheISA::TLB *dtb;
Addr dbg_vtophys(Addr addr);
union Result {
uint64_t integer;
double dbl;
void set(uint64_t i) { integer = i; }
void set(double d) { dbl = d; }
void get(uint64_t& i) { i = integer; }
void get(double& d) { d = dbl; }
};
// ISAs like ARM can have multiple destination registers to check,
// keep them all in a std::queue
std::queue<Result> result;
// Pointer to the one memory request.
RequestPtr memReq;
StaticInstPtr curStaticInst;
StaticInstPtr curMacroStaticInst;
// number of simulated instructions
Counter numInst;
Counter startNumInst;
std::queue<int> miscRegIdxs;
public:
// Primary thread being run.
SimpleThread *thread;
TheISA::TLB* getITBPtr() { return itb; }
TheISA::TLB* getDTBPtr() { return dtb; }
virtual Counter totalInsts() const override
{
return 0;
}
virtual Counter totalOps() const override
{
return 0;
}
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
void serialize(CheckpointOut &cp) const override;
void unserialize(CheckpointIn &cp) override;
// These functions are only used in CPU models that split
// effective address computation from the actual memory access.
void setEA(Addr EA) override
{ panic("CheckerCPU::setEA() not implemented\n"); }
Addr getEA() const override
{ panic("CheckerCPU::getEA() not implemented\n"); }
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
IntReg readIntRegOperand(const StaticInst *si, int idx) override
{
const RegId& reg = si->srcRegIdx(idx);
assert(reg.isIntReg());
return thread->readIntReg(reg.index());
}
FloatReg readFloatRegOperand(const StaticInst *si, int idx) override
{
const RegId& reg = si->srcRegIdx(idx);
assert(reg.isFloatReg());
return thread->readFloatReg(reg.index());
}
FloatRegBits readFloatRegOperandBits(const StaticInst *si,
int idx) override
{
const RegId& reg = si->srcRegIdx(idx);
assert(reg.isFloatReg());
return thread->readFloatRegBits(reg.index());
}
CCReg readCCRegOperand(const StaticInst *si, int idx) override
{
const RegId& reg = si->srcRegIdx(idx);
assert(reg.isCCReg());
return thread->readCCReg(reg.index());
}
template <class T>
void setResult(T t)
{
Result instRes;
instRes.set(t);
result.push(instRes);
}
void setIntRegOperand(const StaticInst *si, int idx,
IntReg val) override
{
const RegId& reg = si->destRegIdx(idx);
assert(reg.isIntReg());
thread->setIntReg(reg.index(), val);
setResult<uint64_t>(val);
}
void setFloatRegOperand(const StaticInst *si, int idx,
FloatReg val) override
{
const RegId& reg = si->destRegIdx(idx);
assert(reg.isFloatReg());
thread->setFloatReg(reg.index(), val);
setResult<double>(val);
}
void setFloatRegOperandBits(const StaticInst *si, int idx,
FloatRegBits val) override
{
const RegId& reg = si->destRegIdx(idx);
assert(reg.isFloatReg());
thread->setFloatRegBits(reg.index(), val);
setResult<uint64_t>(val);
}
void setCCRegOperand(const StaticInst *si, int idx, CCReg val) override
{
const RegId& reg = si->destRegIdx(idx);
assert(reg.isCCReg());
thread->setCCReg(reg.index(), val);
setResult<uint64_t>(val);
}
bool readPredicate() override { return thread->readPredicate(); }
void setPredicate(bool val) override
{
thread->setPredicate(val);
}
TheISA::PCState pcState() const override { return thread->pcState(); }
void pcState(const TheISA::PCState &val) override
{
DPRINTF(Checker, "Changing PC to %s, old PC %s.\n",
val, thread->pcState());
thread->pcState(val);
}
Addr instAddr() { return thread->instAddr(); }
Addr nextInstAddr() { return thread->nextInstAddr(); }
MicroPC microPC() { return thread->microPC(); }
//////////////////////////////////////////
MiscReg readMiscRegNoEffect(int misc_reg) const
{
return thread->readMiscRegNoEffect(misc_reg);
}
MiscReg readMiscReg(int misc_reg) override
{
return thread->readMiscReg(misc_reg);
}
void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
{
DPRINTF(Checker, "Setting misc reg %d with no effect to check later\n", misc_reg);
miscRegIdxs.push(misc_reg);
return thread->setMiscRegNoEffect(misc_reg, val);
}
void setMiscReg(int misc_reg, const MiscReg &val) override
{
DPRINTF(Checker, "Setting misc reg %d with effect to check later\n", misc_reg);
miscRegIdxs.push(misc_reg);
return thread->setMiscReg(misc_reg, val);
}
MiscReg readMiscRegOperand(const StaticInst *si, int idx) override
{
const RegId& reg = si->srcRegIdx(idx);
assert(reg.isMiscReg());
return thread->readMiscReg(reg.index());
}
void setMiscRegOperand(const StaticInst *si, int idx,
const MiscReg &val) override
{
const RegId& reg = si->destRegIdx(idx);
assert(reg.isMiscReg());
return this->setMiscReg(reg.index(), val);
}
#if THE_ISA == MIPS_ISA
MiscReg readRegOtherThread(const RegId& misc_reg, ThreadID tid) override
{
panic("MIPS MT not defined for CheckerCPU.\n");
return 0;
}
void setRegOtherThread(const RegId& misc_reg, MiscReg val,
ThreadID tid) override
{
panic("MIPS MT not defined for CheckerCPU.\n");
}
#endif
/////////////////////////////////////////
void recordPCChange(const TheISA::PCState &val)
{
changedPC = true;
newPCState = val;
}
void demapPage(Addr vaddr, uint64_t asn) override
{
this->itb->demapPage(vaddr, asn);
this->dtb->demapPage(vaddr, asn);
}
// monitor/mwait funtions
void armMonitor(Addr address) override
{ BaseCPU::armMonitor(0, address); }
bool mwait(PacketPtr pkt) override { return BaseCPU::mwait(0, pkt); }
void mwaitAtomic(ThreadContext *tc) override
{ return BaseCPU::mwaitAtomic(0, tc, thread->dtb); }
AddressMonitor *getAddrMonitor() override
{ return BaseCPU::getCpuAddrMonitor(0); }
void demapInstPage(Addr vaddr, uint64_t asn)
{
this->itb->demapPage(vaddr, asn);
}
void demapDataPage(Addr vaddr, uint64_t asn)
{
this->dtb->demapPage(vaddr, asn);
}
Fault readMem(Addr addr, uint8_t *data, unsigned size,
Request::Flags flags) override;
Fault writeMem(uint8_t *data, unsigned size, Addr addr,
Request::Flags flags, uint64_t *res) override;
unsigned int readStCondFailures() const override {
return thread->readStCondFailures();
}
void setStCondFailures(unsigned int sc_failures) override
{}
/////////////////////////////////////////////////////
Fault hwrei() override { return thread->hwrei(); }
bool simPalCheck(int palFunc) override
{ return thread->simPalCheck(palFunc); }
void wakeup(ThreadID tid) override { }
// Assume that the normal CPU's call to syscall was successful.
// The checker's state would have already been updated by the syscall.
void syscall(int64_t callnum, Fault *fault) override { }
void handleError()
{
if (exitOnError)
dumpAndExit();
}
bool checkFlags(Request *unverified_req, Addr vAddr,
Addr pAddr, int flags);
void dumpAndExit();
ThreadContext *tcBase() override { return tc; }
SimpleThread *threadBase() { return thread; }
Result unverifiedResult;
Request *unverifiedReq;
uint8_t *unverifiedMemData;
bool changedPC;
bool willChangePC;
TheISA::PCState newPCState;
bool exitOnError;
bool updateOnError;
bool warnOnlyOnLoadError;
InstSeqNum youngestSN;
};
/**
* Templated Checker class. This Checker class is templated on the
* DynInstPtr of the instruction type that will be verified. Proper
* template instantiations of the Checker must be placed at the bottom
* of checker/cpu.cc.
*/
template <class Impl>
class Checker : public CheckerCPU
{
private:
typedef typename Impl::DynInstPtr DynInstPtr;
public:
Checker(Params *p)
: CheckerCPU(p), updateThisCycle(false), unverifiedInst(NULL)
{ }
void switchOut();
void takeOverFrom(BaseCPU *oldCPU);
void advancePC(const Fault &fault);
void verify(DynInstPtr &inst);
void validateInst(DynInstPtr &inst);
void validateExecution(DynInstPtr &inst);
void validateState();
void copyResult(DynInstPtr &inst, uint64_t mismatch_val, int start_idx);
void handlePendingInt();
private:
void handleError(DynInstPtr &inst)
{
if (exitOnError) {
dumpAndExit(inst);
} else if (updateOnError) {
updateThisCycle = true;
}
}
void dumpAndExit(DynInstPtr &inst);
bool updateThisCycle;
DynInstPtr unverifiedInst;
std::list<DynInstPtr> instList;
typedef typename std::list<DynInstPtr>::iterator InstListIt;
void dumpInsts();
};
#endif // __CPU_CHECKER_CPU_HH__
|