1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
|
/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#include <list>
#include <string>
#include "base/refcnt.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/simple_thread.hh"
#include "cpu/thread_context.hh"
#include "cpu/static_inst.hh"
#include "mem/packet_impl.hh"
#include "sim/byteswap.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#if FULL_SYSTEM
#include "arch/vtophys.hh"
#endif // FULL_SYSTEM
using namespace std;
//The CheckerCPU does alpha only
using namespace AlphaISA;
template <class DynInstPtr>
void
Checker<DynInstPtr>::verify(DynInstPtr &completed_inst)
{
DynInstPtr inst;
// Either check this instruction, or add it to a list of
// instructions waiting to be checked. Instructions must be
// checked in program order, so if a store has committed yet not
// completed, there may be some instructions that are waiting
// behind it that have completed and must be checked.
if (!instList.empty()) {
if (youngestSN < completed_inst->seqNum) {
DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
completed_inst->seqNum, completed_inst->readPC());
instList.push_back(completed_inst);
youngestSN = completed_inst->seqNum;
}
if (!instList.front()->isCompleted()) {
return;
} else {
inst = instList.front();
instList.pop_front();
}
} else {
if (!completed_inst->isCompleted()) {
if (youngestSN < completed_inst->seqNum) {
DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
completed_inst->seqNum, completed_inst->readPC());
instList.push_back(completed_inst);
youngestSN = completed_inst->seqNum;
}
return;
} else {
if (youngestSN < completed_inst->seqNum) {
inst = completed_inst;
youngestSN = completed_inst->seqNum;
} else {
return;
}
}
}
// Try to check all instructions that are completed, ending if we
// run out of instructions to check or if an instruction is not
// yet completed.
while (1) {
DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%#x.\n",
inst->seqNum, inst->readPC());
unverifiedResult.integer = inst->readIntResult();
unverifiedReq = inst->req;
unverifiedMemData = inst->memData;
numCycles++;
Fault fault = NoFault;
// maintain $r0 semantics
thread->setIntReg(ZeroReg, 0);
#ifdef TARGET_ALPHA
thread->setFloatRegDouble(ZeroReg, 0.0);
#endif // TARGET_ALPHA
// Check if any recent PC changes match up with anything we
// expect to happen. This is mostly to check if traps or
// PC-based events have occurred in both the checker and CPU.
if (changedPC) {
DPRINTF(Checker, "Changed PC recently to %#x\n",
thread->readPC());
if (willChangePC) {
if (newPC == thread->readPC()) {
DPRINTF(Checker, "Changed PC matches expected PC\n");
} else {
warn("%lli: Changed PC does not match expected PC, "
"changed: %#x, expected: %#x",
curTick, thread->readPC(), newPC);
CheckerCPU::handleError();
}
willChangePC = false;
}
changedPC = false;
}
if (changedNextPC) {
DPRINTF(Checker, "Changed NextPC recently to %#x\n",
thread->readNextPC());
changedNextPC = false;
}
// Try to fetch the instruction
#if FULL_SYSTEM
#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
#else
#define IFETCH_FLAGS(pc) 0
#endif
uint64_t fetch_PC = thread->readPC() & ~3;
// set up memory request for instruction fetch
memReq = new Request(inst->threadNumber, fetch_PC,
sizeof(uint32_t),
IFETCH_FLAGS(thread->readPC()),
fetch_PC, thread->readCpuId(), inst->threadNumber);
bool succeeded = translateInstReq(memReq);
if (!succeeded) {
if (inst->getFault() == NoFault) {
// In this case the instruction was not a dummy
// instruction carrying an ITB fault. In the single
// threaded case the ITB should still be able to
// translate this instruction; in the SMT case it's
// possible that its ITB entry was kicked out.
warn("%lli: Instruction PC %#x was not found in the ITB!",
curTick, thread->readPC());
handleError(inst);
// go to the next instruction
thread->setPC(thread->readNextPC());
thread->setNextPC(thread->readNextPC() + sizeof(MachInst));
return;
} else {
// The instruction is carrying an ITB fault. Handle
// the fault and see if our results match the CPU on
// the next tick().
fault = inst->getFault();
}
}
if (fault == NoFault) {
Packet *pkt = new Packet(memReq, Packet::ReadReq,
Packet::Broadcast);
pkt->dataStatic(&machInst);
icachePort->sendFunctional(pkt);
delete pkt;
// keep an instruction count
numInst++;
// decode the instruction
machInst = gtoh(machInst);
// Checks that the instruction matches what we expected it to be.
// Checks both the machine instruction and the PC.
validateInst(inst);
curStaticInst = StaticInst::decode(makeExtMI(machInst,
thread->readPC()));
#if FULL_SYSTEM
thread->setInst(machInst);
#endif // FULL_SYSTEM
fault = inst->getFault();
}
// Discard fetch's memReq.
delete memReq;
memReq = NULL;
// Either the instruction was a fault and we should process the fault,
// or we should just go ahead execute the instruction. This assumes
// that the instruction is properly marked as a fault.
if (fault == NoFault) {
thread->funcExeInst++;
fault = curStaticInst->execute(this, NULL);
// Checks to make sure instrution results are correct.
validateExecution(inst);
if (curStaticInst->isLoad()) {
++numLoad;
}
}
if (fault != NoFault) {
#if FULL_SYSTEM
fault->invoke(tc);
willChangePC = true;
newPC = thread->readPC();
DPRINTF(Checker, "Fault, PC is now %#x\n", newPC);
#endif
} else {
#if THE_ISA != MIPS_ISA
// go to the next instruction
thread->setPC(thread->readNextPC());
thread->setNextPC(thread->readNextPC() + sizeof(MachInst));
#else
// go to the next instruction
thread->setPC(thread->readNextPC());
thread->setNextPC(thread->readNextNPC());
thread->setNextNPC(thread->readNextNPC() + sizeof(MachInst));
#endif
}
#if FULL_SYSTEM
// @todo: Determine if these should happen only if the
// instruction hasn't faulted. In the SimpleCPU case this may
// not be true, but in the O3 or Ozone case this may be true.
Addr oldpc;
int count = 0;
do {
oldpc = thread->readPC();
system->pcEventQueue.service(tc);
count++;
} while (oldpc != thread->readPC());
if (count > 1) {
willChangePC = true;
newPC = thread->readPC();
DPRINTF(Checker, "PC Event, PC is now %#x\n", newPC);
}
#endif
// @todo: Optionally can check all registers. (Or just those
// that have been modified).
validateState();
if (memReq) {
delete memReq;
memReq = NULL;
}
// Continue verifying instructions if there's another completed
// instruction waiting to be verified.
if (instList.empty()) {
break;
} else if (instList.front()->isCompleted()) {
inst = instList.front();
instList.pop_front();
} else {
break;
}
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::switchOut()
{
instList.clear();
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::takeOverFrom(BaseCPU *oldCPU)
{
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateInst(DynInstPtr &inst)
{
if (inst->readPC() != thread->readPC()) {
warn("%lli: PCs do not match! Inst: %#x, checker: %#x",
curTick, inst->readPC(), thread->readPC());
if (changedPC) {
warn("%lli: Changed PCs recently, may not be an error",
curTick);
} else {
handleError(inst);
}
}
MachInst mi = static_cast<MachInst>(inst->staticInst->machInst);
if (mi != machInst) {
warn("%lli: Binary instructions do not match! Inst: %#x, "
"checker: %#x",
curTick, mi, machInst);
handleError(inst);
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateExecution(DynInstPtr &inst)
{
bool result_mismatch = false;
if (inst->numDestRegs()) {
// @todo: Support more destination registers.
if (inst->isUnverifiable()) {
// Unverifiable instructions assume they were executed
// properly by the CPU. Grab the result from the
// instruction and write it to the register.
copyResult(inst);
} else if (result.integer != inst->readIntResult()) {
result_mismatch = true;
}
}
if (result_mismatch) {
warn("%lli: Instruction results do not match! (Values may not "
"actually be integers) Inst: %#x, checker: %#x",
curTick, inst->readIntResult(), result.integer);
// It's useful to verify load values from memory, but in MP
// systems the value obtained at execute may be different than
// the value obtained at completion. Similarly DMA can
// present the same problem on even UP systems. Thus there is
// the option to only warn on loads having a result error.
if (inst->isLoad() && warnOnlyOnLoadError) {
copyResult(inst);
} else {
handleError(inst);
}
}
if (inst->readNextPC() != thread->readNextPC()) {
warn("%lli: Instruction next PCs do not match! Inst: %#x, "
"checker: %#x",
curTick, inst->readNextPC(), thread->readNextPC());
handleError(inst);
}
// Checking side effect registers can be difficult if they are not
// checked simultaneously with the execution of the instruction.
// This is because other valid instructions may have modified
// these registers in the meantime, and their values are not
// stored within the DynInst.
while (!miscRegIdxs.empty()) {
int misc_reg_idx = miscRegIdxs.front();
miscRegIdxs.pop();
if (inst->tcBase()->readMiscReg(misc_reg_idx) !=
thread->readMiscReg(misc_reg_idx)) {
warn("%lli: Misc reg idx %i (side effect) does not match! "
"Inst: %#x, checker: %#x",
curTick, misc_reg_idx,
inst->tcBase()->readMiscReg(misc_reg_idx),
thread->readMiscReg(misc_reg_idx));
handleError(inst);
}
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateState()
{
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::copyResult(DynInstPtr &inst)
{
RegIndex idx = inst->destRegIdx(0);
if (idx < TheISA::FP_Base_DepTag) {
thread->setIntReg(idx, inst->readIntResult());
} else if (idx < TheISA::Fpcr_DepTag) {
thread->setFloatRegBits(idx, inst->readIntResult());
} else {
thread->setMiscReg(idx, inst->readIntResult());
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::dumpAndExit(DynInstPtr &inst)
{
cprintf("Error detected, instruction information:\n");
cprintf("PC:%#x, nextPC:%#x\n[sn:%lli]\n[tid:%i]\n"
"Completed:%i\n",
inst->readPC(),
inst->readNextPC(),
inst->seqNum,
inst->threadNumber,
inst->isCompleted());
inst->dump();
CheckerCPU::dumpAndExit();
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::dumpInsts()
{
int num = 0;
InstListIt inst_list_it = --(instList.end());
cprintf("Inst list size: %i\n", instList.size());
while (inst_list_it != instList.end())
{
cprintf("Instruction:%i\n",
num);
cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
"Completed:%i\n",
(*inst_list_it)->readPC(),
(*inst_list_it)->seqNum,
(*inst_list_it)->threadNumber,
(*inst_list_it)->isCompleted());
cprintf("\n");
inst_list_it--;
++num;
}
}
|