summaryrefslogtreecommitdiff
path: root/src/cpu/checker/cpu_impl.hh
blob: 57282cd13c48db853396f721c31aa2fdeef8f0ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/*
 * Copyright (c) 2011, 2016 ARM Limited
 * Copyright (c) 2013 Advanced Micro Devices, Inc.
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Kevin Lim
 *          Geoffrey Blake
 */

#ifndef __CPU_CHECKER_CPU_IMPL_HH__
#define __CPU_CHECKER_CPU_IMPL_HH__

#include <list>
#include <string>

#include "arch/isa_traits.hh"
#include "arch/vtophys.hh"
#include "base/refcnt.hh"
#include "config/the_isa.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/exetrace.hh"
#include "cpu/reg_class.hh"
#include "cpu/simple_thread.hh"
#include "cpu/static_inst.hh"
#include "cpu/thread_context.hh"
#include "cpu/checker/cpu.hh"
#include "debug/Checker.hh"
#include "sim/full_system.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"

using namespace std;
using namespace TheISA;

template <class Impl>
void
Checker<Impl>::advancePC(const Fault &fault)
{
    if (fault != NoFault) {
        curMacroStaticInst = StaticInst::nullStaticInstPtr;
        fault->invoke(tc, curStaticInst);
        thread->decoder.reset();
    } else {
        if (curStaticInst) {
            if (curStaticInst->isLastMicroop())
                curMacroStaticInst = StaticInst::nullStaticInstPtr;
            TheISA::PCState pcState = thread->pcState();
            TheISA::advancePC(pcState, curStaticInst);
            thread->pcState(pcState);
            DPRINTF(Checker, "Advancing PC to %s.\n", thread->pcState());
        }
    }
}
//////////////////////////////////////////////////

template <class Impl>
void
Checker<Impl>::handlePendingInt()
{
    DPRINTF(Checker, "IRQ detected at PC: %s with %d insts in buffer\n",
                     thread->pcState(), instList.size());
    DynInstPtr boundaryInst = NULL;
    if (!instList.empty()) {
        // Set the instructions as completed and verify as much as possible.
        DynInstPtr inst;
        typename std::list<DynInstPtr>::iterator itr;

        for (itr = instList.begin(); itr != instList.end(); itr++) {
            (*itr)->setCompleted();
        }

        inst = instList.front();
        boundaryInst = instList.back();
        verify(inst); // verify the instructions
        inst = NULL;
    }
    if ((!boundaryInst && curMacroStaticInst &&
          curStaticInst->isDelayedCommit() &&
          !curStaticInst->isLastMicroop()) ||
        (boundaryInst && boundaryInst->isDelayedCommit() &&
         !boundaryInst->isLastMicroop())) {
        panic("%lli: Trying to take an interrupt in middle of "
              "a non-interuptable instruction!", curTick());
    }
    boundaryInst = NULL;
    thread->decoder.reset();
    curMacroStaticInst = StaticInst::nullStaticInstPtr;
}

template <class Impl>
void
Checker<Impl>::verify(DynInstPtr &completed_inst)
{
    DynInstPtr inst;

    // Make sure serializing instructions are actually
    // seen as serializing to commit. instList should be
    // empty in these cases.
    if ((completed_inst->isSerializing() ||
        completed_inst->isSerializeBefore()) &&
        (!instList.empty() ?
         (instList.front()->seqNum != completed_inst->seqNum) : 0)) {
        panic("%lli: Instruction sn:%lli at PC %s is serializing before but is"
              " entering instList with other instructions\n", curTick(),
              completed_inst->seqNum, completed_inst->pcState());
    }

    // Either check this instruction, or add it to a list of
    // instructions waiting to be checked.  Instructions must be
    // checked in program order, so if a store has committed yet not
    // completed, there may be some instructions that are waiting
    // behind it that have completed and must be checked.
    if (!instList.empty()) {
        if (youngestSN < completed_inst->seqNum) {
            DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n",
                    completed_inst->seqNum, completed_inst->pcState());
            instList.push_back(completed_inst);
            youngestSN = completed_inst->seqNum;
        }

        if (!instList.front()->isCompleted()) {
            return;
        } else {
            inst = instList.front();
            instList.pop_front();
        }
    } else {
        if (!completed_inst->isCompleted()) {
            if (youngestSN < completed_inst->seqNum) {
                DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%s to list\n",
                        completed_inst->seqNum, completed_inst->pcState());
                instList.push_back(completed_inst);
                youngestSN = completed_inst->seqNum;
            }
            return;
        } else {
            if (youngestSN < completed_inst->seqNum) {
                inst = completed_inst;
                youngestSN = completed_inst->seqNum;
            } else {
                return;
            }
        }
    }

    // Make sure a serializing instruction is actually seen as
    // serializing. instList should be empty here
    if (inst->isSerializeAfter() && !instList.empty()) {
        panic("%lli: Instruction sn:%lli at PC %s is serializing after but is"
             " exiting instList with other instructions\n", curTick(),
             completed_inst->seqNum, completed_inst->pcState());
    }
    unverifiedInst = inst;
    inst = NULL;

    // Try to check all instructions that are completed, ending if we
    // run out of instructions to check or if an instruction is not
    // yet completed.
    while (1) {
        DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%s.\n",
                unverifiedInst->seqNum, unverifiedInst->pcState());
        unverifiedReq = NULL;
        unverifiedReq = unverifiedInst->reqToVerify;
        unverifiedMemData = unverifiedInst->memData;
        // Make sure results queue is empty
        while (!result.empty()) {
            result.pop();
        }
        numCycles++;

        Fault fault = NoFault;

        // maintain $r0 semantics
        thread->setIntReg(ZeroReg, 0);
#if THE_ISA == ALPHA_ISA
        thread->setFloatReg(ZeroReg, 0.0);
#endif

        // Check if any recent PC changes match up with anything we
        // expect to happen.  This is mostly to check if traps or
        // PC-based events have occurred in both the checker and CPU.
        if (changedPC) {
            DPRINTF(Checker, "Changed PC recently to %s\n",
                    thread->pcState());
            if (willChangePC) {
                if (newPCState == thread->pcState()) {
                    DPRINTF(Checker, "Changed PC matches expected PC\n");
                } else {
                    warn("%lli: Changed PC does not match expected PC, "
                         "changed: %s, expected: %s",
                         curTick(), thread->pcState(), newPCState);
                    CheckerCPU::handleError();
                }
                willChangePC = false;
            }
            changedPC = false;
        }

        // Try to fetch the instruction
        uint64_t fetchOffset = 0;
        bool fetchDone = false;

        while (!fetchDone) {
            Addr fetch_PC = thread->instAddr();
            fetch_PC = (fetch_PC & PCMask) + fetchOffset;

            MachInst machInst;

            // If not in the middle of a macro instruction
            if (!curMacroStaticInst) {
                // set up memory request for instruction fetch
                auto mem_req = std::make_shared<Request>(
                    unverifiedInst->threadNumber, fetch_PC,
                    sizeof(MachInst), 0, masterId, fetch_PC,
                    thread->contextId());

                mem_req->setVirt(0, fetch_PC, sizeof(MachInst),
                                 Request::INST_FETCH, masterId,
                                 thread->instAddr());

                fault = itb->translateFunctional(
                    mem_req, tc, BaseTLB::Execute);

                if (fault != NoFault) {
                    if (unverifiedInst->getFault() == NoFault) {
                        // In this case the instruction was not a dummy
                        // instruction carrying an ITB fault.  In the single
                        // threaded case the ITB should still be able to
                        // translate this instruction; in the SMT case it's
                        // possible that its ITB entry was kicked out.
                        warn("%lli: Instruction PC %s was not found in the "
                             "ITB!", curTick(), thread->pcState());
                        handleError(unverifiedInst);

                        // go to the next instruction
                        advancePC(NoFault);

                        // Give up on an ITB fault..
                        unverifiedInst = NULL;
                        return;
                    } else {
                        // The instruction is carrying an ITB fault.  Handle
                        // the fault and see if our results match the CPU on
                        // the next tick().
                        fault = unverifiedInst->getFault();
                        break;
                    }
                } else {
                    PacketPtr pkt = new Packet(mem_req, MemCmd::ReadReq);

                    pkt->dataStatic(&machInst);
                    icachePort->sendFunctional(pkt);
                    machInst = gtoh(machInst);

                    delete pkt;
                }
            }

            if (fault == NoFault) {
                TheISA::PCState pcState = thread->pcState();

                if (isRomMicroPC(pcState.microPC())) {
                    fetchDone = true;
                    curStaticInst =
                        microcodeRom.fetchMicroop(pcState.microPC(), NULL);
                } else if (!curMacroStaticInst) {
                    //We're not in the middle of a macro instruction
                    StaticInstPtr instPtr = nullptr;

                    //Predecode, ie bundle up an ExtMachInst
                    //If more fetch data is needed, pass it in.
                    Addr fetchPC = (pcState.instAddr() & PCMask) + fetchOffset;
                    thread->decoder.moreBytes(pcState, fetchPC, machInst);

                    //If an instruction is ready, decode it.
                    //Otherwise, we'll have to fetch beyond the
                    //MachInst at the current pc.
                    if (thread->decoder.instReady()) {
                        fetchDone = true;
                        instPtr = thread->decoder.decode(pcState);
                        thread->pcState(pcState);
                    } else {
                        fetchDone = false;
                        fetchOffset += sizeof(TheISA::MachInst);
                    }

                    //If we decoded an instruction and it's microcoded,
                    //start pulling out micro ops
                    if (instPtr && instPtr->isMacroop()) {
                        curMacroStaticInst = instPtr;
                        curStaticInst =
                            instPtr->fetchMicroop(pcState.microPC());
                    } else {
                        curStaticInst = instPtr;
                    }
                } else {
                    // Read the next micro op from the macro-op
                    curStaticInst =
                        curMacroStaticInst->fetchMicroop(pcState.microPC());
                    fetchDone = true;
                }
            }
        }
        // reset decoder on Checker
        thread->decoder.reset();

        // Check Checker and CPU get same instruction, and record
        // any faults the CPU may have had.
        Fault unverifiedFault;
        if (fault == NoFault) {
            unverifiedFault = unverifiedInst->getFault();

            // Checks that the instruction matches what we expected it to be.
            // Checks both the machine instruction and the PC.
            validateInst(unverifiedInst);
        }

        // keep an instruction count
        numInst++;


        // Either the instruction was a fault and we should process the fault,
        // or we should just go ahead execute the instruction.  This assumes
        // that the instruction is properly marked as a fault.
        if (fault == NoFault) {
            // Execute Checker instruction and trace
            if (!unverifiedInst->isUnverifiable()) {
                Trace::InstRecord *traceData = tracer->getInstRecord(curTick(),
                                                           tc,
                                                           curStaticInst,
                                                           pcState(),
                                                           curMacroStaticInst);
                fault = curStaticInst->execute(this, traceData);
                if (traceData) {
                    traceData->dump();
                    delete traceData;
                }
            }

            if (fault == NoFault && unverifiedFault == NoFault) {
                thread->funcExeInst++;
                // Checks to make sure instrution results are correct.
                validateExecution(unverifiedInst);

                if (curStaticInst->isLoad()) {
                    ++numLoad;
                }
            } else if (fault != NoFault && unverifiedFault == NoFault) {
                panic("%lli: sn: %lli at PC: %s took a fault in checker "
                      "but not in driver CPU\n", curTick(),
                      unverifiedInst->seqNum, unverifiedInst->pcState());
            } else if (fault == NoFault && unverifiedFault != NoFault) {
                panic("%lli: sn: %lli at PC: %s took a fault in driver "
                      "CPU but not in checker\n", curTick(),
                      unverifiedInst->seqNum, unverifiedInst->pcState());
            }
        }

        // Take any faults here
        if (fault != NoFault) {
            if (FullSystem) {
                fault->invoke(tc, curStaticInst);
                willChangePC = true;
                newPCState = thread->pcState();
                DPRINTF(Checker, "Fault, PC is now %s\n", newPCState);
                curMacroStaticInst = StaticInst::nullStaticInstPtr;
            }
        } else {
           advancePC(fault);
        }

        if (FullSystem) {
            // @todo: Determine if these should happen only if the
            // instruction hasn't faulted.  In the SimpleCPU case this may
            // not be true, but in the O3 case this may be true.
            Addr oldpc;
            int count = 0;
            do {
                oldpc = thread->instAddr();
                system->pcEventQueue.service(tc);
                count++;
            } while (oldpc != thread->instAddr());
            if (count > 1) {
                willChangePC = true;
                newPCState = thread->pcState();
                DPRINTF(Checker, "PC Event, PC is now %s\n", newPCState);
            }
        }

        // @todo:  Optionally can check all registers. (Or just those
        // that have been modified).
        validateState();

        // Continue verifying instructions if there's another completed
        // instruction waiting to be verified.
        if (instList.empty()) {
            break;
        } else if (instList.front()->isCompleted()) {
            unverifiedInst = NULL;
            unverifiedInst = instList.front();
            instList.pop_front();
        } else {
            break;
        }
    }
    unverifiedInst = NULL;
}

template <class Impl>
void
Checker<Impl>::switchOut()
{
    instList.clear();
}

template <class Impl>
void
Checker<Impl>::takeOverFrom(BaseCPU *oldCPU)
{
}

template <class Impl>
void
Checker<Impl>::validateInst(DynInstPtr &inst)
{
    if (inst->instAddr() != thread->instAddr()) {
        warn("%lli: PCs do not match! Inst: %s, checker: %s",
             curTick(), inst->pcState(), thread->pcState());
        if (changedPC) {
            warn("%lli: Changed PCs recently, may not be an error",
                 curTick());
        } else {
            handleError(inst);
        }
    }

    if (curStaticInst != inst->staticInst) {
        warn("%lli: StaticInstPtrs don't match. (%s, %s).\n", curTick(),
                curStaticInst->getName(), inst->staticInst->getName());
    }
}

template <class Impl>
void
Checker<Impl>::validateExecution(DynInstPtr &inst)
{
    InstResult checker_val;
    InstResult inst_val;
    int idx = -1;
    bool result_mismatch = false;
    bool scalar_mismatch = false;
    bool vector_mismatch = false;

    if (inst->isUnverifiable()) {
        // Unverifiable instructions assume they were executed
        // properly by the CPU. Grab the result from the
        // instruction and write it to the register.
        copyResult(inst, InstResult(0ul, InstResult::ResultType::Scalar), idx);
    } else if (inst->numDestRegs() > 0 && !result.empty()) {
        DPRINTF(Checker, "Dest regs %d, number of checker dest regs %d\n",
                         inst->numDestRegs(), result.size());
        for (int i = 0; i < inst->numDestRegs() && !result.empty(); i++) {
            checker_val = result.front();
            result.pop();
            inst_val = inst->popResult(
                    InstResult(0ul, InstResult::ResultType::Scalar));
            if (checker_val != inst_val) {
                result_mismatch = true;
                idx = i;
                scalar_mismatch = checker_val.isScalar();
                vector_mismatch = checker_val.isVector();
                panic_if(!(scalar_mismatch || vector_mismatch),
                        "Unknown type of result\n");
            }
        }
    } // Checker CPU checks all the saved results in the dyninst passed by
      // the cpu model being checked against the saved results present in
      // the static inst executed in the Checker.  Sometimes the number
      // of saved results differs between the dyninst and static inst, but
      // this is ok and not a bug.  May be worthwhile to try and correct this.

    if (result_mismatch) {
        if (scalar_mismatch) {
            warn("%lli: Instruction results (%i) do not match! (Values may"
                 " not actually be integers) Inst: %#x, checker: %#x",
                 curTick(), idx, inst_val.asIntegerNoAssert(),
                 checker_val.asInteger());
        }

        // It's useful to verify load values from memory, but in MP
        // systems the value obtained at execute may be different than
        // the value obtained at completion.  Similarly DMA can
        // present the same problem on even UP systems.  Thus there is
        // the option to only warn on loads having a result error.
        // The load/store queue in Detailed CPU can also cause problems
        // if load/store forwarding is allowed.
        if (inst->isLoad() && warnOnlyOnLoadError) {
            copyResult(inst, inst_val, idx);
        } else {
            handleError(inst);
        }
    }

    if (inst->nextInstAddr() != thread->nextInstAddr()) {
        warn("%lli: Instruction next PCs do not match! Inst: %#x, "
             "checker: %#x",
             curTick(), inst->nextInstAddr(), thread->nextInstAddr());
        handleError(inst);
    }

    // Checking side effect registers can be difficult if they are not
    // checked simultaneously with the execution of the instruction.
    // This is because other valid instructions may have modified
    // these registers in the meantime, and their values are not
    // stored within the DynInst.
    while (!miscRegIdxs.empty()) {
        int misc_reg_idx = miscRegIdxs.front();
        miscRegIdxs.pop();

        if (inst->tcBase()->readMiscRegNoEffect(misc_reg_idx) !=
            thread->readMiscRegNoEffect(misc_reg_idx)) {
            warn("%lli: Misc reg idx %i (side effect) does not match! "
                 "Inst: %#x, checker: %#x",
                 curTick(), misc_reg_idx,
                 inst->tcBase()->readMiscRegNoEffect(misc_reg_idx),
                 thread->readMiscRegNoEffect(misc_reg_idx));
            handleError(inst);
        }
    }
}


// This function is weird, if it is called it means the Checker and
// O3 have diverged, so panic is called for now.  It may be useful
// to resynch states and continue if the divergence is a false positive
template <class Impl>
void
Checker<Impl>::validateState()
{
    if (updateThisCycle) {
        // Change this back to warn if divergences end up being false positives
        panic("%lli: Instruction PC %#x results didn't match up, copying all "
             "registers from main CPU", curTick(), unverifiedInst->instAddr());

        // Terribly convoluted way to make sure O3 model does not implode
        bool no_squash_from_TC = unverifiedInst->thread->noSquashFromTC;
        unverifiedInst->thread->noSquashFromTC = true;

        // Heavy-weight copying of all registers
        thread->copyArchRegs(unverifiedInst->tcBase());
        unverifiedInst->thread->noSquashFromTC = no_squash_from_TC;

        // Set curStaticInst to unverifiedInst->staticInst
        curStaticInst = unverifiedInst->staticInst;
        // Also advance the PC.  Hopefully no PC-based events happened.
        advancePC(NoFault);
        updateThisCycle = false;
    }
}

template <class Impl>
void
Checker<Impl>::copyResult(DynInstPtr &inst, const InstResult& mismatch_val,
                          int start_idx)
{
    // We've already popped one dest off the queue,
    // so do the fix-up then start with the next dest reg;
    if (start_idx >= 0) {
        const RegId& idx = inst->destRegIdx(start_idx);
        switch (idx.classValue()) {
          case IntRegClass:
            panic_if(!mismatch_val.isScalar(), "Unexpected type of result");
            thread->setIntReg(idx.index(), mismatch_val.asInteger());
            break;
          case FloatRegClass:
            panic_if(!mismatch_val.isScalar(), "Unexpected type of result");
            thread->setFloatRegBits(idx.index(), mismatch_val.asInteger());
            break;
          case VecRegClass:
            panic_if(!mismatch_val.isVector(), "Unexpected type of result");
            thread->setVecReg(idx, mismatch_val.asVector());
            break;
          case VecElemClass:
            panic_if(!mismatch_val.isVecElem(),
                     "Unexpected type of result");
            thread->setVecElem(idx, mismatch_val.asVectorElem());
            break;
          case CCRegClass:
            panic_if(!mismatch_val.isScalar(), "Unexpected type of result");
            thread->setCCReg(idx.index(), mismatch_val.asInteger());
            break;
          case MiscRegClass:
            panic_if(!mismatch_val.isScalar(), "Unexpected type of result");
            thread->setMiscReg(idx.index(), mismatch_val.asInteger());
            break;
          default:
            panic("Unknown register class: %d", (int)idx.classValue());
        }
    }
    start_idx++;
    InstResult res;
    for (int i = start_idx; i < inst->numDestRegs(); i++) {
        const RegId& idx = inst->destRegIdx(i);
        res = inst->popResult();
        switch (idx.classValue()) {
          case IntRegClass:
            panic_if(!res.isScalar(), "Unexpected type of result");
            thread->setIntReg(idx.index(), res.asInteger());
            break;
          case FloatRegClass:
            panic_if(!res.isScalar(), "Unexpected type of result");
            thread->setFloatRegBits(idx.index(), res.asInteger());
            break;
          case VecRegClass:
            panic_if(!res.isVector(), "Unexpected type of result");
            thread->setVecReg(idx, res.asVector());
            break;
          case VecElemClass:
            panic_if(!res.isVecElem(), "Unexpected type of result");
            thread->setVecElem(idx, res.asVectorElem());
            break;
          case CCRegClass:
            panic_if(!res.isScalar(), "Unexpected type of result");
            thread->setCCReg(idx.index(), res.asInteger());
            break;
          case MiscRegClass:
            panic_if(res.isValid(), "MiscReg expecting invalid result");
            // Try to get the proper misc register index for ARM here...
            thread->setMiscReg(idx.index(), 0);
            break;
            // else Register is out of range...
          default:
            panic("Unknown register class: %d", (int)idx.classValue());
        }
    }
}

template <class Impl>
void
Checker<Impl>::dumpAndExit(DynInstPtr &inst)
{
    cprintf("Error detected, instruction information:\n");
    cprintf("PC:%s, nextPC:%#x\n[sn:%lli]\n[tid:%i]\n"
            "Completed:%i\n",
            inst->pcState(),
            inst->nextInstAddr(),
            inst->seqNum,
            inst->threadNumber,
            inst->isCompleted());
    inst->dump();
    CheckerCPU::dumpAndExit();
}

template <class Impl>
void
Checker<Impl>::dumpInsts()
{
    int num = 0;

    InstListIt inst_list_it = --(instList.end());

    cprintf("Inst list size: %i\n", instList.size());

    while (inst_list_it != instList.end())
    {
        cprintf("Instruction:%i\n",
                num);

        cprintf("PC:%s\n[sn:%lli]\n[tid:%i]\n"
                "Completed:%i\n",
                (*inst_list_it)->pcState(),
                (*inst_list_it)->seqNum,
                (*inst_list_it)->threadNumber,
                (*inst_list_it)->isCompleted());

        cprintf("\n");

        inst_list_it--;
        ++num;
    }

}

#endif//__CPU_CHECKER_CPU_IMPL_HH__