1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
|
# Copyright (c) 2003-2006 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
################
# CpuModel class
#
# The CpuModel class encapsulates everything the ISA parser needs to
# know about a particular CPU model.
class CpuModel:
# Dict of available CPU model objects. Accessible as CpuModel.dict.
dict = {}
# Constructor. Automatically adds models to CpuModel.dict.
def __init__(self, name, filename, includes, strings):
self.name = name
self.filename = filename # filename for output exec code
self.includes = includes # include files needed in exec file
# The 'strings' dict holds all the per-CPU symbols we can
# substitute into templates etc.
self.strings = strings
# Add self to dict
CpuModel.dict[name] = self
#
# Define CPU models.
#
# Parameters are:
# - name of model
# - filename for generated ISA execution file
# - includes needed for generated ISA execution file
# - substitution strings for ISA description templates
#
CpuModel('AtomicSimpleCPU', 'atomic_simple_cpu_exec.cc',
'#include "cpu/simple/atomic.hh"',
{ 'CPU_exec_context': 'AtomicSimpleCPU' })
CpuModel('TimingSimpleCPU', 'timing_simple_cpu_exec.cc',
'#include "cpu/simple/timing.hh"',
{ 'CPU_exec_context': 'TimingSimpleCPU' })
CpuModel('FullCPU', 'full_cpu_exec.cc',
'#include "encumbered/cpu/full/dyn_inst.hh"',
{ 'CPU_exec_context': 'DynInst' })
CpuModel('AlphaFullCPU', 'alpha_o3_exec.cc',
'#include "cpu/o3/alpha_dyn_inst.hh"',
{ 'CPU_exec_context': 'AlphaDynInst<AlphaSimpleImpl>' })
|