summaryrefslogtreecommitdiff
path: root/src/cpu/inorder/resources/cache_unit.cc
blob: 8b4dd4402ccd65615698a12ccb8ea8234ea34ed2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/*
 * Copyright (c) 2007 MIPS Technologies, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Korey Sewell
 *
 */

#include <vector>
#include <list>

#include "arch/isa_traits.hh"
#include "arch/locked_mem.hh"
#include "arch/utility.hh"
#include "arch/predecoder.hh"
#include "config/the_isa.hh"
#include "cpu/inorder/resources/cache_unit.hh"
#include "cpu/inorder/pipeline_traits.hh"
#include "cpu/inorder/cpu.hh"
#include "cpu/inorder/resource_pool.hh"
#include "mem/request.hh"

using namespace std;
using namespace TheISA;
using namespace ThePipeline;

#if TRACING_ON
static std::string
printMemData(uint8_t *data, unsigned size)
{
    std::stringstream dataStr;
    for (unsigned pos = 0; pos < size; pos++) {
        ccprintf(dataStr, "%02x", data[pos]);
    }
    return dataStr.str();
}
#endif

Tick
CacheUnit::CachePort::recvAtomic(PacketPtr pkt)
{
    panic("CacheUnit::CachePort doesn't expect recvAtomic callback!");
    return curTick();
}

void
CacheUnit::CachePort::recvFunctional(PacketPtr pkt)
{
    panic("CacheUnit::CachePort doesn't expect recvFunctional callback!");
}

void
CacheUnit::CachePort::recvStatusChange(Status status)
{
    if (status == RangeChange)
        return;

    panic("CacheUnit::CachePort doesn't expect recvStatusChange callback!");
}

bool
CacheUnit::CachePort::recvTiming(Packet *pkt)
{
    cachePortUnit->processCacheCompletion(pkt);
    return true;
}

void
CacheUnit::CachePort::recvRetry()
{
    cachePortUnit->recvRetry();
}

CacheUnit::CacheUnit(string res_name, int res_id, int res_width,
        int res_latency, InOrderCPU *_cpu, ThePipeline::Params *params)
    : Resource(res_name, res_id, res_width, res_latency, _cpu),
      cachePortBlocked(false)
{
    cachePort = new CachePort(this);

    // Hard-Code Selection For Now
    if (res_name == "icache_port")
        _tlb = params->itb;
    else if (res_name == "dcache_port")
        _tlb = params->dtb;
    else
        fatal("Unrecognized TLB name passed by user");

    for (int i=0; i < MaxThreads; i++) {
        tlbBlocked[i] = false;
    }
}

TheISA::TLB*
CacheUnit::tlb()
{
    return _tlb;

}

Port *
CacheUnit::getPort(const string &if_name, int idx)
{
    if (if_name == resName)
        return cachePort;
    else
        return NULL;
}

void
CacheUnit::init()
{
    // Currently Used to Model TLB Latency. Eventually
    // Switch to Timing TLB translations.
    resourceEvent = new CacheUnitEvent[width];

    cacheBlkSize = this->cachePort->peerBlockSize();
    cacheBlkMask = cacheBlkSize  - 1;

    initSlots();
}

int
CacheUnit::getSlot(DynInstPtr inst)
{
    ThreadID tid = inst->readTid();
    
    if (tlbBlocked[inst->threadNumber]) {
        return -1;
    }

    // For a Split-Load, the instruction would have processed once already
    // causing the address to be unset.
    if (!inst->validMemAddr() && !inst->splitInst) {
        panic("[tid:%i][sn:%i] Mem. Addr. must be set before requesting "
              "cache access\n", inst->readTid(), inst->seqNum);
    }

    Addr req_addr = inst->getMemAddr();

    if (resName == "icache_port" ||
        find(addrList[tid].begin(), addrList[tid].end(), req_addr) == 
        addrList[tid].end()) {

        int new_slot = Resource::getSlot(inst);

        if (new_slot == -1)
            return -1;

        inst->memTime = curTick();
        setAddrDependency(inst);            
        return new_slot;
    } else {
        // Allow same instruction multiple accesses to same address
        // should only happen maybe after a squashed inst. needs to replay
        if (addrMap[tid][req_addr] == inst->seqNum) {
            int new_slot = Resource::getSlot(inst);
        
            if (new_slot == -1)
                return -1;     

            return new_slot;       
        } else {                    
            DPRINTF(InOrderCachePort,
                "[tid:%i] Denying request because there is an outstanding"
                " request to/for addr. %08p. by [sn:%i] @ tick %i\n",
                inst->readTid(), req_addr, addrMap[tid][req_addr], inst->memTime);
            return -1;
        }        
    }

    return -1;   
}

void
CacheUnit::setAddrDependency(DynInstPtr inst)
{
    Addr req_addr = inst->getMemAddr();
    ThreadID tid = inst->readTid();

    addrList[tid].push_back(req_addr);
    addrMap[tid][req_addr] = inst->seqNum;

    DPRINTF(AddrDep,
            "[tid:%i]: [sn:%i]: Address %08p added to dependency list (size=%i)\n",
            inst->readTid(), inst->seqNum, req_addr, addrList[tid].size());

    //@NOTE: 10 is an arbitrarily "high" number, but to be exact
    //       we would need to know the # of outstanding accesses
    //       a priori. Information like fetch width, stage width,
    //       fetch buffer, and the branch resolution stage would be
    //       useful for the icache_port. For the dcache port, the #
    //       of outstanding cache accesses (mshrs) would be a good
    //       sanity check here.
    //assert(addrList[tid].size() < 10);
}

void
CacheUnit::removeAddrDependency(DynInstPtr inst)
{
    ThreadID tid = inst->readTid();

    Addr mem_addr = inst->getMemAddr();
    
    inst->unsetMemAddr();

    // Erase from Address List
    vector<Addr>::iterator vect_it = find(addrList[tid].begin(),
                                          addrList[tid].end(),
                                          mem_addr);
    assert(vect_it != addrList[tid].end() || inst->splitInst);

    if (vect_it != addrList[tid].end()) {
        DPRINTF(AddrDep,
                "[tid:%i]: [sn:%i] Address %08p removed from dependency "
                "list\n", inst->readTid(), inst->seqNum, (*vect_it));

        addrList[tid].erase(vect_it);

        // Erase From Address Map (Used for Debugging)
        addrMap[tid].erase(addrMap[tid].find(mem_addr));
    }
    

}

ResReqPtr
CacheUnit::findRequest(DynInstPtr inst)
{
    map<int, ResReqPtr>::iterator map_it = reqMap.begin();
    map<int, ResReqPtr>::iterator map_end = reqMap.end();

    while (map_it != map_end) {
        CacheRequest* cache_req =
            dynamic_cast<CacheRequest*>((*map_it).second);
        assert(cache_req);

        if (cache_req &&
            cache_req->getInst() == inst &&
            cache_req->instIdx == inst->resSched.top()->idx) {
            return cache_req;
        }
        map_it++;
    }

    return NULL;
}

ResReqPtr
CacheUnit::findRequest(DynInstPtr inst, int idx)
{
    map<int, ResReqPtr>::iterator map_it = reqMap.begin();
    map<int, ResReqPtr>::iterator map_end = reqMap.end();

    while (map_it != map_end) {
        CacheRequest* cache_req =
            dynamic_cast<CacheRequest*>((*map_it).second);
        assert(cache_req);

        if (cache_req &&
            cache_req->getInst() == inst &&
            cache_req->instIdx == idx) {
            return cache_req;
        }
        map_it++;
    }

    return NULL;
}


ResReqPtr
CacheUnit::getRequest(DynInstPtr inst, int stage_num, int res_idx,
                     int slot_num, unsigned cmd)
{
    ScheduleEntry* sched_entry = inst->resSched.top();

    if (!inst->validMemAddr()) {
        panic("Mem. Addr. must be set before requesting cache access\n");
    }

    MemCmd::Command pkt_cmd;

    switch (sched_entry->cmd)
    {
      case InitSecondSplitRead:
        pkt_cmd = MemCmd::ReadReq;

        DPRINTF(InOrderCachePort,
                "[tid:%i]: Read request from [sn:%i] for addr %08p\n",
                inst->readTid(), inst->seqNum, inst->split2ndAddr);
        break;

      case InitiateReadData:
        pkt_cmd = MemCmd::ReadReq;

        DPRINTF(InOrderCachePort,
                "[tid:%i]: Read request from [sn:%i] for addr %08p\n",
                inst->readTid(), inst->seqNum, inst->getMemAddr());
        break;

      case InitSecondSplitWrite:
        pkt_cmd = MemCmd::WriteReq;

        DPRINTF(InOrderCachePort,
                "[tid:%i]: Write request from [sn:%i] for addr %08p\n",
                inst->readTid(), inst->seqNum, inst->split2ndAddr);
        break;

      case InitiateWriteData:
        pkt_cmd = MemCmd::WriteReq;

        DPRINTF(InOrderCachePort,
                "[tid:%i]: Write request from [sn:%i] for addr %08p\n",
                inst->readTid(), inst->seqNum, inst->getMemAddr());
        break;

      default:
        panic("%i: Unexpected request type (%i) to %s", curTick(),
              sched_entry->cmd, name());
    }

    return new CacheRequest(this, inst, stage_num, id, slot_num,
                            sched_entry->cmd, 0, pkt_cmd,
                            0/*flags*/, this->cpu->readCpuId(),
                            inst->resSched.top()->idx);
}

void
CacheUnit::requestAgain(DynInstPtr inst, bool &service_request)
{
    CacheReqPtr cache_req = dynamic_cast<CacheReqPtr>(findRequest(inst));
    assert(cache_req);

    // Check to see if this instruction is requesting the same command
    // or a different one
    if (cache_req->cmd != inst->resSched.top()->cmd &&
        cache_req->instIdx == inst->resSched.top()->idx) {
        // If different, then update command in the request
        cache_req->cmd = inst->resSched.top()->cmd;
        DPRINTF(InOrderCachePort,
                "[tid:%i]: [sn:%i]: Updating the command for this "
                "instruction\n ", inst->readTid(), inst->seqNum);

        service_request = true;
    } else if (inst->resSched.top()->idx != CacheUnit::InitSecondSplitRead &&
               inst->resSched.top()->idx != CacheUnit::InitSecondSplitWrite) {        
        // If same command, just check to see if memory access was completed
        // but dont try to re-execute
        DPRINTF(InOrderCachePort,
                "[tid:%i]: [sn:%i]: requesting this resource again\n",
                inst->readTid(), inst->seqNum);

        service_request = true;
    }
}

void
CacheUnit::setupMemRequest(DynInstPtr inst, CacheReqPtr cache_req,
                           int acc_size, int flags)
{
    ThreadID tid = inst->readTid();
    Addr aligned_addr = inst->getMemAddr();

    if (!cache_req->is2ndSplit()) {
            inst->dataMemReq =
                new Request(cpu->asid[tid], aligned_addr, acc_size, flags,
                            inst->instAddr(), cpu->readCpuId(),
                            tid);
            cache_req->memReq = inst->dataMemReq;
    } else {
            assert(inst->splitInst);
            
            inst->splitMemReq = new Request(cpu->asid[tid], 
                                            inst->split2ndAddr,
                                            acc_size, 
                                            flags, 
                                            inst->instAddr(),
                                            cpu->readCpuId(), 
                                            tid);
            cache_req->memReq = inst->splitMemReq;            
    }
}

void
CacheUnit::doTLBAccess(DynInstPtr inst, CacheReqPtr cache_req, int acc_size,
                       int flags, TheISA::TLB::Mode tlb_mode)
{
    ThreadID tid = inst->readTid();
    //Addr aligned_addr = inst->getMemAddr();
    unsigned stage_num = cache_req->getStageNum();
    unsigned slot_idx = cache_req->getSlot();

    setupMemRequest(inst, cache_req, acc_size, flags);

    inst->fault =
        _tlb->translateAtomic(cache_req->memReq,
                              cpu->thread[tid]->getTC(), tlb_mode);

    if (inst->fault != NoFault) {
        DPRINTF(InOrderTLB, "[tid:%i]: %s encountered while translating "
                "addr:%08p for [sn:%i].\n", tid, inst->fault->name(),
                cache_req->memReq->getVaddr(), inst->seqNum);

        cpu->pipelineStage[stage_num]->setResStall(cache_req, tid);

        tlbBlocked[tid] = true;

        cache_req->tlbStall = true;

        scheduleEvent(slot_idx, 1);

        cpu->trap(inst->fault, tid, inst);
    } else {
        DPRINTF(InOrderTLB, "[tid:%i]: [sn:%i] virt. addr %08p translated "
                "to phys. addr:%08p.\n", tid, inst->seqNum,
                cache_req->memReq->getVaddr(),
                cache_req->memReq->getPaddr());
    }

}

Fault
CacheUnit::read(DynInstPtr inst, Addr addr,
                uint8_t *data, unsigned size, unsigned flags)
{
    CacheReqPtr cache_req = dynamic_cast<CacheReqPtr>(findRequest(inst));
    assert(cache_req && "Can't Find Instruction for Read!");

    // The block size of our peer
    unsigned blockSize = this->cachePort->peerBlockSize();

    //The size of the data we're trying to read.
    int fullSize = size;
    inst->totalSize = size;

    if (inst->traceData) {
        inst->traceData->setAddr(addr);
    }

    if (inst->split2ndAccess) {     
        size = inst->split2ndSize;
        cache_req->splitAccess = true;        
        cache_req->split2ndAccess = true;
        
        DPRINTF(InOrderCachePort, "[sn:%i] Split Read Access (2 of 2) for "
                "(%#x, %#x).\n", inst->seqNum, inst->getMemAddr(),
                inst->split2ndAddr);
    }  
    

    //The address of the second part of this access if it needs to be split
    //across a cache line boundary.
    Addr secondAddr = roundDown(addr + size - 1, blockSize);

    
    if (secondAddr > addr && !inst->split2ndAccess) {
        DPRINTF(InOrderCachePort, "%i: sn[%i] Split Read Access (1 of 2) for "
                "(%#x, %#x).\n", curTick(), inst->seqNum, addr, secondAddr);
        
        // Save All "Total" Split Information
        // ==============================
        inst->splitInst = true;        
        inst->splitMemData = new uint8_t[size];
        
        if (!inst->splitInstSked) {
            // Schedule Split Read/Complete for Instruction
            // ==============================
            int stage_num = cache_req->getStageNum();
        
            int stage_pri = ThePipeline::getNextPriority(inst, stage_num);
        
            int isplit_cmd = CacheUnit::InitSecondSplitRead;
            inst->resSched.push(new
                                ScheduleEntry(stage_num,
                                              stage_pri,
                                              cpu->resPool->getResIdx(DCache),
                                              isplit_cmd,
                                              1));

            int csplit_cmd = CacheUnit::CompleteSecondSplitRead;
            inst->resSched.push(new
                                ScheduleEntry(stage_num + 1,
                                              1/*stage_pri*/,
                                              cpu->resPool->getResIdx(DCache),
                                              csplit_cmd,
                                              1));
            inst->splitInstSked = true;
        } else {
            DPRINTF(InOrderCachePort, "[tid:%i] [sn:%i] Retrying Split Read "
                    "Access (1 of 2) for (%#x, %#x).\n", inst->readTid(),
                    inst->seqNum, addr, secondAddr);
        }

        // Split Information for First Access
        // ==============================
        size = secondAddr - addr;
        cache_req->splitAccess = true;

        // Split Information for Second Access
        // ==============================
        inst->split2ndSize = addr + fullSize - secondAddr;
        inst->split2ndAddr = secondAddr;            
        inst->split2ndDataPtr = inst->splitMemData + size;
        inst->split2ndFlags = flags;        
    }
    
    doTLBAccess(inst, cache_req, size, flags, TheISA::TLB::Read);

    if (inst->fault == NoFault) {
        if (!cache_req->splitAccess) {            
            cache_req->reqData = new uint8_t[size];
            doCacheAccess(inst, NULL);
        } else {
            if (!inst->split2ndAccess) {                
                cache_req->reqData = inst->splitMemData;
            } else {
                cache_req->reqData = inst->split2ndDataPtr;                
            }
            
            doCacheAccess(inst, NULL, cache_req);            
        }        
    }

    return inst->fault;
}

Fault
CacheUnit::write(DynInstPtr inst, uint8_t *data, unsigned size,
                 Addr addr, unsigned flags, uint64_t *write_res)
{
    CacheReqPtr cache_req = dynamic_cast<CacheReqPtr>(findRequest(inst));
    assert(cache_req && "Can't Find Instruction for Write!");

    // The block size of our peer
    unsigned blockSize = this->cachePort->peerBlockSize();

    //The size of the data we're trying to write.
    int fullSize = size;
    inst->totalSize = size;

    if (inst->traceData) {
        inst->traceData->setAddr(addr);
    }

    if (inst->split2ndAccess) {     
        size = inst->split2ndSize;
        cache_req->splitAccess = true;        
        cache_req->split2ndAccess = true;
        
        DPRINTF(InOrderCachePort, "[sn:%i] Split Write Access (2 of 2) for "
                "(%#x, %#x).\n", inst->seqNum, inst->getMemAddr(),
                inst->split2ndAddr);
    }  

    //The address of the second part of this access if it needs to be split
    //across a cache line boundary.
    Addr secondAddr = roundDown(addr + size - 1, blockSize);

    if (secondAddr > addr && !inst->split2ndAccess) {
            
        DPRINTF(InOrderCachePort, "[sn:%i] Split Write Access (1 of 2) for "
                "(%#x, %#x).\n", inst->seqNum, addr, secondAddr);

        // Save All "Total" Split Information
        // ==============================
        inst->splitInst = true;        

        if (!inst->splitInstSked) {
            // Schedule Split Read/Complete for Instruction
            // ==============================
            int stage_num = cache_req->getStageNum();
        
            int stage_pri = ThePipeline::getNextPriority(inst, stage_num);
        
            int isplit_cmd = CacheUnit::InitSecondSplitWrite;
            inst->resSched.push(new
                                ScheduleEntry(stage_num,
                                              stage_pri,
                                              cpu->resPool->getResIdx(DCache),
                                              isplit_cmd,
                                              1));

            int csplit_cmd = CacheUnit::CompleteSecondSplitWrite;
            inst->resSched.push(new
                                ScheduleEntry(stage_num + 1,
                                              1/*stage_pri*/,
                                              cpu->resPool->getResIdx(DCache),
                                              csplit_cmd,
                                              1));
            inst->splitInstSked = true;
        } else {
            DPRINTF(InOrderCachePort, "[tid:%i] sn:%i] Retrying Split Read "
                    "Access (1 of 2) for (%#x, %#x).\n",
                    inst->readTid(), inst->seqNum, addr, secondAddr);                   
        }
        
        

        // Split Information for First Access
        // ==============================
        size = secondAddr - addr;
        cache_req->splitAccess = true;

        // Split Information for Second Access
        // ==============================
        inst->split2ndSize = addr + fullSize - secondAddr;
        inst->split2ndAddr = secondAddr;            
        inst->split2ndStoreDataPtr = &cache_req->inst->storeData;
        inst->split2ndStoreDataPtr += size;
        inst->split2ndFlags = flags;        
        inst->splitInstSked = true;
    }    
        
    doTLBAccess(inst, cache_req, size, flags, TheISA::TLB::Write);

    if (inst->fault == NoFault) {
        if (!cache_req->splitAccess) {            
            // Remove this line since storeData is saved in INST?
            cache_req->reqData = new uint8_t[size];
            doCacheAccess(inst, write_res);
        } else {            
            doCacheAccess(inst, write_res, cache_req);            
        }        
        
    }
    
    return inst->fault;
}


void
CacheUnit::execute(int slot_num)
{
    CacheReqPtr cache_req = dynamic_cast<CacheReqPtr>(reqMap[slot_num]);
    assert(cache_req);

    if (cachePortBlocked) {
        DPRINTF(InOrderCachePort, "Cache Port Blocked. Cannot Access\n");
        cache_req->setCompleted(false);
        return;
    }


    DynInstPtr inst = cache_req->inst;
#if TRACING_ON
    ThreadID tid = inst->readTid();
    std::string acc_type = "write";
#endif

    inst->fault = NoFault;

    switch (cache_req->cmd)
    {

      case InitiateReadData:
#if TRACING_ON
        acc_type = "read";
#endif        
      case InitiateWriteData:
            
        DPRINTF(InOrderCachePort,
                "[tid:%u]: [sn:%i] Initiating data %s access to %s for "
                "addr. %08p\n", tid, inst->seqNum, acc_type, name(),
                cache_req->inst->getMemAddr());

        inst->setCurResSlot(slot_num);

        if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
            inst->execute();
        } else {
            inst->initiateAcc();
        }
        
        break;

      case InitSecondSplitRead:
        DPRINTF(InOrderCachePort,
                "[tid:%u]: [sn:%i] Initiating split data read access to %s "
                "for addr. %08p\n", tid, inst->seqNum, name(),
                cache_req->inst->split2ndAddr);
        inst->split2ndAccess = true;
        assert(inst->split2ndAddr != 0);
        read(inst, inst->split2ndAddr, &inst->split2ndData,
             inst->totalSize, inst->split2ndFlags);
        break;

      case InitSecondSplitWrite:
        DPRINTF(InOrderCachePort,
                "[tid:%u]: [sn:%i] Initiating split data write access to %s "
                "for addr. %08p\n", tid, inst->seqNum, name(),
                cache_req->inst->getMemAddr());

        inst->split2ndAccess = true;
        assert(inst->split2ndAddr != 0);
        write(inst, &inst->split2ndData, inst->totalSize,
              inst->split2ndAddr, inst->split2ndFlags, NULL);
        break;

      case CompleteReadData:
      case CompleteWriteData:
        DPRINTF(InOrderCachePort,
                "[tid:%i]: [sn:%i]: Trying to Complete Data Access\n",
                tid, inst->seqNum);

        if (cache_req->isMemAccComplete() ||
            inst->isDataPrefetch() ||
            inst->isInstPrefetch()) {
            removeAddrDependency(inst);
            cache_req->setMemStall(false);            
            cache_req->done();
        } else {
            DPRINTF(InOrderStall, "STALL: [tid:%i]: Data miss from %08p\n",
                    tid, cache_req->inst->getMemAddr());
            cache_req->setCompleted(false);
            cache_req->setMemStall(true);            
        }
        break;

      case CompleteSecondSplitRead:
        DPRINTF(InOrderCachePort,
                "[tid:%i]: [sn:%i]: Trying to Complete Split Data Read "
                "Access\n", tid, inst->seqNum);

        if (cache_req->isMemAccComplete() ||
            inst->isDataPrefetch() ||
            inst->isInstPrefetch()) {
            removeAddrDependency(inst);
            cache_req->setMemStall(false);            
            cache_req->done();
        } else {
            DPRINTF(InOrderStall, "STALL: [tid:%i]: Data miss from %08p\n",
                    tid, cache_req->inst->split2ndAddr);
            cache_req->setCompleted(false);
            cache_req->setMemStall(true);            
        }
        break;

      case CompleteSecondSplitWrite:
        DPRINTF(InOrderCachePort,
                "[tid:%i]: [sn:%i]: Trying to Complete Split Data Write "
                "Access\n", tid, inst->seqNum);

        if (cache_req->isMemAccComplete() ||
            inst->isDataPrefetch() ||
            inst->isInstPrefetch()) {
            removeAddrDependency(inst);
            cache_req->setMemStall(false);            
            cache_req->done();
        } else {
            DPRINTF(InOrderStall, "STALL: [tid:%i]: Data miss from %08p\n",
                    tid, cache_req->inst->split2ndAddr);
            cache_req->setCompleted(false);
            cache_req->setMemStall(true);            
        }
        break;
        
      default:
        fatal("Unrecognized command to %s", resName);
    }
}

// @TODO: Split into doCacheRead() and doCacheWrite()
void
CacheUnit::doCacheAccess(DynInstPtr inst, uint64_t *write_res,
                         CacheReqPtr split_req)
{
    Fault fault = NoFault;
#if TRACING_ON
    ThreadID tid = inst->readTid();
#endif

    CacheReqPtr cache_req;
    
    if (split_req == NULL) {        
        cache_req = dynamic_cast<CacheReqPtr>(reqMap[inst->getCurResSlot()]);
    } else{
        cache_req = split_req;
    }        

    assert(cache_req);

    // Check for LL/SC and if so change command
    if (cache_req->memReq->isLLSC() && cache_req->pktCmd == MemCmd::ReadReq) {
        cache_req->pktCmd = MemCmd::LoadLockedReq;
    }

    if (cache_req->pktCmd == MemCmd::WriteReq) {
        cache_req->pktCmd =
            cache_req->memReq->isSwap() ? MemCmd::SwapReq :
            (cache_req->memReq->isLLSC() ? MemCmd::StoreCondReq 
             : MemCmd::WriteReq);
    }

    cache_req->dataPkt = new CacheReqPacket(cache_req,
                                            cache_req->pktCmd,
                                            Packet::Broadcast,
                                            cache_req->instIdx);

    if (cache_req->dataPkt->isRead()) {
        cache_req->dataPkt->dataStatic(cache_req->reqData);
    } else if (cache_req->dataPkt->isWrite()) {        
        if (inst->split2ndAccess) {            
            cache_req->dataPkt->dataStatic(inst->split2ndStoreDataPtr);
        } else {
            cache_req->dataPkt->dataStatic(&cache_req->inst->storeData);            
        }
        
        if (cache_req->memReq->isCondSwap()) {
            assert(write_res);
            cache_req->memReq->setExtraData(*write_res);
        }
    }

    bool do_access = true;  // flag to suppress cache access

    Request *memReq = cache_req->dataPkt->req;

    if (cache_req->dataPkt->isWrite() && cache_req->memReq->isLLSC()) {
        assert(cache_req->inst->isStoreConditional());
        DPRINTF(InOrderCachePort, "Evaluating Store Conditional access\n");
        do_access = TheISA::handleLockedWrite(cpu, memReq);
    }

    DPRINTF(InOrderCachePort,
            "[tid:%i] [sn:%i] attempting to access cache for addr %08p\n",
            tid, inst->seqNum, cache_req->dataPkt->getAddr());

    if (do_access) {
        if (!cachePort->sendTiming(cache_req->dataPkt)) {
            DPRINTF(InOrderCachePort,
                    "[tid:%i] [sn:%i] cannot access cache, because port "
                    "is blocked. now waiting to retry request\n", tid, 
                    inst->seqNum);
            cache_req->setCompleted(false);
            cachePortBlocked = true;
        } else {
            DPRINTF(InOrderCachePort,
                    "[tid:%i] [sn:%i] is now waiting for cache response\n",
                    tid, inst->seqNum);
            cache_req->setCompleted();
            cache_req->setMemAccPending();
            cachePortBlocked = false;
        }
    } else if (!do_access && memReq->isLLSC()){
        // Store-Conditional instructions complete even if they "failed"
        assert(cache_req->inst->isStoreConditional());
        cache_req->setCompleted(true);

        DPRINTF(LLSC,
                "[tid:%i]: T%i Ignoring Failed Store Conditional Access\n",
                tid, tid);

        processCacheCompletion(cache_req->dataPkt);
    } else {
        // Make cache request again since access due to
        // inability to access
        DPRINTF(InOrderStall, "STALL: \n");
        cache_req->setCompleted(false);
    }

}

void
CacheUnit::processCacheCompletion(PacketPtr pkt)
{
    // Cast to correct packet type
    CacheReqPacket* cache_pkt = dynamic_cast<CacheReqPacket*>(pkt);
             
    assert(cache_pkt);

    if (cache_pkt->cacheReq->isSquashed()) {
        DPRINTF(InOrderCachePort,
                "Ignoring completion of squashed access, [tid:%i] [sn:%i]\n",
                cache_pkt->cacheReq->getInst()->readTid(),
                cache_pkt->cacheReq->getInst()->seqNum);
        DPRINTF(RefCount,
                "Ignoring completion of squashed access, [tid:%i] [sn:%i]\n",
                cache_pkt->cacheReq->getTid(),
                cache_pkt->cacheReq->seqNum);

        cache_pkt->cacheReq->done();
        delete cache_pkt;

        cpu->wakeCPU();

        return;
    }

    DPRINTF(InOrderCachePort,
            "[tid:%u]: [sn:%i]: Waking from cache access to addr. %08p\n",
            cache_pkt->cacheReq->getInst()->readTid(),
            cache_pkt->cacheReq->getInst()->seqNum,
            cache_pkt->cacheReq->getInst()->getMemAddr());

    // Cast to correct request type
    CacheRequest *cache_req = dynamic_cast<CacheReqPtr>(
        findRequest(cache_pkt->cacheReq->getInst(), cache_pkt->instIdx));

    if (!cache_req) {
        panic("[tid:%u]: [sn:%i]: Can't find slot for cache access to "
              "addr. %08p\n", cache_pkt->cacheReq->getInst()->readTid(),
              cache_pkt->cacheReq->getInst()->seqNum,
              cache_pkt->cacheReq->getInst()->getMemAddr());
    }
    
    assert(cache_req);


    // Get resource request info
    unsigned stage_num = cache_req->getStageNum();
    DynInstPtr inst = cache_req->inst;
    ThreadID tid = cache_req->inst->readTid();

    if (!cache_req->isSquashed()) {
        if (inst->staticInst && inst->isMemRef()) {
            DPRINTF(InOrderCachePort,
                    "[tid:%u]: [sn:%i]: Processing cache access\n",
                    tid, inst->seqNum);
            PacketPtr dataPkt = NULL;
            
            if (inst->splitInst) {
                inst->splitFinishCnt++;
                
                if (inst->splitFinishCnt == 2) {
                    cache_req->memReq->setVirt(0/*inst->tid*/, 
                                               inst->getMemAddr(),
                                               inst->totalSize,
                                               0,
                                               0);
                    
                    Packet split_pkt(cache_req->memReq, cache_req->pktCmd,
                                     Packet::Broadcast);                    


                    if (inst->isLoad()) {                        
                        split_pkt.dataStatic(inst->splitMemData);
                    } else  {                            
                        split_pkt.dataStatic(&inst->storeData);                        
                    }
                    
                    dataPkt = &split_pkt;
                }                
            } else {
                dataPkt = pkt;
            }
            inst->completeAcc(dataPkt);
            
            if (inst->isLoad()) {
                assert(cache_pkt->isRead());

                if (cache_pkt->req->isLLSC()) {
                    DPRINTF(InOrderCachePort,
                            "[tid:%u]: Handling Load-Linked for [sn:%u]\n",
                            tid, inst->seqNum);
                    TheISA::handleLockedRead(cpu, cache_pkt->req);
                }

                DPRINTF(InOrderCachePort,
                        "[tid:%u]: [sn:%i]: Bytes loaded were: %s\n",
                        tid, inst->seqNum,
                        printMemData(dataPkt->getPtr<uint8_t>(),
                            dataPkt->getSize()));
            } else if(inst->isStore()) {
                assert(cache_pkt->isWrite());

                DPRINTF(InOrderCachePort,
                        "[tid:%u]: [sn:%i]: Bytes stored were: %s\n",
                        tid, inst->seqNum,
                        printMemData(dataPkt->getPtr<uint8_t>(),
                            dataPkt->getSize()));
            }

            delete cache_pkt;
        }

        cache_req->setMemAccPending(false);
        cache_req->setMemAccCompleted();

        if (cache_req->isMemStall() && 
            cpu->threadModel == InOrderCPU::SwitchOnCacheMiss) {    
            DPRINTF(InOrderCachePort, "[tid:%u] Waking up from Cache Miss.\n",
                    tid);
            
            cpu->activateContext(tid);            
            
            DPRINTF(ThreadModel, "Activating [tid:%i] after return from cache"
                    "miss.\n", tid);            
        }
        
        // Wake up the CPU (if it went to sleep and was waiting on this
        // completion event).
        cpu->wakeCPU();

        DPRINTF(Activity, "[tid:%u] Activating %s due to cache completion\n",
            tid, cpu->pipelineStage[stage_num]->name());

        cpu->switchToActive(stage_num);
    } else {
        DPRINTF(InOrderCachePort,
                "[tid:%u] Miss on block @ %08p completed, but squashed\n",
                tid, cache_req->inst->instAddr());
        cache_req->setMemAccCompleted();
    }
}

void
CacheUnit::recvRetry()
{
    DPRINTF(InOrderCachePort, "Unblocking Cache Port. \n");
    
    assert(cachePortBlocked);

    // Clear the cache port for use again
    cachePortBlocked = false;

    cpu->wakeCPU();
}

CacheUnitEvent::CacheUnitEvent()
    : ResourceEvent()
{ }

void
CacheUnitEvent::process()
{
    DynInstPtr inst = resource->reqMap[slotIdx]->inst;
    int stage_num = resource->reqMap[slotIdx]->getStageNum();
    ThreadID tid = inst->threadNumber;
    CacheReqPtr req_ptr = dynamic_cast<CacheReqPtr>(resource->reqMap[slotIdx]);

    DPRINTF(InOrderTLB, "Waking up from TLB Miss caused by [sn:%i].\n",
            inst->seqNum);

    CacheUnit* tlb_res = dynamic_cast<CacheUnit*>(resource);
    assert(tlb_res);

    tlb_res->tlbBlocked[tid] = false;

    tlb_res->cpu->pipelineStage[stage_num]->
        unsetResStall(tlb_res->reqMap[slotIdx], tid);

    req_ptr->tlbStall = false;

    if (req_ptr->isSquashed()) {
        req_ptr->done();
    }
}

void
CacheUnit::squashDueToMemStall(DynInstPtr inst, int stage_num,
                               InstSeqNum squash_seq_num, ThreadID tid)
{
    // If squashing due to memory stall, then we do NOT want to 
    // squash the instruction that caused the stall so we
    // increment the sequence number here to prevent that.
    //
    // NOTE: This is only for the SwitchOnCacheMiss Model
    // NOTE: If you have multiple outstanding misses from the same
    //       thread then you need to reevaluate this code
    // NOTE: squash should originate from 
    //       pipeline_stage.cc:processInstSchedule
    DPRINTF(InOrderCachePort, "Squashing above [sn:%u]\n", 
            squash_seq_num + 1);
    
    squash(inst, stage_num, squash_seq_num + 1, tid);    
}

void
CacheUnit::squashCacheRequest(CacheReqPtr req_ptr)
{
    DynInstPtr inst =  req_ptr->getInst();

    req_ptr->setSquashed();
    inst->setSquashed();
    if (inst->validMemAddr()) {
        DPRINTF(AddrDep, "Squash of [tid:%i] [sn:%i], attempting to "
                "remove addr. %08p dependencies.\n",
                inst->readTid(),
                inst->seqNum,
                inst->getMemAddr());

        removeAddrDependency(inst);
    }
}


void
CacheUnit::squash(DynInstPtr inst, int stage_num,
                  InstSeqNum squash_seq_num, ThreadID tid)
{
    vector<int> slot_remove_list;

    map<int, ResReqPtr>::iterator map_it = reqMap.begin();
    map<int, ResReqPtr>::iterator map_end = reqMap.end();

    while (map_it != map_end) {
        ResReqPtr req_ptr = (*map_it).second;

        if (req_ptr &&
            req_ptr->getInst()->readTid() == tid &&
            req_ptr->getInst()->seqNum > squash_seq_num) {

            DPRINTF(InOrderCachePort,
                    "[tid:%i] Squashing request from [sn:%i]\n",
                    req_ptr->getInst()->readTid(), req_ptr->getInst()->seqNum);

            if (req_ptr->isSquashed()) {
                DPRINTF(AddrDep, "Request for [tid:%i] [sn:%i] already "
                        "squashed, ignoring squash process.\n",
                        req_ptr->getInst()->readTid(),
                        req_ptr->getInst()->seqNum);
                map_it++;                
                continue;                
            }

            CacheReqPtr cache_req = dynamic_cast<CacheReqPtr>(req_ptr);
            assert(cache_req);

            squashCacheRequest(cache_req);

            int req_slot_num = req_ptr->getSlot();

            if (cache_req->tlbStall) {
                tlbBlocked[tid] = false;

                int stall_stage = reqMap[req_slot_num]->getStageNum();

                cpu->pipelineStage[stall_stage]->
                    unsetResStall(reqMap[req_slot_num], tid);
            }

            if (!cache_req->tlbStall && !cache_req->isMemAccPending()) {
                // Mark request for later removal
                cpu->reqRemoveList.push(req_ptr);

                // Mark slot for removal from resource
                slot_remove_list.push_back(req_ptr->getSlot());
            } else {
                DPRINTF(InOrderCachePort,
                        "[tid:%i] Request from [sn:%i] squashed, but still "
                        "pending completion.\n",
                        req_ptr->getInst()->readTid(), req_ptr->getInst()->seqNum);
                DPRINTF(RefCount,
                        "[tid:%i] Request from [sn:%i] squashed (split:%i), but "
                        "still pending completion.\n",
                        req_ptr->getInst()->readTid(), req_ptr->getInst()->seqNum,
                        req_ptr->getInst()->splitInst);
            }

        }

        map_it++;
    }

    // Now Delete Slot Entry from Req. Map
    for (int i = 0; i < slot_remove_list.size(); i++)
        freeSlot(slot_remove_list[i]);
}