1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
|
/*
* Copyright (c) 2013 Andreas Sandberg
* All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andreas Sandberg
*/
#include <linux/kvm.h>
#include <algorithm>
#include <cerrno>
#include <memory>
#include "arch/x86/regs/msr.hh"
#include "arch/x86/cpuid.hh"
#include "arch/x86/utility.hh"
#include "arch/registers.hh"
#include "cpu/kvm/base.hh"
#include "cpu/kvm/x86_cpu.hh"
#include "debug/Drain.hh"
#include "debug/Kvm.hh"
#include "debug/KvmContext.hh"
#include "debug/KvmIO.hh"
#include "debug/KvmInt.hh"
using namespace X86ISA;
#define MSR_TSC 0x10
#define IO_PCI_CONF_ADDR 0xCF8
#define IO_PCI_CONF_DATA_BASE 0xCFC
// Task segment type of an inactive 32-bit or 64-bit task
#define SEG_SYS_TYPE_TSS_AVAILABLE 9
// Task segment type of an active 32-bit or 64-bit task
#define SEG_SYS_TYPE_TSS_BUSY 11
// Non-conforming accessed code segment
#define SEG_CS_TYPE_ACCESSED 9
// Non-conforming accessed code segment that can be read
#define SEG_CS_TYPE_READ_ACCESSED 11
// The lowest bit of the type field for normal segments (code and
// data) is used to indicate that a segment has been accessed.
#define SEG_TYPE_BIT_ACCESSED 1
struct FXSave
{
uint16_t fcw;
uint16_t fsw;
uint8_t ftwx;
uint8_t pad0;
uint16_t last_opcode;
union {
struct {
uint32_t fpu_ip;
uint16_t fpu_cs;
uint16_t pad1;
uint32_t fpu_dp;
uint16_t fpu_ds;
uint16_t pad2;
} ctrl32;
struct {
uint64_t fpu_ip;
uint64_t fpu_dp;
} ctrl64;
};
uint32_t mxcsr;
uint32_t mxcsr_mask;
uint8_t fpr[8][16];
uint8_t xmm[16][16];
uint64_t reserved[12];
} M5_ATTR_PACKED;
static_assert(sizeof(FXSave) == 512, "Unexpected size of FXSave");
#define FOREACH_IREG() \
do { \
APPLY_IREG(rax, INTREG_RAX); \
APPLY_IREG(rbx, INTREG_RBX); \
APPLY_IREG(rcx, INTREG_RCX); \
APPLY_IREG(rdx, INTREG_RDX); \
APPLY_IREG(rsi, INTREG_RSI); \
APPLY_IREG(rdi, INTREG_RDI); \
APPLY_IREG(rsp, INTREG_RSP); \
APPLY_IREG(rbp, INTREG_RBP); \
APPLY_IREG(r8, INTREG_R8); \
APPLY_IREG(r9, INTREG_R9); \
APPLY_IREG(r10, INTREG_R10); \
APPLY_IREG(r11, INTREG_R11); \
APPLY_IREG(r12, INTREG_R12); \
APPLY_IREG(r13, INTREG_R13); \
APPLY_IREG(r14, INTREG_R14); \
APPLY_IREG(r15, INTREG_R15); \
} while(0)
#define FOREACH_SREG() \
do { \
APPLY_SREG(cr0, MISCREG_CR0); \
APPLY_SREG(cr2, MISCREG_CR2); \
APPLY_SREG(cr3, MISCREG_CR3); \
APPLY_SREG(cr4, MISCREG_CR4); \
APPLY_SREG(cr8, MISCREG_CR8); \
APPLY_SREG(efer, MISCREG_EFER); \
APPLY_SREG(apic_base, MISCREG_APIC_BASE); \
} while(0)
#define FOREACH_DREG() \
do { \
APPLY_DREG(db[0], MISCREG_DR0); \
APPLY_DREG(db[1], MISCREG_DR1); \
APPLY_DREG(db[2], MISCREG_DR2); \
APPLY_DREG(db[3], MISCREG_DR3); \
APPLY_DREG(dr6, MISCREG_DR6); \
APPLY_DREG(dr7, MISCREG_DR7); \
} while(0)
#define FOREACH_SEGMENT() \
do { \
APPLY_SEGMENT(cs, MISCREG_CS - MISCREG_SEG_SEL_BASE); \
APPLY_SEGMENT(ds, MISCREG_DS - MISCREG_SEG_SEL_BASE); \
APPLY_SEGMENT(es, MISCREG_ES - MISCREG_SEG_SEL_BASE); \
APPLY_SEGMENT(fs, MISCREG_FS - MISCREG_SEG_SEL_BASE); \
APPLY_SEGMENT(gs, MISCREG_GS - MISCREG_SEG_SEL_BASE); \
APPLY_SEGMENT(ss, MISCREG_SS - MISCREG_SEG_SEL_BASE); \
APPLY_SEGMENT(tr, MISCREG_TR - MISCREG_SEG_SEL_BASE); \
APPLY_SEGMENT(ldt, MISCREG_TSL - MISCREG_SEG_SEL_BASE); \
} while(0)
#define FOREACH_DTABLE() \
do { \
APPLY_DTABLE(gdt, MISCREG_TSG - MISCREG_SEG_SEL_BASE); \
APPLY_DTABLE(idt, MISCREG_IDTR - MISCREG_SEG_SEL_BASE); \
} while(0)
template<typename STRUCT, typename ENTRY>
static STRUCT *newVarStruct(size_t entries)
{
return (STRUCT *)operator new(sizeof(STRUCT) + entries * sizeof(ENTRY));
}
static void
dumpKvm(const struct kvm_regs ®s)
{
inform("KVM register state:\n");
#define APPLY_IREG(kreg, mreg) \
inform("\t" # kreg ": 0x%llx\n", regs.kreg)
FOREACH_IREG();
#undef APPLY_IREG
inform("\trip: 0x%llx\n", regs.rip);
inform("\trflags: 0x%llx\n", regs.rflags);
}
static void
dumpKvm(const char *reg_name, const struct kvm_segment &seg)
{
inform("\t%s: @0x%llx+%x [sel: 0x%x, type: 0x%x]\n"
"\t\tpres.: %u, dpl: %u, db: %u, s: %u, l: %u, g: %u, avl: %u, unus.: %u\n",
reg_name,
seg.base, seg.limit, seg.selector, seg.type,
seg.present, seg.dpl, seg.db, seg.s, seg.l, seg.g, seg.avl, seg.unusable);
}
static void
dumpKvm(const char *reg_name, const struct kvm_dtable &dtable)
{
inform("\t%s: @0x%llx+%x\n",
reg_name, dtable.base, dtable.limit);
}
static void
dumpKvm(const struct kvm_sregs &sregs)
{
#define APPLY_SREG(kreg, mreg) \
inform("\t" # kreg ": 0x%llx\n", sregs.kreg);
#define APPLY_SEGMENT(kreg, idx) \
dumpKvm(# kreg, sregs.kreg);
#define APPLY_DTABLE(kreg, idx) \
dumpKvm(# kreg, sregs.kreg);
inform("Special registers:\n");
FOREACH_SEGMENT();
FOREACH_SREG();
FOREACH_DTABLE();
inform("Interrupt Bitmap:");
for (int i = 0; i < KVM_NR_INTERRUPTS; i += 64)
inform(" 0x%.8x", sregs.interrupt_bitmap[i / 64]);
#undef APPLY_SREG
#undef APPLY_SEGMENT
#undef APPLY_DTABLE
}
#ifdef KVM_GET_DEBUGREGS
static void
dumpKvm(const struct kvm_debugregs ®s)
{
inform("KVM debug state:\n");
#define APPLY_DREG(kreg, mreg) \
inform("\t" # kreg ": 0x%llx\n", regs.kreg)
FOREACH_DREG();
#undef APPLY_DREG
inform("\tflags: 0x%llx\n", regs.flags);
}
#endif
static void
dumpFpuSpec(const struct FXSave &xs)
{
inform("\tlast_ip: 0x%x\n", xs.ctrl64.fpu_ip);
inform("\tlast_dp: 0x%x\n", xs.ctrl64.fpu_dp);
inform("\tmxcsr_mask: 0x%x\n", xs.mxcsr_mask);
}
static void
dumpFpuSpec(const struct kvm_fpu &fpu)
{
inform("\tlast_ip: 0x%x\n", fpu.last_ip);
inform("\tlast_dp: 0x%x\n", fpu.last_dp);
}
template<typename T>
static void
dumpFpuCommon(const T &fpu)
{
const unsigned top((fpu.fsw >> 11) & 0x7);
inform("\tfcw: 0x%x\n", fpu.fcw);
inform("\tfsw: 0x%x (top: %i, "
"conditions: %s%s%s%s, exceptions: %s%s%s%s%s%s %s%s%s)\n",
fpu.fsw, top,
(fpu.fsw & CC0Bit) ? "C0" : "",
(fpu.fsw & CC1Bit) ? "C1" : "",
(fpu.fsw & CC2Bit) ? "C2" : "",
(fpu.fsw & CC3Bit) ? "C3" : "",
(fpu.fsw & IEBit) ? "I" : "",
(fpu.fsw & DEBit) ? "D" : "",
(fpu.fsw & ZEBit) ? "Z" : "",
(fpu.fsw & OEBit) ? "O" : "",
(fpu.fsw & UEBit) ? "U" : "",
(fpu.fsw & PEBit) ? "P" : "",
(fpu.fsw & StackFaultBit) ? "SF " : "",
(fpu.fsw & ErrSummaryBit) ? "ES " : "",
(fpu.fsw & BusyBit) ? "BUSY " : ""
);
inform("\tftwx: 0x%x\n", fpu.ftwx);
inform("\tlast_opcode: 0x%x\n", fpu.last_opcode);
dumpFpuSpec(fpu);
inform("\tmxcsr: 0x%x\n", fpu.mxcsr);
inform("\tFP Stack:\n");
for (int i = 0; i < 8; ++i) {
const unsigned reg_idx((i + top) & 0x7);
const bool empty(!((fpu.ftwx >> reg_idx) & 0x1));
const double value(X86ISA::loadFloat80(fpu.fpr[i]));
char hex[33];
for (int j = 0; j < 10; ++j)
snprintf(&hex[j*2], 3, "%.2x", fpu.fpr[i][j]);
inform("\t\tST%i/%i: 0x%s (%f)%s\n", i, reg_idx,
hex, value, empty ? " (e)" : "");
}
inform("\tXMM registers:\n");
for (int i = 0; i < 16; ++i) {
char hex[33];
for (int j = 0; j < 16; ++j)
snprintf(&hex[j*2], 3, "%.2x", fpu.xmm[i][j]);
inform("\t\t%i: 0x%s\n", i, hex);
}
}
static void
dumpKvm(const struct kvm_fpu &fpu)
{
inform("FPU registers:\n");
dumpFpuCommon(fpu);
}
static void
dumpKvm(const struct kvm_xsave &xsave)
{
inform("FPU registers (XSave):\n");
dumpFpuCommon(*(FXSave *)xsave.region);
}
static void
dumpKvm(const struct kvm_msrs &msrs)
{
inform("MSRs:\n");
for (int i = 0; i < msrs.nmsrs; ++i) {
const struct kvm_msr_entry &e(msrs.entries[i]);
inform("\t0x%x: 0x%x\n", e.index, e.data);
}
}
static void
dumpKvm(const struct kvm_xcrs ®s)
{
inform("KVM XCR registers:\n");
inform("\tFlags: 0x%x\n", regs.flags);
for (int i = 0; i < regs.nr_xcrs; ++i) {
inform("\tXCR[0x%x]: 0x%x\n",
regs.xcrs[i].xcr,
regs.xcrs[i].value);
}
}
static void
dumpKvm(const struct kvm_vcpu_events &events)
{
inform("vCPU events:\n");
inform("\tException: [inj: %i, nr: %i, has_ec: %i, ec: %i]\n",
events.exception.injected, events.exception.nr,
events.exception.has_error_code, events.exception.error_code);
inform("\tInterrupt: [inj: %i, nr: %i, soft: %i]\n",
events.interrupt.injected, events.interrupt.nr,
events.interrupt.soft);
inform("\tNMI: [inj: %i, pending: %i, masked: %i]\n",
events.nmi.injected, events.nmi.pending,
events.nmi.masked);
inform("\tSIPI vector: 0x%x\n", events.sipi_vector);
inform("\tFlags: 0x%x\n", events.flags);
}
static bool
isCanonicalAddress(uint64_t addr)
{
// x86-64 doesn't currently use the full 64-bit virtual address
// space, instead it uses signed 48 bit addresses that are
// sign-extended to 64 bits. Such addresses are known as
// "canonical".
uint64_t upper_half(addr & 0xffff800000000000ULL);
return upper_half == 0 || upper_half == 0xffff800000000000;
}
static void
checkSeg(const char *name, const int idx, const struct kvm_segment &seg,
struct kvm_sregs sregs)
{
// Check the register base
switch (idx) {
case MISCREG_TSL:
case MISCREG_TR:
case MISCREG_FS:
case MISCREG_GS:
if (!isCanonicalAddress(seg.base))
warn("Illegal %s base: 0x%x\n", name, seg.base);
break;
case MISCREG_SS:
case MISCREG_DS:
case MISCREG_ES:
if (seg.unusable)
break;
case MISCREG_CS:
if (seg.base & 0xffffffff00000000ULL)
warn("Illegal %s base: 0x%x\n", name, seg.base);
break;
}
// Check the type
switch (idx) {
case MISCREG_CS:
switch (seg.type) {
case 3:
if (seg.dpl != 0)
warn("CS type is 3 but dpl != 0.\n");
break;
case 9:
case 11:
if (seg.dpl != sregs.ss.dpl)
warn("CS type is %i but CS DPL != SS DPL\n", seg.type);
break;
case 13:
case 15:
if (seg.dpl > sregs.ss.dpl)
warn("CS type is %i but CS DPL > SS DPL\n", seg.type);
break;
default:
warn("Illegal CS type: %i\n", seg.type);
break;
}
break;
case MISCREG_SS:
if (seg.unusable)
break;
switch (seg.type) {
case 3:
if (sregs.cs.type == 3 && seg.dpl != 0)
warn("CS type is 3, but SS DPL is != 0.\n");
/* FALLTHROUGH */
case 7:
if (!(sregs.cr0 & 1) && seg.dpl != 0)
warn("SS DPL is %i, but CR0 PE is 0\n", seg.dpl);
break;
default:
warn("Illegal SS type: %i\n", seg.type);
break;
}
break;
case MISCREG_DS:
case MISCREG_ES:
case MISCREG_FS:
case MISCREG_GS:
if (seg.unusable)
break;
if (!(seg.type & 0x1) ||
((seg.type & 0x8) && !(seg.type & 0x2)))
warn("%s has an illegal type field: %i\n", name, seg.type);
break;
case MISCREG_TR:
// TODO: We should check the CPU mode
if (seg.type != 3 && seg.type != 11)
warn("%s: Illegal segment type (%i)\n", name, seg.type);
break;
case MISCREG_TSL:
if (seg.unusable)
break;
if (seg.type != 2)
warn("%s: Illegal segment type (%i)\n", name, seg.type);
break;
}
switch (idx) {
case MISCREG_SS:
case MISCREG_DS:
case MISCREG_ES:
case MISCREG_FS:
case MISCREG_GS:
if (seg.unusable)
break;
case MISCREG_CS:
if (!seg.s)
warn("%s: S flag not set\n", name);
break;
case MISCREG_TSL:
if (seg.unusable)
break;
case MISCREG_TR:
if (seg.s)
warn("%s: S flag is set\n", name);
break;
}
switch (idx) {
case MISCREG_SS:
case MISCREG_DS:
case MISCREG_ES:
case MISCREG_FS:
case MISCREG_GS:
case MISCREG_TSL:
if (seg.unusable)
break;
case MISCREG_TR:
case MISCREG_CS:
if (!seg.present)
warn("%s: P flag not set\n", name);
if (((seg.limit & 0xFFF) == 0 && seg.g) ||
((seg.limit & 0xFFF00000) != 0 && !seg.g)) {
warn("%s limit (0x%x) and g (%i) combination is illegal.\n",
name, seg.limit, seg.g);
}
break;
}
// TODO: Check CS DB
}
X86KvmCPU::X86KvmCPU(X86KvmCPUParams *params)
: BaseKvmCPU(params),
useXSave(params->useXSave)
{
Kvm &kvm(vm.kvm);
if (!kvm.capSetTSSAddress())
panic("KVM: Missing capability (KVM_CAP_SET_TSS_ADDR)\n");
if (!kvm.capExtendedCPUID())
panic("KVM: Missing capability (KVM_CAP_EXT_CPUID)\n");
if (!kvm.capUserNMI())
warn("KVM: Missing capability (KVM_CAP_USER_NMI)\n");
if (!kvm.capVCPUEvents())
warn("KVM: Missing capability (KVM_CAP_VCPU_EVENTS)\n");
haveDebugRegs = kvm.capDebugRegs();
haveXSave = kvm.capXSave();
haveXCRs = kvm.capXCRs();
if (useXSave && !haveXSave) {
warn("KVM: XSAVE not supported by host. MXCSR synchronization might be "
"unreliable due to kernel bugs.\n");
useXSave = false;
} else if (!useXSave) {
warn("KVM: XSave FPU/SIMD synchronization disabled by user.\n");
}
}
X86KvmCPU::~X86KvmCPU()
{
}
void
X86KvmCPU::startup()
{
BaseKvmCPU::startup();
updateCPUID();
// TODO: Do we need to create an identity mapped TSS area? We
// should call kvm.vm.setTSSAddress() here in that case. It should
// only be needed for old versions of the virtualization
// extensions. We should make sure that the identity range is
// reserved in the e820 memory map in that case.
}
void
X86KvmCPU::dump()
{
dumpIntRegs();
if (useXSave)
dumpXSave();
else
dumpFpuRegs();
dumpSpecRegs();
dumpDebugRegs();
dumpXCRs();
dumpVCpuEvents();
dumpMSRs();
}
void
X86KvmCPU::dumpFpuRegs() const
{
struct kvm_fpu fpu;
getFPUState(fpu);
dumpKvm(fpu);
}
void
X86KvmCPU::dumpIntRegs() const
{
struct kvm_regs regs;
getRegisters(regs);
dumpKvm(regs);
}
void
X86KvmCPU::dumpSpecRegs() const
{
struct kvm_sregs sregs;
getSpecialRegisters(sregs);
dumpKvm(sregs);
}
void
X86KvmCPU::dumpDebugRegs() const
{
if (haveDebugRegs) {
#ifdef KVM_GET_DEBUGREGS
struct kvm_debugregs dregs;
getDebugRegisters(dregs);
dumpKvm(dregs);
#endif
} else {
inform("Debug registers not supported by kernel.\n");
}
}
void
X86KvmCPU::dumpXCRs() const
{
if (haveXCRs) {
struct kvm_xcrs xcrs;
getXCRs(xcrs);
dumpKvm(xcrs);
} else {
inform("XCRs not supported by kernel.\n");
}
}
void
X86KvmCPU::dumpXSave() const
{
if (haveXSave) {
struct kvm_xsave xsave;
getXSave(xsave);
dumpKvm(xsave);
} else {
inform("XSave not supported by kernel.\n");
}
}
void
X86KvmCPU::dumpVCpuEvents() const
{
struct kvm_vcpu_events events;
getVCpuEvents(events);
dumpKvm(events);
}
void
X86KvmCPU::dumpMSRs() const
{
const Kvm::MSRIndexVector &supported_msrs(vm.kvm.getSupportedMSRs());
std::unique_ptr<struct kvm_msrs> msrs(
newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(
supported_msrs.size()));
msrs->nmsrs = supported_msrs.size();
for (int i = 0; i < supported_msrs.size(); ++i) {
struct kvm_msr_entry &e(msrs->entries[i]);
e.index = supported_msrs[i];
e.reserved = 0;
e.data = 0;
}
getMSRs(*msrs.get());
dumpKvm(*msrs.get());
}
void
X86KvmCPU::updateKvmState()
{
updateKvmStateRegs();
updateKvmStateSRegs();
updateKvmStateFPU();
updateKvmStateMSRs();
DPRINTF(KvmContext, "X86KvmCPU::updateKvmState():\n");
if (DTRACE(KvmContext))
dump();
}
void
X86KvmCPU::updateKvmStateRegs()
{
struct kvm_regs regs;
#define APPLY_IREG(kreg, mreg) regs.kreg = tc->readIntReg(mreg)
FOREACH_IREG();
#undef APPLY_IREG
regs.rip = tc->instAddr() - tc->readMiscReg(MISCREG_CS_BASE);
/* You might think that setting regs.rflags to the contents
* MISCREG_RFLAGS here would suffice. In that case you're
* mistaken. We need to reconstruct it from a bunch of ucode
* registers and wave a dead chicken over it (aka mask out and set
* reserved bits) to get it to work.
*/
regs.rflags = X86ISA::getRFlags(tc);
setRegisters(regs);
}
static inline void
setKvmSegmentReg(ThreadContext *tc, struct kvm_segment &kvm_seg,
const int index)
{
SegAttr attr(tc->readMiscRegNoEffect(MISCREG_SEG_ATTR(index)));
kvm_seg.base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(index));
kvm_seg.limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(index));
kvm_seg.selector = tc->readMiscRegNoEffect(MISCREG_SEG_SEL(index));
kvm_seg.type = attr.type;
kvm_seg.present = attr.present;
kvm_seg.dpl = attr.dpl;
kvm_seg.db = attr.defaultSize;
kvm_seg.s = attr.system;
kvm_seg.l = attr.longMode;
kvm_seg.g = attr.granularity;
kvm_seg.avl = attr.avl;
// A segment is normally unusable when the selector is zero. There
// is a attr.unusable flag in gem5, but it seems unused. qemu
// seems to set this to 0 all the time, so we just do the same and
// hope for the best.
kvm_seg.unusable = 0;
}
static inline void
setKvmDTableReg(ThreadContext *tc, struct kvm_dtable &kvm_dtable,
const int index)
{
kvm_dtable.base = tc->readMiscRegNoEffect(MISCREG_SEG_BASE(index));
kvm_dtable.limit = tc->readMiscRegNoEffect(MISCREG_SEG_LIMIT(index));
}
static void
forceSegAccessed(struct kvm_segment &seg)
{
// Intel's VMX requires that (some) usable segments are flagged as
// 'accessed' (i.e., the lowest bit in the segment type is set)
// when entering VMX. This wouldn't necessary be the case even if
// gem5 did set the access bits correctly, so we force it to one
// in that case.
if (!seg.unusable)
seg.type |= SEG_TYPE_BIT_ACCESSED;
}
void
X86KvmCPU::updateKvmStateSRegs()
{
struct kvm_sregs sregs;
#define APPLY_SREG(kreg, mreg) sregs.kreg = tc->readMiscRegNoEffect(mreg)
#define APPLY_SEGMENT(kreg, idx) setKvmSegmentReg(tc, sregs.kreg, idx)
#define APPLY_DTABLE(kreg, idx) setKvmDTableReg(tc, sregs.kreg, idx)
FOREACH_SREG();
FOREACH_SEGMENT();
FOREACH_DTABLE();
#undef APPLY_SREG
#undef APPLY_SEGMENT
#undef APPLY_DTABLE
// Clear the interrupt bitmap
memset(&sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
// VMX requires CS, SS, DS, ES, FS, and GS to have the accessed
// bit in the type field set.
forceSegAccessed(sregs.cs);
forceSegAccessed(sregs.ss);
forceSegAccessed(sregs.ds);
forceSegAccessed(sregs.es);
forceSegAccessed(sregs.fs);
forceSegAccessed(sregs.gs);
// There are currently some cases where the active task isn't
// marked as busy. This is illegal in VMX, so we force it to busy.
if (sregs.tr.type == SEG_SYS_TYPE_TSS_AVAILABLE) {
hack("tr.type (%i) is not busy. Forcing the busy bit.\n",
sregs.tr.type);
sregs.tr.type = SEG_SYS_TYPE_TSS_BUSY;
}
// VMX requires the DPL of SS and CS to be the same for
// non-conforming code segments. It seems like m5 doesn't set the
// DPL of SS correctly when taking interrupts, so we need to fix
// that here.
if ((sregs.cs.type == SEG_CS_TYPE_ACCESSED ||
sregs.cs.type == SEG_CS_TYPE_READ_ACCESSED) &&
sregs.cs.dpl != sregs.ss.dpl) {
hack("CS.DPL (%i) != SS.DPL (%i): Forcing SS.DPL to %i\n",
sregs.cs.dpl, sregs.ss.dpl, sregs.cs.dpl);
sregs.ss.dpl = sregs.cs.dpl;
}
// Do checks after fixing up the state to avoid getting excessive
// amounts of warnings.
RFLAGS rflags_nocc(tc->readMiscReg(MISCREG_RFLAGS));
if (!rflags_nocc.vm) {
// Do segment verification if the CPU isn't entering virtual
// 8086 mode. We currently assume that unrestricted guest
// mode is available.
#define APPLY_SEGMENT(kreg, idx) \
checkSeg(# kreg, idx + MISCREG_SEG_SEL_BASE, sregs.kreg, sregs)
FOREACH_SEGMENT();
#undef APPLY_SEGMENT
}
setSpecialRegisters(sregs);
}
template <typename T>
static void
updateKvmStateFPUCommon(ThreadContext *tc, T &fpu)
{
static_assert(sizeof(X86ISA::FloatRegBits) == 8,
"Unexpected size of X86ISA::FloatRegBits");
fpu.mxcsr = tc->readMiscRegNoEffect(MISCREG_MXCSR);
fpu.fcw = tc->readMiscRegNoEffect(MISCREG_FCW);
// No need to rebuild from MISCREG_FSW and MISCREG_TOP if we read
// with effects.
fpu.fsw = tc->readMiscReg(MISCREG_FSW);
uint64_t ftw(tc->readMiscRegNoEffect(MISCREG_FTW));
fpu.ftwx = X86ISA::convX87TagsToXTags(ftw);
fpu.last_opcode = tc->readMiscRegNoEffect(MISCREG_FOP);
const unsigned top((fpu.fsw >> 11) & 0x7);
for (int i = 0; i < 8; ++i) {
const unsigned reg_idx((i + top) & 0x7);
const double value(tc->readFloatReg(FLOATREG_FPR(reg_idx)));
DPRINTF(KvmContext, "Setting KVM FP reg %i (st[%i]) := %f\n",
reg_idx, i, value);
X86ISA::storeFloat80(fpu.fpr[i], value);
}
// TODO: We should update the MMX state
for (int i = 0; i < 16; ++i) {
*(X86ISA::FloatRegBits *)&fpu.xmm[i][0] =
tc->readFloatRegBits(FLOATREG_XMM_LOW(i));
*(X86ISA::FloatRegBits *)&fpu.xmm[i][8] =
tc->readFloatRegBits(FLOATREG_XMM_HIGH(i));
}
}
void
X86KvmCPU::updateKvmStateFPULegacy()
{
struct kvm_fpu fpu;
// There is some padding in the FP registers, so we'd better zero
// the whole struct.
memset(&fpu, 0, sizeof(fpu));
updateKvmStateFPUCommon(tc, fpu);
if (tc->readMiscRegNoEffect(MISCREG_FISEG))
warn_once("MISCREG_FISEG is non-zero.\n");
fpu.last_ip = tc->readMiscRegNoEffect(MISCREG_FIOFF);
if (tc->readMiscRegNoEffect(MISCREG_FOSEG))
warn_once("MISCREG_FOSEG is non-zero.\n");
fpu.last_dp = tc->readMiscRegNoEffect(MISCREG_FOOFF);
setFPUState(fpu);
}
void
X86KvmCPU::updateKvmStateFPUXSave()
{
struct kvm_xsave kxsave;
FXSave &xsave(*(FXSave *)kxsave.region);
// There is some padding and reserved fields in the structure, so
// we'd better zero the whole thing.
memset(&kxsave, 0, sizeof(kxsave));
updateKvmStateFPUCommon(tc, xsave);
if (tc->readMiscRegNoEffect(MISCREG_FISEG))
warn_once("MISCREG_FISEG is non-zero.\n");
xsave.ctrl64.fpu_ip = tc->readMiscRegNoEffect(MISCREG_FIOFF);
if (tc->readMiscRegNoEffect(MISCREG_FOSEG))
warn_once("MISCREG_FOSEG is non-zero.\n");
xsave.ctrl64.fpu_dp = tc->readMiscRegNoEffect(MISCREG_FOOFF);
setXSave(kxsave);
}
void
X86KvmCPU::updateKvmStateFPU()
{
if (useXSave)
updateKvmStateFPUXSave();
else
updateKvmStateFPULegacy();
}
void
X86KvmCPU::updateKvmStateMSRs()
{
KvmMSRVector msrs;
const Kvm::MSRIndexVector &indices(getMsrIntersection());
for (auto it = indices.cbegin(); it != indices.cend(); ++it) {
struct kvm_msr_entry e;
e.index = *it;
e.reserved = 0;
e.data = tc->readMiscReg(msrMap.at(*it));
DPRINTF(KvmContext, "Adding MSR: idx: 0x%x, data: 0x%x\n",
e.index, e.data);
msrs.push_back(e);
}
setMSRs(msrs);
}
void
X86KvmCPU::updateThreadContext()
{
struct kvm_regs regs;
struct kvm_sregs sregs;
getRegisters(regs);
getSpecialRegisters(sregs);
DPRINTF(KvmContext, "X86KvmCPU::updateThreadContext():\n");
if (DTRACE(KvmContext))
dump();
updateThreadContextRegs(regs, sregs);
updateThreadContextSRegs(sregs);
if (useXSave) {
struct kvm_xsave xsave;
getXSave(xsave);
updateThreadContextXSave(xsave);
} else {
struct kvm_fpu fpu;
getFPUState(fpu);
updateThreadContextFPU(fpu);
}
updateThreadContextMSRs();
// The M5 misc reg caches some values from other
// registers. Writing to it with side effects causes it to be
// updated from its source registers.
tc->setMiscReg(MISCREG_M5_REG, 0);
}
void
X86KvmCPU::updateThreadContextRegs(const struct kvm_regs ®s,
const struct kvm_sregs &sregs)
{
#define APPLY_IREG(kreg, mreg) tc->setIntReg(mreg, regs.kreg)
FOREACH_IREG();
#undef APPLY_IREG
tc->pcState(PCState(regs.rip + sregs.cs.base));
// Flags are spread out across multiple semi-magic registers so we
// need some special care when updating them.
X86ISA::setRFlags(tc, regs.rflags);
}
inline void
setContextSegment(ThreadContext *tc, const struct kvm_segment &kvm_seg,
const int index)
{
SegAttr attr(0);
attr.type = kvm_seg.type;
attr.present = kvm_seg.present;
attr.dpl = kvm_seg.dpl;
attr.defaultSize = kvm_seg.db;
attr.system = kvm_seg.s;
attr.longMode = kvm_seg.l;
attr.granularity = kvm_seg.g;
attr.avl = kvm_seg.avl;
attr.unusable = kvm_seg.unusable;
// We need some setMiscReg magic here to keep the effective base
// addresses in sync. We need an up-to-date version of EFER, so
// make sure this is called after the sregs have been synced.
tc->setMiscReg(MISCREG_SEG_BASE(index), kvm_seg.base);
tc->setMiscReg(MISCREG_SEG_LIMIT(index), kvm_seg.limit);
tc->setMiscReg(MISCREG_SEG_SEL(index), kvm_seg.selector);
tc->setMiscReg(MISCREG_SEG_ATTR(index), attr);
}
inline void
setContextSegment(ThreadContext *tc, const struct kvm_dtable &kvm_dtable,
const int index)
{
// We need some setMiscReg magic here to keep the effective base
// addresses in sync. We need an up-to-date version of EFER, so
// make sure this is called after the sregs have been synced.
tc->setMiscReg(MISCREG_SEG_BASE(index), kvm_dtable.base);
tc->setMiscReg(MISCREG_SEG_LIMIT(index), kvm_dtable.limit);
}
void
X86KvmCPU::updateThreadContextSRegs(const struct kvm_sregs &sregs)
{
assert(getKvmRunState()->apic_base == sregs.apic_base);
assert(getKvmRunState()->cr8 == sregs.cr8);
#define APPLY_SREG(kreg, mreg) tc->setMiscRegNoEffect(mreg, sregs.kreg)
#define APPLY_SEGMENT(kreg, idx) setContextSegment(tc, sregs.kreg, idx)
#define APPLY_DTABLE(kreg, idx) setContextSegment(tc, sregs.kreg, idx)
FOREACH_SREG();
FOREACH_SEGMENT();
FOREACH_DTABLE();
#undef APPLY_SREG
#undef APPLY_SEGMENT
#undef APPLY_DTABLE
}
template<typename T>
static void
updateThreadContextFPUCommon(ThreadContext *tc, const T &fpu)
{
const unsigned top((fpu.fsw >> 11) & 0x7);
static_assert(sizeof(X86ISA::FloatRegBits) == 8,
"Unexpected size of X86ISA::FloatRegBits");
for (int i = 0; i < 8; ++i) {
const unsigned reg_idx((i + top) & 0x7);
const double value(X86ISA::loadFloat80(fpu.fpr[i]));
DPRINTF(KvmContext, "Setting gem5 FP reg %i (st[%i]) := %f\n",
reg_idx, i, value);
tc->setFloatReg(FLOATREG_FPR(reg_idx), value);
}
// TODO: We should update the MMX state
tc->setMiscRegNoEffect(MISCREG_X87_TOP, top);
tc->setMiscRegNoEffect(MISCREG_MXCSR, fpu.mxcsr);
tc->setMiscRegNoEffect(MISCREG_FCW, fpu.fcw);
tc->setMiscRegNoEffect(MISCREG_FSW, fpu.fsw);
uint64_t ftw(convX87XTagsToTags(fpu.ftwx));
// TODO: Are these registers really the same?
tc->setMiscRegNoEffect(MISCREG_FTW, ftw);
tc->setMiscRegNoEffect(MISCREG_FTAG, ftw);
tc->setMiscRegNoEffect(MISCREG_FOP, fpu.last_opcode);
for (int i = 0; i < 16; ++i) {
tc->setFloatRegBits(FLOATREG_XMM_LOW(i),
*(X86ISA::FloatRegBits *)&fpu.xmm[i][0]);
tc->setFloatRegBits(FLOATREG_XMM_HIGH(i),
*(X86ISA::FloatRegBits *)&fpu.xmm[i][8]);
}
}
void
X86KvmCPU::updateThreadContextFPU(const struct kvm_fpu &fpu)
{
updateThreadContextFPUCommon(tc, fpu);
tc->setMiscRegNoEffect(MISCREG_FISEG, 0);
tc->setMiscRegNoEffect(MISCREG_FIOFF, fpu.last_ip);
tc->setMiscRegNoEffect(MISCREG_FOSEG, 0);
tc->setMiscRegNoEffect(MISCREG_FOOFF, fpu.last_dp);
}
void
X86KvmCPU::updateThreadContextXSave(const struct kvm_xsave &kxsave)
{
const FXSave &xsave(*(const FXSave *)kxsave.region);
updateThreadContextFPUCommon(tc, xsave);
tc->setMiscRegNoEffect(MISCREG_FISEG, 0);
tc->setMiscRegNoEffect(MISCREG_FIOFF, xsave.ctrl64.fpu_ip);
tc->setMiscRegNoEffect(MISCREG_FOSEG, 0);
tc->setMiscRegNoEffect(MISCREG_FOOFF, xsave.ctrl64.fpu_dp);
}
void
X86KvmCPU::updateThreadContextMSRs()
{
const Kvm::MSRIndexVector &msrs(getMsrIntersection());
std::unique_ptr<struct kvm_msrs> kvm_msrs(
newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(msrs.size()));
struct kvm_msr_entry *entry;
// Create a list of MSRs to read
kvm_msrs->nmsrs = msrs.size();
entry = &kvm_msrs->entries[0];
for (auto it = msrs.cbegin(); it != msrs.cend(); ++it, ++entry) {
entry->index = *it;
entry->reserved = 0;
entry->data = 0;
}
getMSRs(*kvm_msrs.get());
// Update M5's state
entry = &kvm_msrs->entries[0];
for (int i = 0; i < kvm_msrs->nmsrs; ++i, ++entry) {
DPRINTF(KvmContext, "Setting M5 MSR: idx: 0x%x, data: 0x%x\n",
entry->index, entry->data);
tc->setMiscReg(X86ISA::msrMap.at(entry->index), entry->data);
}
}
void
X86KvmCPU::deliverInterrupts()
{
Fault fault;
syncThreadContext();
{
// Migrate to the interrupt controller's thread to get the
// interrupt. Even though the individual methods are safe to
// call across threads, we might still lose interrupts unless
// they are getInterrupt() and updateIntrInfo() are called
// atomically.
EventQueue::ScopedMigration migrate(interrupts->eventQueue());
fault = interrupts->getInterrupt(tc);
interrupts->updateIntrInfo(tc);
}
X86Interrupt *x86int(dynamic_cast<X86Interrupt *>(fault.get()));
if (dynamic_cast<NonMaskableInterrupt *>(fault.get())) {
DPRINTF(KvmInt, "Delivering NMI\n");
kvmNonMaskableInterrupt();
} else if (dynamic_cast<InitInterrupt *>(fault.get())) {
DPRINTF(KvmInt, "INIT interrupt\n");
fault.get()->invoke(tc);
// Delay the kvm state update since we won't enter KVM on this
// tick.
threadContextDirty = true;
// HACK: gem5 doesn't actually have any BIOS code, which means
// that we need to halt the thread and wait for a startup
// interrupt before restarting the thread. The simulated CPUs
// use the same kind of hack using a microcode routine.
thread->suspend();
} else if (dynamic_cast<StartupInterrupt *>(fault.get())) {
DPRINTF(KvmInt, "STARTUP interrupt\n");
fault.get()->invoke(tc);
// The kvm state is assumed to have been updated when entering
// kvmRun(), so we need to update manually it here.
updateKvmState();
} else if (x86int) {
struct kvm_interrupt kvm_int;
kvm_int.irq = x86int->getVector();
DPRINTF(KvmInt, "Delivering interrupt: %s (%u)\n",
fault->name(), kvm_int.irq);
kvmInterrupt(kvm_int);
} else {
panic("KVM: Unknown interrupt type\n");
}
}
Tick
X86KvmCPU::kvmRun(Tick ticks)
{
struct kvm_run &kvm_run(*getKvmRunState());
if (interrupts->checkInterruptsRaw()) {
if (interrupts->hasPendingUnmaskable()) {
DPRINTF(KvmInt,
"Delivering unmaskable interrupt.\n");
syncThreadContext();
deliverInterrupts();
} else if (kvm_run.ready_for_interrupt_injection) {
// KVM claims that it is ready for an interrupt. It might
// be lying if we just updated rflags and disabled
// interrupts (e.g., by doing a CPU handover). Let's sync
// the thread context and check if there are /really/
// interrupts that should be delivered now.
syncThreadContext();
if (interrupts->checkInterrupts(tc)) {
DPRINTF(KvmInt,
"M5 has pending interrupts, delivering interrupt.\n");
deliverInterrupts();
} else {
DPRINTF(KvmInt,
"Interrupt delivery delayed due to KVM confusion.\n");
kvm_run.request_interrupt_window = 1;
}
} else if (!kvm_run.request_interrupt_window) {
DPRINTF(KvmInt,
"M5 has pending interrupts, requesting interrupt "
"window.\n");
kvm_run.request_interrupt_window = 1;
}
} else {
kvm_run.request_interrupt_window = 0;
}
// The CPU might have been suspended as a result of the INIT
// interrupt delivery hack. In that case, don't enter into KVM.
if (_status == Idle)
return 0;
else
return kvmRunWrapper(ticks);
}
Tick
X86KvmCPU::kvmRunDrain()
{
struct kvm_run &kvm_run(*getKvmRunState());
if (!archIsDrained()) {
DPRINTF(Drain, "kvmRunDrain: Architecture code isn't drained\n");
// Tell KVM to find a suitable place to deliver interrupts. This
// should ensure that pending interrupts have been delivered and
// things are reasonably consistent (i.e., no interrupts pending
// in the guest).
kvm_run.request_interrupt_window = 1;
// Limit the run to 1 millisecond. That is hopefully enough to
// reach an interrupt window. Otherwise, we'll just try again
// later.
return kvmRunWrapper(1 * SimClock::Float::ms);
} else {
DPRINTF(Drain, "kvmRunDrain: Delivering pending IO\n");
return kvmRunWrapper(0);
}
}
Tick
X86KvmCPU::kvmRunWrapper(Tick ticks)
{
struct kvm_run &kvm_run(*getKvmRunState());
// Synchronize the APIC base and CR8 here since they are present
// in the kvm_run struct, which makes the synchronization really
// cheap.
kvm_run.apic_base = tc->readMiscReg(MISCREG_APIC_BASE);
kvm_run.cr8 = tc->readMiscReg(MISCREG_CR8);
const Tick run_ticks(BaseKvmCPU::kvmRun(ticks));
tc->setMiscReg(MISCREG_APIC_BASE, kvm_run.apic_base);
kvm_run.cr8 = tc->readMiscReg(MISCREG_CR8);
return run_ticks;
}
uint64_t
X86KvmCPU::getHostCycles() const
{
return getMSR(MSR_TSC);
}
void
X86KvmCPU::handleIOMiscReg32(int miscreg)
{
struct kvm_run &kvm_run(*getKvmRunState());
const uint16_t port(kvm_run.io.port);
assert(kvm_run.exit_reason == KVM_EXIT_IO);
if (kvm_run.io.size != 4) {
panic("Unexpected IO size (%u) for address 0x%x.\n",
kvm_run.io.size, port);
}
if (kvm_run.io.count != 1) {
panic("Unexpected IO count (%u) for address 0x%x.\n",
kvm_run.io.count, port);
}
uint32_t *data((uint32_t *)getGuestData(kvm_run.io.data_offset));
if (kvm_run.io.direction == KVM_EXIT_IO_OUT)
tc->setMiscReg(miscreg, *data);
else
*data = tc->readMiscRegNoEffect(miscreg);
}
Tick
X86KvmCPU::handleKvmExitIO()
{
struct kvm_run &kvm_run(*getKvmRunState());
bool isWrite(kvm_run.io.direction == KVM_EXIT_IO_OUT);
unsigned char *guestData(getGuestData(kvm_run.io.data_offset));
Tick delay(0);
uint16_t port(kvm_run.io.port);
Addr pAddr;
const int count(kvm_run.io.count);
assert(kvm_run.io.direction == KVM_EXIT_IO_IN ||
kvm_run.io.direction == KVM_EXIT_IO_OUT);
DPRINTF(KvmIO, "KVM-x86: Handling IO instruction (%s) (port: 0x%x)\n",
(isWrite ? "out" : "in"), kvm_run.io.port);
/* Vanilla gem5 handles PCI discovery in the TLB(!). Since we
* don't use the TLB component, we need to intercept and handle
* the PCI configuration space IO ports here.
*
* The IO port PCI discovery mechanism uses one address register
* and one data register. We map the address register to a misc
* reg and use that to re-route data register accesses to the
* right location in the PCI configuration space.
*/
if (port == IO_PCI_CONF_ADDR) {
handleIOMiscReg32(MISCREG_PCI_CONFIG_ADDRESS);
return 0;
} else if ((port & ~0x3) == IO_PCI_CONF_DATA_BASE) {
Addr pciConfigAddr(tc->readMiscRegNoEffect(MISCREG_PCI_CONFIG_ADDRESS));
if (pciConfigAddr & 0x80000000) {
pAddr = X86ISA::x86PciConfigAddress((pciConfigAddr & 0x7ffffffc) |
(port & 0x3));
} else {
pAddr = X86ISA::x86IOAddress(port);
}
} else {
pAddr = X86ISA::x86IOAddress(port);
}
Request io_req(pAddr, kvm_run.io.size, Request::UNCACHEABLE,
dataMasterId());
io_req.setThreadContext(tc->contextId(), 0);
const MemCmd cmd(isWrite ? MemCmd::WriteReq : MemCmd::ReadReq);
// Temporarily lock and migrate to the event queue of the
// VM. This queue is assumed to "own" all devices we need to
// access if running in multi-core mode.
EventQueue::ScopedMigration migrate(vm.eventQueue());
for (int i = 0; i < count; ++i) {
Packet pkt(&io_req, cmd);
pkt.dataStatic(guestData);
delay += dataPort.sendAtomic(&pkt);
guestData += kvm_run.io.size;
}
return delay;
}
Tick
X86KvmCPU::handleKvmExitIRQWindowOpen()
{
// We don't need to do anything here since this is caught the next
// time we execute kvmRun(). We still overload the exit event to
// silence the warning about an unhandled exit event.
return 0;
}
bool
X86KvmCPU::archIsDrained() const
{
struct kvm_vcpu_events events;
getVCpuEvents(events);
// We could probably handle this in a by re-inserting interrupts
// that are pending into gem5 on a drain. However, that would
// probably be tricky to do reliably, so we'll just prevent a
// drain if there is anything pending in the
// guest. X86KvmCPU::kvmRunDrain() minimizes the amount of code
// executed in the guest by requesting an interrupt window if
// there are pending interrupts.
const bool pending_events(events.exception.injected ||
events.interrupt.injected ||
events.nmi.injected || events.nmi.pending);
if (pending_events) {
DPRINTF(Drain, "archIsDrained: Pending events: %s %s %s %s\n",
events.exception.injected ? "exception" : "",
events.interrupt.injected ? "interrupt" : "",
events.nmi.injected ? "nmi[i]" : "",
events.nmi.pending ? "nmi[p]" : "");
}
return !pending_events;
}
static struct kvm_cpuid_entry2
makeKvmCpuid(uint32_t function, uint32_t index,
CpuidResult &result)
{
struct kvm_cpuid_entry2 e;
e.function = function;
e.index = index;
e.flags = 0;
e.eax = (uint32_t)result.rax;
e.ebx = (uint32_t)result.rbx;
e.ecx = (uint32_t)result.rcx;
e.edx = (uint32_t)result.rdx;
return e;
}
void
X86KvmCPU::updateCPUID()
{
Kvm::CPUIDVector m5_supported;
/* TODO: We currently don't support any of the functions that
* iterate through data structures in the CPU using an index. It's
* currently not a problem since M5 doesn't expose any of them at
* the moment.
*/
/* Basic features */
CpuidResult func0;
X86ISA::doCpuid(tc, 0x0, 0, func0);
for (uint32_t function = 0; function <= func0.rax; ++function) {
CpuidResult cpuid;
uint32_t idx(0);
X86ISA::doCpuid(tc, function, idx, cpuid);
m5_supported.push_back(makeKvmCpuid(function, idx, cpuid));
}
/* Extended features */
CpuidResult efunc0;
X86ISA::doCpuid(tc, 0x80000000, 0, efunc0);
for (uint32_t function = 0x80000000; function <= efunc0.rax; ++function) {
CpuidResult cpuid;
uint32_t idx(0);
X86ISA::doCpuid(tc, function, idx, cpuid);
m5_supported.push_back(makeKvmCpuid(function, idx, cpuid));
}
setCPUID(m5_supported);
}
void
X86KvmCPU::setCPUID(const struct kvm_cpuid2 &cpuid)
{
if (ioctl(KVM_SET_CPUID2, (void *)&cpuid) == -1)
panic("KVM: Failed to set guest CPUID2 (errno: %i)\n",
errno);
}
void
X86KvmCPU::setCPUID(const Kvm::CPUIDVector &cpuid)
{
std::unique_ptr<struct kvm_cpuid2> kvm_cpuid(
newVarStruct<struct kvm_cpuid2, struct kvm_cpuid_entry2>(cpuid.size()));
kvm_cpuid->nent = cpuid.size();
std::copy(cpuid.begin(), cpuid.end(), kvm_cpuid->entries);
setCPUID(*kvm_cpuid);
}
void
X86KvmCPU::setMSRs(const struct kvm_msrs &msrs)
{
if (ioctl(KVM_SET_MSRS, (void *)&msrs) == -1)
panic("KVM: Failed to set guest MSRs (errno: %i)\n",
errno);
}
void
X86KvmCPU::setMSRs(const KvmMSRVector &msrs)
{
std::unique_ptr<struct kvm_msrs> kvm_msrs(
newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(msrs.size()));
kvm_msrs->nmsrs = msrs.size();
std::copy(msrs.begin(), msrs.end(), kvm_msrs->entries);
setMSRs(*kvm_msrs);
}
void
X86KvmCPU::getMSRs(struct kvm_msrs &msrs) const
{
if (ioctl(KVM_GET_MSRS, (void *)&msrs) == -1)
panic("KVM: Failed to get guest MSRs (errno: %i)\n",
errno);
}
void
X86KvmCPU::setMSR(uint32_t index, uint64_t value)
{
std::unique_ptr<struct kvm_msrs> kvm_msrs(
newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(1));
struct kvm_msr_entry &entry(kvm_msrs->entries[0]);
kvm_msrs->nmsrs = 1;
entry.index = index;
entry.reserved = 0;
entry.data = value;
setMSRs(*kvm_msrs.get());
}
uint64_t
X86KvmCPU::getMSR(uint32_t index) const
{
std::unique_ptr<struct kvm_msrs> kvm_msrs(
newVarStruct<struct kvm_msrs, struct kvm_msr_entry>(1));
struct kvm_msr_entry &entry(kvm_msrs->entries[0]);
kvm_msrs->nmsrs = 1;
entry.index = index;
entry.reserved = 0;
entry.data = 0;
getMSRs(*kvm_msrs.get());
return entry.data;
}
const Kvm::MSRIndexVector &
X86KvmCPU::getMsrIntersection() const
{
if (cachedMsrIntersection.empty()) {
const Kvm::MSRIndexVector &kvm_msrs(vm.kvm.getSupportedMSRs());
DPRINTF(Kvm, "kvm-x86: Updating MSR intersection\n");
for (auto it = kvm_msrs.cbegin(); it != kvm_msrs.cend(); ++it) {
if (X86ISA::msrMap.find(*it) != X86ISA::msrMap.end()) {
cachedMsrIntersection.push_back(*it);
DPRINTF(Kvm, "kvm-x86: Adding MSR 0x%x\n", *it);
} else {
warn("kvm-x86: MSR (0x%x) unsupported by gem5. Skipping.\n",
*it);
}
}
}
return cachedMsrIntersection;
}
void
X86KvmCPU::getDebugRegisters(struct kvm_debugregs ®s) const
{
#ifdef KVM_GET_DEBUGREGS
if (ioctl(KVM_GET_DEBUGREGS, ®s) == -1)
panic("KVM: Failed to get guest debug registers\n");
#else
panic("KVM: Unsupported getDebugRegisters call.\n");
#endif
}
void
X86KvmCPU::setDebugRegisters(const struct kvm_debugregs ®s)
{
#ifdef KVM_SET_DEBUGREGS
if (ioctl(KVM_SET_DEBUGREGS, (void *)®s) == -1)
panic("KVM: Failed to set guest debug registers\n");
#else
panic("KVM: Unsupported setDebugRegisters call.\n");
#endif
}
void
X86KvmCPU::getXCRs(struct kvm_xcrs ®s) const
{
if (ioctl(KVM_GET_XCRS, ®s) == -1)
panic("KVM: Failed to get guest debug registers\n");
}
void
X86KvmCPU::setXCRs(const struct kvm_xcrs ®s)
{
if (ioctl(KVM_SET_XCRS, (void *)®s) == -1)
panic("KVM: Failed to set guest debug registers\n");
}
void
X86KvmCPU::getXSave(struct kvm_xsave &xsave) const
{
if (ioctl(KVM_GET_XSAVE, &xsave) == -1)
panic("KVM: Failed to get guest debug registers\n");
}
void
X86KvmCPU::setXSave(const struct kvm_xsave &xsave)
{
if (ioctl(KVM_SET_XSAVE, (void *)&xsave) == -1)
panic("KVM: Failed to set guest debug registers\n");
}
void
X86KvmCPU::getVCpuEvents(struct kvm_vcpu_events &events) const
{
if (ioctl(KVM_GET_VCPU_EVENTS, &events) == -1)
panic("KVM: Failed to get guest debug registers\n");
}
void
X86KvmCPU::setVCpuEvents(const struct kvm_vcpu_events &events)
{
if (ioctl(KVM_SET_VCPU_EVENTS, (void *)&events) == -1)
panic("KVM: Failed to set guest debug registers\n");
}
X86KvmCPU *
X86KvmCPUParams::create()
{
return new X86KvmCPU(this);
}
|