1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
/*
* Copyright (c) 2013-2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andrew Bardsley
*/
#include "cpu/minor/decode.hh"
#include "cpu/minor/pipeline.hh"
#include "debug/Decode.hh"
namespace Minor
{
Decode::Decode(const std::string &name,
MinorCPU &cpu_,
MinorCPUParams ¶ms,
Latch<ForwardInstData>::Output inp_,
Latch<ForwardInstData>::Input out_,
Reservable &next_stage_input_buffer) :
Named(name),
cpu(cpu_),
inp(inp_),
out(out_),
nextStageReserve(next_stage_input_buffer),
outputWidth(params.executeInputWidth),
processMoreThanOneInput(params.decodeCycleInput),
inputBuffer(name + ".inputBuffer", "insts", params.decodeInputBufferSize),
inputIndex(0),
inMacroop(false),
execSeqNum(InstId::firstExecSeqNum),
blocked(false)
{
if (outputWidth < 1)
fatal("%s: executeInputWidth must be >= 1 (%d)\n", name, outputWidth);
if (params.decodeInputBufferSize < 1) {
fatal("%s: decodeInputBufferSize must be >= 1 (%d)\n", name,
params.decodeInputBufferSize);
}
}
const ForwardInstData *
Decode::getInput()
{
/* Get insts from the inputBuffer to work with */
if (!inputBuffer.empty()) {
const ForwardInstData &head = inputBuffer.front();
return (head.isBubble() ? NULL : &(inputBuffer.front()));
} else {
return NULL;
}
}
void
Decode::popInput()
{
if (!inputBuffer.empty())
inputBuffer.pop();
inputIndex = 0;
inMacroop = false;
}
#if TRACING_ON
/** Add the tracing data to an instruction. This originates in
* decode because this is the first place that execSeqNums are known
* (these are used as the 'FetchSeq' in tracing data) */
static void
dynInstAddTracing(MinorDynInstPtr inst, StaticInstPtr static_inst,
MinorCPU &cpu)
{
inst->traceData = cpu.getTracer()->getInstRecord(curTick(),
cpu.getContext(inst->id.threadId),
inst->staticInst, inst->pc, static_inst);
/* Use the execSeqNum as the fetch sequence number as this most closely
* matches the other processor models' idea of fetch sequence */
if (inst->traceData)
inst->traceData->setFetchSeq(inst->id.execSeqNum);
}
#endif
void
Decode::evaluate()
{
inputBuffer.setTail(*inp.outputWire);
ForwardInstData &insts_out = *out.inputWire;
assert(insts_out.isBubble());
blocked = false;
if (!nextStageReserve.canReserve()) {
blocked = true;
} else {
const ForwardInstData *insts_in = getInput();
unsigned int output_index = 0;
/* Pack instructions into the output while we can. This may involve
* using more than one input line */
while (insts_in &&
inputIndex < insts_in->width() && /* Still more input */
output_index < outputWidth /* Still more output to fill */)
{
MinorDynInstPtr inst = insts_in->insts[inputIndex];
if (inst->isBubble()) {
/* Skip */
inputIndex++;
inMacroop = false;
} else {
StaticInstPtr static_inst = inst->staticInst;
/* Static inst of a macro-op above the output_inst */
StaticInstPtr parent_static_inst = NULL;
MinorDynInstPtr output_inst = inst;
if (inst->isFault()) {
DPRINTF(Decode, "Fault being passed: %d\n",
inst->fault->name());
inputIndex++;
inMacroop = false;
} else if (static_inst->isMacroop()) {
/* Generate a new micro-op */
StaticInstPtr static_micro_inst;
/* Set up PC for the next micro-op emitted */
if (!inMacroop) {
microopPC = inst->pc;
inMacroop = true;
}
/* Get the micro-op static instruction from the
* static_inst. */
static_micro_inst =
static_inst->fetchMicroop(microopPC.microPC());
output_inst = new MinorDynInst(inst->id);
output_inst->pc = microopPC;
output_inst->staticInst = static_micro_inst;
output_inst->fault = NoFault;
/* Allow a predicted next address only on the last
* microop */
if (static_micro_inst->isLastMicroop()) {
output_inst->predictedTaken = inst->predictedTaken;
output_inst->predictedTarget = inst->predictedTarget;
}
DPRINTF(Decode, "Microop decomposition inputIndex:"
" %d output_index: %d lastMicroop: %s microopPC:"
" %d.%d inst: %d\n",
inputIndex, output_index,
(static_micro_inst->isLastMicroop() ?
"true" : "false"),
microopPC.instAddr(), microopPC.microPC(),
*output_inst);
/* Acknowledge that the static_inst isn't mine, it's my
* parent macro-op's */
parent_static_inst = static_inst;
static_micro_inst->advancePC(microopPC);
/* Step input if this is the last micro-op */
if (static_micro_inst->isLastMicroop()) {
inputIndex++;
inMacroop = false;
}
} else {
/* Doesn't need decomposing, pass on instruction */
DPRINTF(Decode, "Passing on inst: %s inputIndex:"
" %d output_index: %d\n",
*output_inst, inputIndex, output_index);
parent_static_inst = static_inst;
/* Step input */
inputIndex++;
inMacroop = false;
}
/* Set execSeqNum of output_inst */
output_inst->id.execSeqNum = execSeqNum;
/* Add tracing */
#if TRACING_ON
dynInstAddTracing(output_inst, parent_static_inst, cpu);
#endif
/* Step to next sequence number */
execSeqNum++;
/* Correctly size the output before writing */
if(output_index == 0) insts_out.resize(outputWidth);
/* Push into output */
insts_out.insts[output_index] = output_inst;
output_index++;
}
/* Have we finished with the input? */
if (inputIndex == insts_in->width()) {
/* If we have just been producing micro-ops, we *must* have
* got to the end of that for inputIndex to be pushed past
* insts_in->width() */
assert(!inMacroop);
popInput();
insts_in = NULL;
if (processMoreThanOneInput) {
DPRINTF(Decode, "Wrapping\n");
insts_in = getInput();
}
}
}
/* The rest of the output (if any) should already have been packed
* with bubble instructions by insts_out's initialisation
*
* for (; output_index < outputWidth; output_index++)
* assert(insts_out.insts[output_index]->isBubble());
*/
}
/* If we generated output, reserve space for the result in the next stage
* and mark the stage as being active this cycle */
if (!insts_out.isBubble()) {
/* Note activity of following buffer */
cpu.activityRecorder->activity();
nextStageReserve.reserve();
}
/* If we still have input to process and somewhere to put it,
* mark stage as active */
if (getInput() && nextStageReserve.canReserve())
cpu.activityRecorder->activateStage(Pipeline::DecodeStageId);
/* Make sure the input (if any left) is pushed */
inputBuffer.pushTail();
}
bool
Decode::isDrained()
{
return inputBuffer.empty() && (*inp.outputWire).isBubble();
}
void
Decode::minorTrace() const
{
std::ostringstream data;
if (blocked)
data << 'B';
else
(*out.inputWire).reportData(data);
MINORTRACE("insts=%s\n", data.str());
inputBuffer.minorTrace();
}
}
|