1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
|
/*
* Copyright (c) 2013-2014 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andrew Bardsley
*/
#include "cpu/minor/execute.hh"
#include "arch/locked_mem.hh"
#include "arch/registers.hh"
#include "arch/utility.hh"
#include "cpu/minor/cpu.hh"
#include "cpu/minor/exec_context.hh"
#include "cpu/minor/fetch1.hh"
#include "cpu/minor/lsq.hh"
#include "cpu/op_class.hh"
#include "debug/Activity.hh"
#include "debug/Branch.hh"
#include "debug/Drain.hh"
#include "debug/MinorExecute.hh"
#include "debug/MinorInterrupt.hh"
#include "debug/MinorMem.hh"
#include "debug/MinorTrace.hh"
#include "debug/PCEvent.hh"
namespace Minor
{
Execute::Execute(const std::string &name_,
MinorCPU &cpu_,
MinorCPUParams ¶ms,
Latch<ForwardInstData>::Output inp_,
Latch<BranchData>::Input out_) :
Named(name_),
inp(inp_),
out(out_),
cpu(cpu_),
issueLimit(params.executeIssueLimit),
memoryIssueLimit(params.executeMemoryIssueLimit),
commitLimit(params.executeCommitLimit),
memoryCommitLimit(params.executeMemoryCommitLimit),
processMoreThanOneInput(params.executeCycleInput),
fuDescriptions(*params.executeFuncUnits),
numFuncUnits(fuDescriptions.funcUnits.size()),
setTraceTimeOnCommit(params.executeSetTraceTimeOnCommit),
setTraceTimeOnIssue(params.executeSetTraceTimeOnIssue),
allowEarlyMemIssue(params.executeAllowEarlyMemoryIssue),
noCostFUIndex(fuDescriptions.funcUnits.size() + 1),
lsq(name_ + ".lsq", name_ + ".dcache_port",
cpu_, *this,
params.executeMaxAccessesInMemory,
params.executeMemoryWidth,
params.executeLSQRequestsQueueSize,
params.executeLSQTransfersQueueSize,
params.executeLSQStoreBufferSize,
params.executeLSQMaxStoreBufferStoresPerCycle),
executeInfo(params.numThreads, ExecuteThreadInfo(params.executeCommitLimit)),
interruptPriority(0),
issuePriority(0),
commitPriority(0)
{
if (commitLimit < 1) {
fatal("%s: executeCommitLimit must be >= 1 (%d)\n", name_,
commitLimit);
}
if (issueLimit < 1) {
fatal("%s: executeCommitLimit must be >= 1 (%d)\n", name_,
issueLimit);
}
if (memoryIssueLimit < 1) {
fatal("%s: executeMemoryIssueLimit must be >= 1 (%d)\n", name_,
memoryIssueLimit);
}
if (memoryCommitLimit > commitLimit) {
fatal("%s: executeMemoryCommitLimit (%d) must be <="
" executeCommitLimit (%d)\n",
name_, memoryCommitLimit, commitLimit);
}
if (params.executeInputBufferSize < 1) {
fatal("%s: executeInputBufferSize must be >= 1 (%d)\n", name_,
params.executeInputBufferSize);
}
if (params.executeInputBufferSize < 1) {
fatal("%s: executeInputBufferSize must be >= 1 (%d)\n", name_,
params.executeInputBufferSize);
}
/* This should be large enough to count all the in-FU instructions
* which need to be accounted for in the inFlightInsts
* queue */
unsigned int total_slots = 0;
/* Make FUPipelines for each MinorFU */
for (unsigned int i = 0; i < numFuncUnits; i++) {
std::ostringstream fu_name;
MinorFU *fu_description = fuDescriptions.funcUnits[i];
/* Note the total number of instruction slots (for sizing
* the inFlightInst queue) and the maximum latency of any FU
* (for sizing the activity recorder) */
total_slots += fu_description->opLat;
fu_name << name_ << ".fu." << i;
FUPipeline *fu = new FUPipeline(fu_name.str(), *fu_description, cpu);
funcUnits.push_back(fu);
}
/** Check that there is a functional unit for all operation classes */
for (int op_class = No_OpClass + 1; op_class < Num_OpClasses; op_class++) {
bool found_fu = false;
unsigned int fu_index = 0;
while (fu_index < numFuncUnits && !found_fu)
{
if (funcUnits[fu_index]->provides(
static_cast<OpClass>(op_class)))
{
found_fu = true;
}
fu_index++;
}
if (!found_fu) {
warn("No functional unit for OpClass %s\n",
Enums::OpClassStrings[op_class]);
}
}
/* Per-thread structures */
for (ThreadID tid = 0; tid < params.numThreads; tid++) {
std::string tid_str = std::to_string(tid);
/* Input Buffers */
inputBuffer.push_back(
InputBuffer<ForwardInstData>(
name_ + ".inputBuffer" + tid_str, "insts",
params.executeInputBufferSize));
/* Scoreboards */
scoreboard.push_back(Scoreboard(name_ + ".scoreboard" + tid_str));
/* In-flight instruction records */
executeInfo[tid].inFlightInsts = new Queue<QueuedInst,
ReportTraitsAdaptor<QueuedInst> >(
name_ + ".inFlightInsts" + tid_str, "insts", total_slots);
executeInfo[tid].inFUMemInsts = new Queue<QueuedInst,
ReportTraitsAdaptor<QueuedInst> >(
name_ + ".inFUMemInsts" + tid_str, "insts", total_slots);
}
}
const ForwardInstData *
Execute::getInput(ThreadID tid)
{
/* Get a line from the inputBuffer to work with */
if (!inputBuffer[tid].empty()) {
const ForwardInstData &head = inputBuffer[tid].front();
return (head.isBubble() ? NULL : &(inputBuffer[tid].front()));
} else {
return NULL;
}
}
void
Execute::popInput(ThreadID tid)
{
if (!inputBuffer[tid].empty())
inputBuffer[tid].pop();
executeInfo[tid].inputIndex = 0;
}
void
Execute::tryToBranch(MinorDynInstPtr inst, Fault fault, BranchData &branch)
{
ThreadContext *thread = cpu.getContext(inst->id.threadId);
const TheISA::PCState &pc_before = inst->pc;
TheISA::PCState target = thread->pcState();
/* Force a branch for SerializeAfter/SquashAfter instructions
* at the end of micro-op sequence when we're not suspended */
bool force_branch = thread->status() != ThreadContext::Suspended &&
!inst->isFault() &&
inst->isLastOpInInst() &&
(inst->staticInst->isSerializeAfter() ||
inst->staticInst->isSquashAfter() ||
inst->staticInst->isIprAccess());
DPRINTF(Branch, "tryToBranch before: %s after: %s%s\n",
pc_before, target, (force_branch ? " (forcing)" : ""));
/* Will we change the PC to something other than the next instruction? */
bool must_branch = pc_before != target ||
fault != NoFault ||
force_branch;
/* The reason for the branch data we're about to generate, set below */
BranchData::Reason reason = BranchData::NoBranch;
if (fault == NoFault)
{
TheISA::advancePC(target, inst->staticInst);
thread->pcState(target);
DPRINTF(Branch, "Advancing current PC from: %s to: %s\n",
pc_before, target);
}
if (inst->predictedTaken && !force_branch) {
/* Predicted to branch */
if (!must_branch) {
/* No branch was taken, change stream to get us back to the
* intended PC value */
DPRINTF(Branch, "Predicted a branch from 0x%x to 0x%x but"
" none happened inst: %s\n",
inst->pc.instAddr(), inst->predictedTarget.instAddr(), *inst);
reason = BranchData::BadlyPredictedBranch;
} else if (inst->predictedTarget == target) {
/* Branch prediction got the right target, kill the branch and
* carry on.
* Note that this information to the branch predictor might get
* overwritten by a "real" branch during this cycle */
DPRINTF(Branch, "Predicted a branch from 0x%x to 0x%x correctly"
" inst: %s\n",
inst->pc.instAddr(), inst->predictedTarget.instAddr(), *inst);
reason = BranchData::CorrectlyPredictedBranch;
} else {
/* Branch prediction got the wrong target */
DPRINTF(Branch, "Predicted a branch from 0x%x to 0x%x"
" but got the wrong target (actual: 0x%x) inst: %s\n",
inst->pc.instAddr(), inst->predictedTarget.instAddr(),
target.instAddr(), *inst);
reason = BranchData::BadlyPredictedBranchTarget;
}
} else if (must_branch) {
/* Unpredicted branch */
DPRINTF(Branch, "Unpredicted branch from 0x%x to 0x%x inst: %s\n",
inst->pc.instAddr(), target.instAddr(), *inst);
reason = BranchData::UnpredictedBranch;
} else {
/* No branch at all */
reason = BranchData::NoBranch;
}
updateBranchData(inst->id.threadId, reason, inst, target, branch);
}
void
Execute::updateBranchData(
ThreadID tid,
BranchData::Reason reason,
MinorDynInstPtr inst, const TheISA::PCState &target,
BranchData &branch)
{
if (reason != BranchData::NoBranch) {
/* Bump up the stream sequence number on a real branch*/
if (BranchData::isStreamChange(reason))
executeInfo[tid].streamSeqNum++;
/* Branches (even mis-predictions) don't change the predictionSeqNum,
* just the streamSeqNum */
branch = BranchData(reason, tid,
executeInfo[tid].streamSeqNum,
/* Maintaining predictionSeqNum if there's no inst is just a
* courtesy and looks better on minorview */
(inst->isBubble() ? executeInfo[tid].lastPredictionSeqNum
: inst->id.predictionSeqNum),
target, inst);
DPRINTF(Branch, "Branch data signalled: %s\n", branch);
}
}
void
Execute::handleMemResponse(MinorDynInstPtr inst,
LSQ::LSQRequestPtr response, BranchData &branch, Fault &fault)
{
ThreadID thread_id = inst->id.threadId;
ThreadContext *thread = cpu.getContext(thread_id);
ExecContext context(cpu, *cpu.threads[thread_id], *this, inst);
PacketPtr packet = response->packet;
bool is_load = inst->staticInst->isLoad();
bool is_store = inst->staticInst->isStore();
bool is_prefetch = inst->staticInst->isDataPrefetch();
/* If true, the trace's predicate value will be taken from the exec
* context predicate, otherwise, it will be set to false */
bool use_context_predicate = true;
if (response->fault != NoFault) {
/* Invoke memory faults. */
DPRINTF(MinorMem, "Completing fault from DTLB access: %s\n",
response->fault->name());
if (inst->staticInst->isPrefetch()) {
DPRINTF(MinorMem, "Not taking fault on prefetch: %s\n",
response->fault->name());
/* Don't assign to fault */
} else {
/* Take the fault raised during the TLB/memory access */
fault = response->fault;
fault->invoke(thread, inst->staticInst);
}
} else if (!packet) {
DPRINTF(MinorMem, "Completing failed request inst: %s\n",
*inst);
use_context_predicate = false;
} else if (packet->isError()) {
DPRINTF(MinorMem, "Trying to commit error response: %s\n",
*inst);
fatal("Received error response packet for inst: %s\n", *inst);
} else if (is_store || is_load || is_prefetch) {
assert(packet);
DPRINTF(MinorMem, "Memory response inst: %s addr: 0x%x size: %d\n",
*inst, packet->getAddr(), packet->getSize());
if (is_load && packet->getSize() > 0) {
DPRINTF(MinorMem, "Memory data[0]: 0x%x\n",
static_cast<unsigned int>(packet->getConstPtr<uint8_t>()[0]));
}
/* Complete the memory access instruction */
fault = inst->staticInst->completeAcc(packet, &context,
inst->traceData);
if (fault != NoFault) {
/* Invoke fault created by instruction completion */
DPRINTF(MinorMem, "Fault in memory completeAcc: %s\n",
fault->name());
fault->invoke(thread, inst->staticInst);
} else {
/* Stores need to be pushed into the store buffer to finish
* them off */
if (response->needsToBeSentToStoreBuffer())
lsq.sendStoreToStoreBuffer(response);
}
} else {
fatal("There should only ever be reads, "
"writes or faults at this point\n");
}
lsq.popResponse(response);
if (inst->traceData) {
inst->traceData->setPredicate((use_context_predicate ?
context.readPredicate() : false));
}
doInstCommitAccounting(inst);
/* Generate output to account for branches */
tryToBranch(inst, fault, branch);
}
bool
Execute::isInterrupted(ThreadID thread_id) const
{
return cpu.checkInterrupts(cpu.getContext(thread_id));
}
bool
Execute::takeInterrupt(ThreadID thread_id, BranchData &branch)
{
DPRINTF(MinorInterrupt, "Considering interrupt status from PC: %s\n",
cpu.getContext(thread_id)->pcState());
Fault interrupt = cpu.getInterruptController(thread_id)->getInterrupt
(cpu.getContext(thread_id));
if (interrupt != NoFault) {
/* The interrupt *must* set pcState */
cpu.getInterruptController(thread_id)->updateIntrInfo
(cpu.getContext(thread_id));
interrupt->invoke(cpu.getContext(thread_id));
assert(!lsq.accessesInFlight());
DPRINTF(MinorInterrupt, "Invoking interrupt: %s to PC: %s\n",
interrupt->name(), cpu.getContext(thread_id)->pcState());
/* Assume that an interrupt *must* cause a branch. Assert this? */
updateBranchData(thread_id, BranchData::Interrupt,
MinorDynInst::bubble(), cpu.getContext(thread_id)->pcState(),
branch);
}
return interrupt != NoFault;
}
bool
Execute::executeMemRefInst(MinorDynInstPtr inst, BranchData &branch,
bool &passed_predicate, Fault &fault)
{
bool issued = false;
/* Set to true if the mem op. is issued and sent to the mem system */
passed_predicate = false;
if (!lsq.canRequest()) {
/* Not acting on instruction yet as the memory
* queues are full */
issued = false;
} else {
ThreadContext *thread = cpu.getContext(inst->id.threadId);
TheISA::PCState old_pc = thread->pcState();
ExecContext context(cpu, *cpu.threads[inst->id.threadId],
*this, inst);
DPRINTF(MinorExecute, "Initiating memRef inst: %s\n", *inst);
Fault init_fault = inst->staticInst->initiateAcc(&context,
inst->traceData);
if (init_fault != NoFault) {
DPRINTF(MinorExecute, "Fault on memory inst: %s"
" initiateAcc: %s\n", *inst, init_fault->name());
fault = init_fault;
} else {
/* Only set this if the instruction passed its
* predicate */
passed_predicate = context.readPredicate();
/* Set predicate in tracing */
if (inst->traceData)
inst->traceData->setPredicate(passed_predicate);
/* If the instruction didn't pass its predicate (and so will not
* progress from here) Try to branch to correct and branch
* mis-prediction. */
if (!passed_predicate) {
/* Leave it up to commit to handle the fault */
lsq.pushFailedRequest(inst);
}
}
/* Restore thread PC */
thread->pcState(old_pc);
issued = true;
}
return issued;
}
/** Increment a cyclic buffer index for indices [0, cycle_size-1] */
inline unsigned int
cyclicIndexInc(unsigned int index, unsigned int cycle_size)
{
unsigned int ret = index + 1;
if (ret == cycle_size)
ret = 0;
return ret;
}
/** Decrement a cyclic buffer index for indices [0, cycle_size-1] */
inline unsigned int
cyclicIndexDec(unsigned int index, unsigned int cycle_size)
{
int ret = index - 1;
if (ret < 0)
ret = cycle_size - 1;
return ret;
}
unsigned int
Execute::issue(ThreadID thread_id)
{
const ForwardInstData *insts_in = getInput(thread_id);
ExecuteThreadInfo &thread = executeInfo[thread_id];
/* Early termination if we have no instructions */
if (!insts_in)
return 0;
/* Start from the first FU */
unsigned int fu_index = 0;
/* Remains true while instructions are still being issued. If any
* instruction fails to issue, this is set to false and we exit issue.
* This strictly enforces in-order issue. For other issue behaviours,
* a more complicated test in the outer while loop below is needed. */
bool issued = true;
/* Number of insts issues this cycle to check for issueLimit */
unsigned num_insts_issued = 0;
/* Number of memory ops issues this cycle to check for memoryIssueLimit */
unsigned num_mem_insts_issued = 0;
/* Number of instructions discarded this cycle in order to enforce a
* discardLimit. @todo, add that parameter? */
unsigned num_insts_discarded = 0;
do {
MinorDynInstPtr inst = insts_in->insts[thread.inputIndex];
Fault fault = inst->fault;
bool discarded = false;
bool issued_mem_ref = false;
if (inst->isBubble()) {
/* Skip */
issued = true;
} else if (cpu.getContext(thread_id)->status() ==
ThreadContext::Suspended)
{
DPRINTF(MinorExecute, "Discarding inst: %s from suspended"
" thread\n", *inst);
issued = true;
discarded = true;
} else if (inst->id.streamSeqNum != thread.streamSeqNum) {
DPRINTF(MinorExecute, "Discarding inst: %s as its stream"
" state was unexpected, expected: %d\n",
*inst, thread.streamSeqNum);
issued = true;
discarded = true;
} else {
/* Try and issue an instruction into an FU, assume we didn't and
* fix that in the loop */
issued = false;
/* Try FU from 0 each instruction */
fu_index = 0;
/* Try and issue a single instruction stepping through the
* available FUs */
do {
FUPipeline *fu = funcUnits[fu_index];
DPRINTF(MinorExecute, "Trying to issue inst: %s to FU: %d\n",
*inst, fu_index);
/* Does the examined fu have the OpClass-related capability
* needed to execute this instruction? Faults can always
* issue to any FU but probably should just 'live' in the
* inFlightInsts queue rather than having an FU. */
bool fu_is_capable = (!inst->isFault() ?
fu->provides(inst->staticInst->opClass()) : true);
if (inst->isNoCostInst()) {
/* Issue free insts. to a fake numbered FU */
fu_index = noCostFUIndex;
/* And start the countdown on activity to allow
* this instruction to get to the end of its FU */
cpu.activityRecorder->activity();
/* Mark the destinations for this instruction as
* busy */
scoreboard[thread_id].markupInstDests(inst, cpu.curCycle() +
Cycles(0), cpu.getContext(thread_id), false);
DPRINTF(MinorExecute, "Issuing %s to %d\n", inst->id, noCostFUIndex);
inst->fuIndex = noCostFUIndex;
inst->extraCommitDelay = Cycles(0);
inst->extraCommitDelayExpr = NULL;
/* Push the instruction onto the inFlight queue so
* it can be committed in order */
QueuedInst fu_inst(inst);
thread.inFlightInsts->push(fu_inst);
issued = true;
} else if (!fu_is_capable || fu->alreadyPushed()) {
/* Skip */
if (!fu_is_capable) {
DPRINTF(MinorExecute, "Can't issue as FU: %d isn't"
" capable\n", fu_index);
} else {
DPRINTF(MinorExecute, "Can't issue as FU: %d is"
" already busy\n", fu_index);
}
} else if (fu->stalled) {
DPRINTF(MinorExecute, "Can't issue inst: %s into FU: %d,"
" it's stalled\n",
*inst, fu_index);
} else if (!fu->canInsert()) {
DPRINTF(MinorExecute, "Can't issue inst: %s to busy FU"
" for another: %d cycles\n",
*inst, fu->cyclesBeforeInsert());
} else {
MinorFUTiming *timing = (!inst->isFault() ?
fu->findTiming(inst->staticInst) : NULL);
const std::vector<Cycles> *src_latencies =
(timing ? &(timing->srcRegsRelativeLats)
: NULL);
const std::vector<bool> *cant_forward_from_fu_indices =
&(fu->cantForwardFromFUIndices);
if (timing && timing->suppress) {
DPRINTF(MinorExecute, "Can't issue inst: %s as extra"
" decoding is suppressing it\n",
*inst);
} else if (!scoreboard[thread_id].canInstIssue(inst,
src_latencies, cant_forward_from_fu_indices,
cpu.curCycle(), cpu.getContext(thread_id)))
{
DPRINTF(MinorExecute, "Can't issue inst: %s yet\n",
*inst);
} else {
/* Can insert the instruction into this FU */
DPRINTF(MinorExecute, "Issuing inst: %s"
" into FU %d\n", *inst,
fu_index);
Cycles extra_dest_retire_lat = Cycles(0);
TimingExpr *extra_dest_retire_lat_expr = NULL;
Cycles extra_assumed_lat = Cycles(0);
/* Add the extraCommitDelay and extraAssumeLat to
* the FU pipeline timings */
if (timing) {
extra_dest_retire_lat =
timing->extraCommitLat;
extra_dest_retire_lat_expr =
timing->extraCommitLatExpr;
extra_assumed_lat =
timing->extraAssumedLat;
}
issued_mem_ref = inst->isMemRef();
QueuedInst fu_inst(inst);
/* Decorate the inst with FU details */
inst->fuIndex = fu_index;
inst->extraCommitDelay = extra_dest_retire_lat;
inst->extraCommitDelayExpr =
extra_dest_retire_lat_expr;
if (issued_mem_ref) {
/* Remember which instruction this memory op
* depends on so that initiateAcc can be called
* early */
if (allowEarlyMemIssue) {
inst->instToWaitFor =
scoreboard[thread_id].execSeqNumToWaitFor(inst,
cpu.getContext(thread_id));
if (lsq.getLastMemBarrier(thread_id) >
inst->instToWaitFor)
{
DPRINTF(MinorExecute, "A barrier will"
" cause a delay in mem ref issue of"
" inst: %s until after inst"
" %d(exec)\n", *inst,
lsq.getLastMemBarrier(thread_id));
inst->instToWaitFor =
lsq.getLastMemBarrier(thread_id);
} else {
DPRINTF(MinorExecute, "Memory ref inst:"
" %s must wait for inst %d(exec)"
" before issuing\n",
*inst, inst->instToWaitFor);
}
inst->canEarlyIssue = true;
}
/* Also queue this instruction in the memory ref
* queue to ensure in-order issue to the LSQ */
DPRINTF(MinorExecute, "Pushing mem inst: %s\n",
*inst);
thread.inFUMemInsts->push(fu_inst);
}
/* Issue to FU */
fu->push(fu_inst);
/* And start the countdown on activity to allow
* this instruction to get to the end of its FU */
cpu.activityRecorder->activity();
/* Mark the destinations for this instruction as
* busy */
scoreboard[thread_id].markupInstDests(inst, cpu.curCycle() +
fu->description.opLat +
extra_dest_retire_lat +
extra_assumed_lat,
cpu.getContext(thread_id),
issued_mem_ref && extra_assumed_lat == Cycles(0));
/* Push the instruction onto the inFlight queue so
* it can be committed in order */
thread.inFlightInsts->push(fu_inst);
issued = true;
}
}
fu_index++;
} while (fu_index != numFuncUnits && !issued);
if (!issued)
DPRINTF(MinorExecute, "Didn't issue inst: %s\n", *inst);
}
if (issued) {
/* Generate MinorTrace's MinorInst lines. Do this at commit
* to allow better instruction annotation? */
if (DTRACE(MinorTrace) && !inst->isBubble())
inst->minorTraceInst(*this);
/* Mark up barriers in the LSQ */
if (!discarded && inst->isInst() &&
inst->staticInst->isMemBarrier())
{
DPRINTF(MinorMem, "Issuing memory barrier inst: %s\n", *inst);
lsq.issuedMemBarrierInst(inst);
}
if (inst->traceData && setTraceTimeOnIssue) {
inst->traceData->setWhen(curTick());
}
if (issued_mem_ref)
num_mem_insts_issued++;
if (discarded) {
num_insts_discarded++;
} else if (!inst->isBubble()) {
num_insts_issued++;
if (num_insts_issued == issueLimit)
DPRINTF(MinorExecute, "Reached inst issue limit\n");
}
thread.inputIndex++;
DPRINTF(MinorExecute, "Stepping to next inst inputIndex: %d\n",
thread.inputIndex);
}
/* Got to the end of a line */
if (thread.inputIndex == insts_in->width()) {
popInput(thread_id);
/* Set insts_in to null to force us to leave the surrounding
* loop */
insts_in = NULL;
if (processMoreThanOneInput) {
DPRINTF(MinorExecute, "Wrapping\n");
insts_in = getInput(thread_id);
}
}
} while (insts_in && thread.inputIndex < insts_in->width() &&
/* We still have instructions */
fu_index != numFuncUnits && /* Not visited all FUs */
issued && /* We've not yet failed to issue an instruction */
num_insts_issued != issueLimit && /* Still allowed to issue */
num_mem_insts_issued != memoryIssueLimit);
return num_insts_issued;
}
bool
Execute::tryPCEvents(ThreadID thread_id)
{
ThreadContext *thread = cpu.getContext(thread_id);
unsigned int num_pc_event_checks = 0;
/* Handle PC events on instructions */
Addr oldPC;
do {
oldPC = thread->instAddr();
cpu.system->pcEventQueue.service(thread);
num_pc_event_checks++;
} while (oldPC != thread->instAddr());
if (num_pc_event_checks > 1) {
DPRINTF(PCEvent, "Acting on PC Event to PC: %s\n",
thread->pcState());
}
return num_pc_event_checks > 1;
}
void
Execute::doInstCommitAccounting(MinorDynInstPtr inst)
{
assert(!inst->isFault());
MinorThread *thread = cpu.threads[inst->id.threadId];
/* Increment the many and various inst and op counts in the
* thread and system */
if (!inst->staticInst->isMicroop() || inst->staticInst->isLastMicroop())
{
thread->numInst++;
thread->numInsts++;
cpu.stats.numInsts++;
cpu.system->totalNumInsts++;
/* Act on events related to instruction counts */
cpu.comInstEventQueue[inst->id.threadId]->serviceEvents(thread->numInst);
cpu.system->instEventQueue.serviceEvents(cpu.system->totalNumInsts);
}
thread->numOp++;
thread->numOps++;
cpu.stats.numOps++;
cpu.stats.committedInstType[inst->id.threadId]
[inst->staticInst->opClass()]++;
/* Set the CP SeqNum to the numOps commit number */
if (inst->traceData)
inst->traceData->setCPSeq(thread->numOp);
cpu.probeInstCommit(inst->staticInst);
}
bool
Execute::commitInst(MinorDynInstPtr inst, bool early_memory_issue,
BranchData &branch, Fault &fault, bool &committed,
bool &completed_mem_issue)
{
ThreadID thread_id = inst->id.threadId;
ThreadContext *thread = cpu.getContext(thread_id);
bool completed_inst = true;
fault = NoFault;
/* Is the thread for this instruction suspended? In that case, just
* stall as long as there are no pending interrupts */
if (thread->status() == ThreadContext::Suspended &&
!isInterrupted(thread_id))
{
panic("We should never hit the case where we try to commit from a "
"suspended thread as the streamSeqNum should not match");
} else if (inst->isFault()) {
ExecContext context(cpu, *cpu.threads[thread_id], *this, inst);
DPRINTF(MinorExecute, "Fault inst reached Execute: %s\n",
inst->fault->name());
fault = inst->fault;
inst->fault->invoke(thread, NULL);
tryToBranch(inst, fault, branch);
} else if (inst->staticInst->isMemRef()) {
/* Memory accesses are executed in two parts:
* executeMemRefInst -- calculates the EA and issues the access
* to memory. This is done here.
* handleMemResponse -- handles the response packet, done by
* Execute::commit
*
* While the memory access is in its FU, the EA is being
* calculated. At the end of the FU, when it is ready to
* 'commit' (in this function), the access is presented to the
* memory queues. When a response comes back from memory,
* Execute::commit will commit it.
*/
bool predicate_passed = false;
bool completed_mem_inst = executeMemRefInst(inst, branch,
predicate_passed, fault);
if (completed_mem_inst && fault != NoFault) {
if (early_memory_issue) {
DPRINTF(MinorExecute, "Fault in early executing inst: %s\n",
fault->name());
/* Don't execute the fault, just stall the instruction
* until it gets to the head of inFlightInsts */
inst->canEarlyIssue = false;
/* Not completed as we'll come here again to pick up
* the fault when we get to the end of the FU */
completed_inst = false;
} else {
DPRINTF(MinorExecute, "Fault in execute: %s\n",
fault->name());
fault->invoke(thread, NULL);
tryToBranch(inst, fault, branch);
completed_inst = true;
}
} else {
completed_inst = completed_mem_inst;
}
completed_mem_issue = completed_inst;
} else if (inst->isInst() && inst->staticInst->isMemBarrier() &&
!lsq.canPushIntoStoreBuffer())
{
DPRINTF(MinorExecute, "Can't commit data barrier inst: %s yet as"
" there isn't space in the store buffer\n", *inst);
completed_inst = false;
} else if (inst->isInst() && inst->staticInst->isQuiesce()
&& !branch.isBubble()){
/* This instruction can suspend, need to be able to communicate
* backwards, so no other branches may evaluate this cycle*/
completed_inst = false;
} else {
ExecContext context(cpu, *cpu.threads[thread_id], *this, inst);
DPRINTF(MinorExecute, "Committing inst: %s\n", *inst);
fault = inst->staticInst->execute(&context,
inst->traceData);
/* Set the predicate for tracing and dump */
if (inst->traceData)
inst->traceData->setPredicate(context.readPredicate());
committed = true;
if (fault != NoFault) {
DPRINTF(MinorExecute, "Fault in execute of inst: %s fault: %s\n",
*inst, fault->name());
fault->invoke(thread, inst->staticInst);
}
doInstCommitAccounting(inst);
tryToBranch(inst, fault, branch);
}
if (completed_inst) {
/* Keep a copy of this instruction's predictionSeqNum just in case
* we need to issue a branch without an instruction (such as an
* interrupt) */
executeInfo[thread_id].lastPredictionSeqNum = inst->id.predictionSeqNum;
/* Check to see if this instruction suspended the current thread. */
if (!inst->isFault() &&
thread->status() == ThreadContext::Suspended &&
branch.isBubble() && /* It didn't branch too */
!isInterrupted(thread_id)) /* Don't suspend if we have
interrupts */
{
TheISA::PCState resume_pc = cpu.getContext(thread_id)->pcState();
assert(resume_pc.microPC() == 0);
DPRINTF(MinorInterrupt, "Suspending thread: %d from Execute"
" inst: %s\n", thread_id, *inst);
cpu.stats.numFetchSuspends++;
updateBranchData(thread_id, BranchData::SuspendThread, inst,
resume_pc, branch);
}
}
return completed_inst;
}
void
Execute::commit(ThreadID thread_id, bool only_commit_microops, bool discard,
BranchData &branch)
{
Fault fault = NoFault;
Cycles now = cpu.curCycle();
ExecuteThreadInfo &ex_info = executeInfo[thread_id];
/**
* Try and execute as many instructions from the end of FU pipelines as
* possible. This *doesn't* include actually advancing the pipelines.
*
* We do this by looping on the front of the inFlightInsts queue for as
* long as we can find the desired instruction at the end of the
* functional unit it was issued to without seeing a branch or a fault.
* In this function, these terms are used:
* complete -- The instruction has finished its passage through
* its functional unit and its fate has been decided
* (committed, discarded, issued to the memory system)
* commit -- The instruction is complete(d), not discarded and has
* its effects applied to the CPU state
* discard(ed) -- The instruction is complete but not committed
* as its streamSeqNum disagrees with the current
* Execute::streamSeqNum
*
* Commits are also possible from two other places:
*
* 1) Responses returning from the LSQ
* 2) Mem ops issued to the LSQ ('committed' from the FUs) earlier
* than their position in the inFlightInsts queue, but after all
* their dependencies are resolved.
*/
/* Has an instruction been completed? Once this becomes false, we stop
* trying to complete instructions. */
bool completed_inst = true;
/* Number of insts committed this cycle to check against commitLimit */
unsigned int num_insts_committed = 0;
/* Number of memory access instructions committed to check against
* memCommitLimit */
unsigned int num_mem_refs_committed = 0;
if (only_commit_microops && !ex_info.inFlightInsts->empty()) {
DPRINTF(MinorInterrupt, "Only commit microops %s %d\n",
*(ex_info.inFlightInsts->front().inst),
ex_info.lastCommitWasEndOfMacroop);
}
while (!ex_info.inFlightInsts->empty() && /* Some more instructions to process */
!branch.isStreamChange() && /* No real branch */
fault == NoFault && /* No faults */
completed_inst && /* Still finding instructions to execute */
num_insts_committed != commitLimit /* Not reached commit limit */
)
{
if (only_commit_microops) {
DPRINTF(MinorInterrupt, "Committing tail of insts before"
" interrupt: %s\n",
*(ex_info.inFlightInsts->front().inst));
}
QueuedInst *head_inflight_inst = &(ex_info.inFlightInsts->front());
InstSeqNum head_exec_seq_num =
head_inflight_inst->inst->id.execSeqNum;
/* The instruction we actually process if completed_inst
* remains true to the end of the loop body.
* Start by considering the the head of the in flight insts queue */
MinorDynInstPtr inst = head_inflight_inst->inst;
bool committed_inst = false;
bool discard_inst = false;
bool completed_mem_ref = false;
bool issued_mem_ref = false;
bool early_memory_issue = false;
/* Must set this again to go around the loop */
completed_inst = false;
/* If we're just completing a macroop before an interrupt or drain,
* can we stil commit another microop (rather than a memory response)
* without crosing into the next full instruction? */
bool can_commit_insts = !ex_info.inFlightInsts->empty() &&
!(only_commit_microops && ex_info.lastCommitWasEndOfMacroop);
/* Can we find a mem response for this inst */
LSQ::LSQRequestPtr mem_response =
(inst->inLSQ ? lsq.findResponse(inst) : NULL);
DPRINTF(MinorExecute, "Trying to commit canCommitInsts: %d\n",
can_commit_insts);
/* Test for PC events after every instruction */
if (isInbetweenInsts(thread_id) && tryPCEvents(thread_id)) {
ThreadContext *thread = cpu.getContext(thread_id);
/* Branch as there was a change in PC */
updateBranchData(thread_id, BranchData::UnpredictedBranch,
MinorDynInst::bubble(), thread->pcState(), branch);
} else if (mem_response &&
num_mem_refs_committed < memoryCommitLimit)
{
/* Try to commit from the memory responses next */
discard_inst = inst->id.streamSeqNum !=
ex_info.streamSeqNum || discard;
DPRINTF(MinorExecute, "Trying to commit mem response: %s\n",
*inst);
/* Complete or discard the response */
if (discard_inst) {
DPRINTF(MinorExecute, "Discarding mem inst: %s as its"
" stream state was unexpected, expected: %d\n",
*inst, ex_info.streamSeqNum);
lsq.popResponse(mem_response);
} else {
handleMemResponse(inst, mem_response, branch, fault);
committed_inst = true;
}
completed_mem_ref = true;
completed_inst = true;
} else if (can_commit_insts) {
/* If true, this instruction will, subject to timing tweaks,
* be considered for completion. try_to_commit flattens
* the `if' tree a bit and allows other tests for inst
* commit to be inserted here. */
bool try_to_commit = false;
/* Try and issue memory ops early if they:
* - Can push a request into the LSQ
* - Have reached the end of their FUs
* - Have had all their dependencies satisfied
* - Are from the right stream
*
* For any other case, leave it to the normal instruction
* issue below to handle them.
*/
if (!ex_info.inFUMemInsts->empty() && lsq.canRequest()) {
DPRINTF(MinorExecute, "Trying to commit from mem FUs\n");
const MinorDynInstPtr head_mem_ref_inst =
ex_info.inFUMemInsts->front().inst;
FUPipeline *fu = funcUnits[head_mem_ref_inst->fuIndex];
const MinorDynInstPtr &fu_inst = fu->front().inst;
/* Use this, possibly out of order, inst as the one
* to 'commit'/send to the LSQ */
if (!fu_inst->isBubble() &&
!fu_inst->inLSQ &&
fu_inst->canEarlyIssue &&
ex_info.streamSeqNum == fu_inst->id.streamSeqNum &&
head_exec_seq_num > fu_inst->instToWaitFor)
{
DPRINTF(MinorExecute, "Issuing mem ref early"
" inst: %s instToWaitFor: %d\n",
*(fu_inst), fu_inst->instToWaitFor);
inst = fu_inst;
try_to_commit = true;
early_memory_issue = true;
completed_inst = true;
}
}
/* Try and commit FU-less insts */
if (!completed_inst && inst->isNoCostInst()) {
DPRINTF(MinorExecute, "Committing no cost inst: %s", *inst);
try_to_commit = true;
completed_inst = true;
}
/* Try to issue from the ends of FUs and the inFlightInsts
* queue */
if (!completed_inst && !inst->inLSQ) {
DPRINTF(MinorExecute, "Trying to commit from FUs\n");
/* Try to commit from a functional unit */
/* Is the head inst of the expected inst's FU actually the
* expected inst? */
QueuedInst &fu_inst =
funcUnits[inst->fuIndex]->front();
InstSeqNum fu_inst_seq_num = fu_inst.inst->id.execSeqNum;
if (fu_inst.inst->isBubble()) {
/* No instruction ready */
completed_inst = false;
} else if (fu_inst_seq_num != head_exec_seq_num) {
/* Past instruction: we must have already executed it
* in the same cycle and so the head inst isn't
* actually at the end of its pipeline
* Future instruction: handled above and only for
* mem refs on their way to the LSQ */
} else if (fu_inst.inst->id == inst->id) {
/* All instructions can be committed if they have the
* right execSeqNum and there are no in-flight
* mem insts before us */
try_to_commit = true;
completed_inst = true;
}
}
if (try_to_commit) {
discard_inst = inst->id.streamSeqNum !=
ex_info.streamSeqNum || discard;
/* Is this instruction discardable as its streamSeqNum
* doesn't match? */
if (!discard_inst) {
/* Try to commit or discard a non-memory instruction.
* Memory ops are actually 'committed' from this FUs
* and 'issued' into the memory system so we need to
* account for them later (commit_was_mem_issue gets
* set) */
if (inst->extraCommitDelayExpr) {
DPRINTF(MinorExecute, "Evaluating expression for"
" extra commit delay inst: %s\n", *inst);
ThreadContext *thread = cpu.getContext(thread_id);
TimingExprEvalContext context(inst->staticInst,
thread, NULL);
uint64_t extra_delay = inst->extraCommitDelayExpr->
eval(context);
DPRINTF(MinorExecute, "Extra commit delay expr"
" result: %d\n", extra_delay);
if (extra_delay < 128) {
inst->extraCommitDelay += Cycles(extra_delay);
} else {
DPRINTF(MinorExecute, "Extra commit delay was"
" very long: %d\n", extra_delay);
}
inst->extraCommitDelayExpr = NULL;
}
/* Move the extraCommitDelay from the instruction
* into the minimumCommitCycle */
if (inst->extraCommitDelay != Cycles(0)) {
inst->minimumCommitCycle = cpu.curCycle() +
inst->extraCommitDelay;
inst->extraCommitDelay = Cycles(0);
}
/* @todo Think about making lastMemBarrier be
* MAX_UINT_64 to avoid using 0 as a marker value */
if (!inst->isFault() && inst->isMemRef() &&
lsq.getLastMemBarrier(thread_id) <
inst->id.execSeqNum &&
lsq.getLastMemBarrier(thread_id) != 0)
{
DPRINTF(MinorExecute, "Not committing inst: %s yet"
" as there are incomplete barriers in flight\n",
*inst);
completed_inst = false;
} else if (inst->minimumCommitCycle > now) {
DPRINTF(MinorExecute, "Not committing inst: %s yet"
" as it wants to be stalled for %d more cycles\n",
*inst, inst->minimumCommitCycle - now);
completed_inst = false;
} else {
completed_inst = commitInst(inst,
early_memory_issue, branch, fault,
committed_inst, issued_mem_ref);
}
} else {
/* Discard instruction */
completed_inst = true;
}
if (completed_inst) {
/* Allow the pipeline to advance. If the FU head
* instruction wasn't the inFlightInsts head
* but had already been committed, it would have
* unstalled the pipeline before here */
if (inst->fuIndex != noCostFUIndex) {
DPRINTF(MinorExecute, "Unstalling %d for inst %s\n", inst->fuIndex, inst->id);
funcUnits[inst->fuIndex]->stalled = false;
}
}
}
} else {
DPRINTF(MinorExecute, "No instructions to commit\n");
completed_inst = false;
}
/* All discardable instructions must also be 'completed' by now */
assert(!(discard_inst && !completed_inst));
/* Instruction committed but was discarded due to streamSeqNum
* mismatch */
if (discard_inst) {
DPRINTF(MinorExecute, "Discarding inst: %s as its stream"
" state was unexpected, expected: %d\n",
*inst, ex_info.streamSeqNum);
if (fault == NoFault)
cpu.stats.numDiscardedOps++;
}
/* Mark the mem inst as being in the LSQ */
if (issued_mem_ref) {
inst->fuIndex = 0;
inst->inLSQ = true;
}
/* Pop issued (to LSQ) and discarded mem refs from the inFUMemInsts
* as they've *definitely* exited the FUs */
if (completed_inst && inst->isMemRef()) {
/* The MemRef could have been discarded from the FU or the memory
* queue, so just check an FU instruction */
if (!ex_info.inFUMemInsts->empty() &&
ex_info.inFUMemInsts->front().inst == inst)
{
ex_info.inFUMemInsts->pop();
}
}
if (completed_inst && !(issued_mem_ref && fault == NoFault)) {
/* Note that this includes discarded insts */
DPRINTF(MinorExecute, "Completed inst: %s\n", *inst);
/* Got to the end of a full instruction? */
ex_info.lastCommitWasEndOfMacroop = inst->isFault() ||
inst->isLastOpInInst();
/* lastPredictionSeqNum is kept as a convenience to prevent its
* value from changing too much on the minorview display */
ex_info.lastPredictionSeqNum = inst->id.predictionSeqNum;
/* Finished with the inst, remove it from the inst queue and
* clear its dependencies */
ex_info.inFlightInsts->pop();
/* Complete barriers in the LSQ/move to store buffer */
if (inst->isInst() && inst->staticInst->isMemBarrier()) {
DPRINTF(MinorMem, "Completing memory barrier"
" inst: %s committed: %d\n", *inst, committed_inst);
lsq.completeMemBarrierInst(inst, committed_inst);
}
scoreboard[thread_id].clearInstDests(inst, inst->isMemRef());
}
/* Handle per-cycle instruction counting */
if (committed_inst) {
bool is_no_cost_inst = inst->isNoCostInst();
/* Don't show no cost instructions as having taken a commit
* slot */
if (DTRACE(MinorTrace) && !is_no_cost_inst)
ex_info.instsBeingCommitted.insts[num_insts_committed] = inst;
if (!is_no_cost_inst)
num_insts_committed++;
if (num_insts_committed == commitLimit)
DPRINTF(MinorExecute, "Reached inst commit limit\n");
/* Re-set the time of the instruction if that's required for
* tracing */
if (inst->traceData) {
if (setTraceTimeOnCommit)
inst->traceData->setWhen(curTick());
inst->traceData->dump();
}
if (completed_mem_ref)
num_mem_refs_committed++;
if (num_mem_refs_committed == memoryCommitLimit)
DPRINTF(MinorExecute, "Reached mem ref commit limit\n");
}
}
}
bool
Execute::isInbetweenInsts(ThreadID thread_id) const
{
return executeInfo[thread_id].lastCommitWasEndOfMacroop &&
!lsq.accessesInFlight();
}
void
Execute::evaluate()
{
if (!inp.outputWire->isBubble())
inputBuffer[inp.outputWire->threadId].setTail(*inp.outputWire);
BranchData &branch = *out.inputWire;
unsigned int num_issued = 0;
/* Do all the cycle-wise activities for dcachePort here to potentially
* free up input spaces in the LSQ's requests queue */
lsq.step();
/* Check interrupts first. Will halt commit if interrupt found */
bool interrupted = false;
ThreadID interrupt_tid = checkInterrupts(branch, interrupted);
if (interrupt_tid != InvalidThreadID) {
/* Signalling an interrupt this cycle, not issuing/committing from
* any other threads */
} else if (!branch.isBubble()) {
/* It's important that this is here to carry Fetch1 wakeups to Fetch1
* without overwriting them */
DPRINTF(MinorInterrupt, "Execute skipping a cycle to allow old"
" branch to complete\n");
} else {
ThreadID commit_tid = getCommittingThread();
if (commit_tid != InvalidThreadID) {
ExecuteThreadInfo& commit_info = executeInfo[commit_tid];
DPRINTF(MinorExecute, "Attempting to commit [tid:%d]\n",
commit_tid);
/* commit can set stalled flags observable to issue and so *must* be
* called first */
if (commit_info.drainState != NotDraining) {
if (commit_info.drainState == DrainCurrentInst) {
/* Commit only micro-ops, don't kill anything else */
commit(commit_tid, true, false, branch);
if (isInbetweenInsts(commit_tid))
setDrainState(commit_tid, DrainHaltFetch);
/* Discard any generated branch */
branch = BranchData::bubble();
} else if (commit_info.drainState == DrainAllInsts) {
/* Kill all instructions */
while (getInput(commit_tid))
popInput(commit_tid);
commit(commit_tid, false, true, branch);
}
} else {
/* Commit micro-ops only if interrupted. Otherwise, commit
* anything you like */
DPRINTF(MinorExecute, "Committing micro-ops for interrupt[tid:%d]\n",
commit_tid);
bool only_commit_microops = interrupted &&
hasInterrupt(commit_tid);
commit(commit_tid, only_commit_microops, false, branch);
}
/* Halt fetch, but don't do it until we have the current instruction in
* the bag */
if (commit_info.drainState == DrainHaltFetch) {
updateBranchData(commit_tid, BranchData::HaltFetch,
MinorDynInst::bubble(), TheISA::PCState(0), branch);
cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
setDrainState(commit_tid, DrainAllInsts);
}
}
ThreadID issue_tid = getIssuingThread();
/* This will issue merrily even when interrupted in the sure and
* certain knowledge that the interrupt with change the stream */
if (issue_tid != InvalidThreadID) {
DPRINTF(MinorExecute, "Attempting to issue [tid:%d]\n",
issue_tid);
num_issued = issue(issue_tid);
}
}
/* Run logic to step functional units + decide if we are active on the next
* clock cycle */
std::vector<MinorDynInstPtr> next_issuable_insts;
bool can_issue_next = false;
for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
/* Find the next issuable instruction for each thread and see if it can
be issued */
if (getInput(tid)) {
unsigned int input_index = executeInfo[tid].inputIndex;
MinorDynInstPtr inst = getInput(tid)->insts[input_index];
if (inst->isFault()) {
can_issue_next = true;
} else if (!inst->isBubble()) {
next_issuable_insts.push_back(inst);
}
}
}
bool becoming_stalled = true;
/* Advance the pipelines and note whether they still need to be
* advanced */
for (unsigned int i = 0; i < numFuncUnits; i++) {
FUPipeline *fu = funcUnits[i];
fu->advance();
/* If we need to tick again, the pipeline will have been left or set
* to be unstalled */
if (fu->occupancy !=0 && !fu->stalled)
becoming_stalled = false;
/* Could we possibly issue the next instruction from any thread?
* This is quite an expensive test and is only used to determine
* if the CPU should remain active, only run it if we aren't sure
* we are active next cycle yet */
for (auto inst : next_issuable_insts) {
if (!fu->stalled && fu->provides(inst->staticInst->opClass()) &&
scoreboard[inst->id.threadId].canInstIssue(inst,
NULL, NULL, cpu.curCycle() + Cycles(1),
cpu.getContext(inst->id.threadId))) {
can_issue_next = true;
break;
}
}
}
bool head_inst_might_commit = false;
/* Could the head in flight insts be committed */
for (auto const &info : executeInfo) {
if (!info.inFlightInsts->empty()) {
const QueuedInst &head_inst = info.inFlightInsts->front();
if (head_inst.inst->isNoCostInst()) {
head_inst_might_commit = true;
} else {
FUPipeline *fu = funcUnits[head_inst.inst->fuIndex];
if ((fu->stalled &&
fu->front().inst->id == head_inst.inst->id) ||
lsq.findResponse(head_inst.inst))
{
head_inst_might_commit = true;
break;
}
}
}
}
DPRINTF(Activity, "Need to tick num issued insts: %s%s%s%s%s%s\n",
(num_issued != 0 ? " (issued some insts)" : ""),
(becoming_stalled ? "(becoming stalled)" : "(not becoming stalled)"),
(can_issue_next ? " (can issued next inst)" : ""),
(head_inst_might_commit ? "(head inst might commit)" : ""),
(lsq.needsToTick() ? " (LSQ needs to tick)" : ""),
(interrupted ? " (interrupted)" : ""));
bool need_to_tick =
num_issued != 0 || /* Issued some insts this cycle */
!becoming_stalled || /* Some FU pipelines can still move */
can_issue_next || /* Can still issue a new inst */
head_inst_might_commit || /* Could possible commit the next inst */
lsq.needsToTick() || /* Must step the dcache port */
interrupted; /* There are pending interrupts */
if (!need_to_tick) {
DPRINTF(Activity, "The next cycle might be skippable as there are no"
" advanceable FUs\n");
}
/* Wake up if we need to tick again */
if (need_to_tick)
cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
/* Note activity of following buffer */
if (!branch.isBubble())
cpu.activityRecorder->activity();
/* Make sure the input (if any left) is pushed */
if (!inp.outputWire->isBubble())
inputBuffer[inp.outputWire->threadId].pushTail();
}
ThreadID
Execute::checkInterrupts(BranchData& branch, bool& interrupted)
{
ThreadID tid = interruptPriority;
/* Evaluate interrupts in round-robin based upon service */
do {
/* Has an interrupt been signalled? This may not be acted on
* straighaway so this is different from took_interrupt */
bool thread_interrupted = false;
if (FullSystem && cpu.getInterruptController(tid)) {
/* This is here because it seems that after drainResume the
* interrupt controller isn't always set */
thread_interrupted = executeInfo[tid].drainState == NotDraining &&
isInterrupted(tid);
interrupted = interrupted || thread_interrupted;
} else {
DPRINTF(MinorInterrupt, "No interrupt controller\n");
}
DPRINTF(MinorInterrupt, "[tid:%d] thread_interrupted?=%d isInbetweenInsts?=%d\n",
tid, thread_interrupted, isInbetweenInsts(tid));
/* Act on interrupts */
if (thread_interrupted && isInbetweenInsts(tid)) {
if (takeInterrupt(tid, branch)) {
interruptPriority = tid;
return tid;
}
} else {
tid = (tid + 1) % cpu.numThreads;
}
} while (tid != interruptPriority);
return InvalidThreadID;
}
bool
Execute::hasInterrupt(ThreadID thread_id)
{
if (FullSystem && cpu.getInterruptController(thread_id)) {
return executeInfo[thread_id].drainState == NotDraining &&
isInterrupted(thread_id);
}
return false;
}
void
Execute::minorTrace() const
{
std::ostringstream insts;
std::ostringstream stalled;
executeInfo[0].instsBeingCommitted.reportData(insts);
lsq.minorTrace();
inputBuffer[0].minorTrace();
scoreboard[0].minorTrace();
/* Report functional unit stalling in one string */
unsigned int i = 0;
while (i < numFuncUnits)
{
stalled << (funcUnits[i]->stalled ? '1' : 'E');
i++;
if (i != numFuncUnits)
stalled << ',';
}
MINORTRACE("insts=%s inputIndex=%d streamSeqNum=%d"
" stalled=%s drainState=%d isInbetweenInsts=%d\n",
insts.str(), executeInfo[0].inputIndex, executeInfo[0].streamSeqNum,
stalled.str(), executeInfo[0].drainState, isInbetweenInsts(0));
std::for_each(funcUnits.begin(), funcUnits.end(),
std::mem_fun(&FUPipeline::minorTrace));
executeInfo[0].inFlightInsts->minorTrace();
executeInfo[0].inFUMemInsts->minorTrace();
}
inline ThreadID
Execute::getCommittingThread()
{
std::vector<ThreadID> priority_list;
switch (cpu.threadPolicy) {
case Enums::SingleThreaded:
return 0;
case Enums::RoundRobin:
priority_list = cpu.roundRobinPriority(commitPriority);
break;
case Enums::Random:
priority_list = cpu.randomPriority();
break;
default:
panic("Invalid thread policy");
}
for (auto tid : priority_list) {
ExecuteThreadInfo &ex_info = executeInfo[tid];
bool can_commit_insts = !ex_info.inFlightInsts->empty();
if (can_commit_insts) {
QueuedInst *head_inflight_inst = &(ex_info.inFlightInsts->front());
MinorDynInstPtr inst = head_inflight_inst->inst;
can_commit_insts = can_commit_insts &&
(!inst->inLSQ || (lsq.findResponse(inst) != NULL));
if (!inst->inLSQ) {
bool can_transfer_mem_inst = false;
if (!ex_info.inFUMemInsts->empty() && lsq.canRequest()) {
const MinorDynInstPtr head_mem_ref_inst =
ex_info.inFUMemInsts->front().inst;
FUPipeline *fu = funcUnits[head_mem_ref_inst->fuIndex];
const MinorDynInstPtr &fu_inst = fu->front().inst;
can_transfer_mem_inst =
!fu_inst->isBubble() &&
fu_inst->id.threadId == tid &&
!fu_inst->inLSQ &&
fu_inst->canEarlyIssue &&
inst->id.execSeqNum > fu_inst->instToWaitFor;
}
bool can_execute_fu_inst = inst->fuIndex == noCostFUIndex;
if (can_commit_insts && !can_transfer_mem_inst &&
inst->fuIndex != noCostFUIndex)
{
QueuedInst& fu_inst = funcUnits[inst->fuIndex]->front();
can_execute_fu_inst = !fu_inst.inst->isBubble() &&
fu_inst.inst->id == inst->id;
}
can_commit_insts = can_commit_insts &&
(can_transfer_mem_inst || can_execute_fu_inst);
}
}
if (can_commit_insts) {
commitPriority = tid;
return tid;
}
}
return InvalidThreadID;
}
inline ThreadID
Execute::getIssuingThread()
{
std::vector<ThreadID> priority_list;
switch (cpu.threadPolicy) {
case Enums::SingleThreaded:
return 0;
case Enums::RoundRobin:
priority_list = cpu.roundRobinPriority(issuePriority);
break;
case Enums::Random:
priority_list = cpu.randomPriority();
break;
default:
panic("Invalid thread scheduling policy.");
}
for (auto tid : priority_list) {
if (getInput(tid)) {
issuePriority = tid;
return tid;
}
}
return InvalidThreadID;
}
void
Execute::drainResume()
{
DPRINTF(Drain, "MinorExecute drainResume\n");
for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
setDrainState(tid, NotDraining);
}
cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
}
std::ostream &operator <<(std::ostream &os, Execute::DrainState state)
{
switch (state)
{
case Execute::NotDraining:
os << "NotDraining";
break;
case Execute::DrainCurrentInst:
os << "DrainCurrentInst";
break;
case Execute::DrainHaltFetch:
os << "DrainHaltFetch";
break;
case Execute::DrainAllInsts:
os << "DrainAllInsts";
break;
default:
os << "Drain-" << static_cast<int>(state);
break;
}
return os;
}
void
Execute::setDrainState(ThreadID thread_id, DrainState state)
{
DPRINTF(Drain, "setDrainState[%d]: %s\n", thread_id, state);
executeInfo[thread_id].drainState = state;
}
unsigned int
Execute::drain()
{
DPRINTF(Drain, "MinorExecute drain\n");
for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
if (executeInfo[tid].drainState == NotDraining) {
cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
/* Go to DrainCurrentInst if we're between microops
* or waiting on an unbufferable memory operation.
* Otherwise we can go straight to DrainHaltFetch
*/
if (isInbetweenInsts(tid))
setDrainState(tid, DrainHaltFetch);
else
setDrainState(tid, DrainCurrentInst);
}
}
return (isDrained() ? 0 : 1);
}
bool
Execute::isDrained()
{
if (!lsq.isDrained())
return false;
for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
if (!inputBuffer[tid].empty() ||
!executeInfo[tid].inFlightInsts->empty()) {
return false;
}
}
return true;
}
Execute::~Execute()
{
for (unsigned int i = 0; i < numFuncUnits; i++)
delete funcUnits[i];
for (ThreadID tid = 0; tid < cpu.numThreads; tid++)
delete executeInfo[tid].inFlightInsts;
}
bool
Execute::instIsRightStream(MinorDynInstPtr inst)
{
return inst->id.streamSeqNum == executeInfo[inst->id.threadId].streamSeqNum;
}
bool
Execute::instIsHeadInst(MinorDynInstPtr inst)
{
bool ret = false;
if (!executeInfo[inst->id.threadId].inFlightInsts->empty())
ret = executeInfo[inst->id.threadId].inFlightInsts->front().inst->id == inst->id;
return ret;
}
MinorCPU::MinorCPUPort &
Execute::getDcachePort()
{
return lsq.getDcachePort();
}
}
|