summaryrefslogtreecommitdiff
path: root/src/cpu/minor/lsq.cc
blob: dea776c9e028631a03ffc953a1c5237109741761 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
/*
 * Copyright (c) 2013-2014,2017-2018 ARM Limited
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Andrew Bardsley
 */

#include "cpu/minor/lsq.hh"

#include <iomanip>
#include <sstream>

#include "arch/locked_mem.hh"
#include "arch/mmapped_ipr.hh"
#include "base/logging.hh"
#include "cpu/minor/cpu.hh"
#include "cpu/minor/exec_context.hh"
#include "cpu/minor/execute.hh"
#include "cpu/minor/pipeline.hh"
#include "cpu/utils.hh"
#include "debug/Activity.hh"
#include "debug/MinorMem.hh"

namespace Minor
{

LSQ::LSQRequest::LSQRequest(LSQ &port_, MinorDynInstPtr inst_, bool isLoad_,
    PacketDataPtr data_, uint64_t *res_) :
    SenderState(),
    port(port_),
    inst(inst_),
    isLoad(isLoad_),
    data(data_),
    packet(NULL),
    request(),
    res(res_),
    skipped(false),
    issuedToMemory(false),
    isTranslationDelayed(false),
    state(NotIssued)
{
    request = std::make_shared<Request>();
}

void
LSQ::LSQRequest::tryToSuppressFault()
{
    SimpleThread &thread = *port.cpu.threads[inst->id.threadId];
    TheISA::PCState old_pc = thread.pcState();
    ExecContext context(port.cpu, thread, port.execute, inst);
    Fault M5_VAR_USED fault = inst->translationFault;

    // Give the instruction a chance to suppress a translation fault
    inst->translationFault = inst->staticInst->initiateAcc(&context, nullptr);
    if (inst->translationFault == NoFault) {
        DPRINTFS(MinorMem, (&port),
                 "Translation fault suppressed for inst:%s\n", *inst);
    } else {
        assert(inst->translationFault == fault);
    }
    thread.pcState(old_pc);
}

void
LSQ::LSQRequest::completeDisabledMemAccess()
{
    DPRINTFS(MinorMem, (&port), "Complete disabled mem access for inst:%s\n",
             *inst);

    SimpleThread &thread = *port.cpu.threads[inst->id.threadId];
    TheISA::PCState old_pc = thread.pcState();

    ExecContext context(port.cpu, thread, port.execute, inst);

    context.setMemAccPredicate(false);
    inst->staticInst->completeAcc(nullptr, &context, inst->traceData);

    thread.pcState(old_pc);
}

void
LSQ::LSQRequest::disableMemAccess()
{
    port.cpu.threads[inst->id.threadId]->setMemAccPredicate(false);
    DPRINTFS(MinorMem, (&port), "Disable mem access for inst:%s\n", *inst);
}

LSQ::AddrRangeCoverage
LSQ::LSQRequest::containsAddrRangeOf(
    Addr req1_addr, unsigned int req1_size,
    Addr req2_addr, unsigned int req2_size)
{
    /* 'end' here means the address of the byte just past the request
     *  blocks */
    Addr req2_end_addr = req2_addr + req2_size;
    Addr req1_end_addr = req1_addr + req1_size;

    AddrRangeCoverage ret;

    if (req1_addr >= req2_end_addr || req1_end_addr <= req2_addr)
        ret = NoAddrRangeCoverage;
    else if (req1_addr <= req2_addr && req1_end_addr >= req2_end_addr)
        ret = FullAddrRangeCoverage;
    else
        ret = PartialAddrRangeCoverage;

    return ret;
}

LSQ::AddrRangeCoverage
LSQ::LSQRequest::containsAddrRangeOf(LSQRequestPtr other_request)
{
    return containsAddrRangeOf(request->getPaddr(), request->getSize(),
        other_request->request->getPaddr(), other_request->request->getSize());
}

bool
LSQ::LSQRequest::isBarrier()
{
    return inst->isInst() && inst->staticInst->isMemBarrier();
}

bool
LSQ::LSQRequest::needsToBeSentToStoreBuffer()
{
    return state == StoreToStoreBuffer;
}

void
LSQ::LSQRequest::setState(LSQRequestState new_state)
{
    DPRINTFS(MinorMem, (&port), "Setting state from %d to %d for request:"
        " %s\n", state, new_state, *inst);
    state = new_state;
}

bool
LSQ::LSQRequest::isComplete() const
{
    /* @todo, There is currently only one 'completed' state.  This
     *  may not be a good choice */
    return state == Complete;
}

void
LSQ::LSQRequest::reportData(std::ostream &os) const
{
    os << (isLoad ? 'R' : 'W') << ';';
    inst->reportData(os);
    os << ';' << state;
}

std::ostream &
operator <<(std::ostream &os, LSQ::AddrRangeCoverage coverage)
{
    switch (coverage) {
      case LSQ::PartialAddrRangeCoverage:
        os << "PartialAddrRangeCoverage";
        break;
      case LSQ::FullAddrRangeCoverage:
        os << "FullAddrRangeCoverage";
        break;
      case LSQ::NoAddrRangeCoverage:
        os << "NoAddrRangeCoverage";
        break;
      default:
        os << "AddrRangeCoverage-" << static_cast<int>(coverage);
        break;
    }
    return os;
}

std::ostream &
operator <<(std::ostream &os, LSQ::LSQRequest::LSQRequestState state)
{
    switch (state) {
      case LSQ::LSQRequest::NotIssued:
        os << "NotIssued";
        break;
      case LSQ::LSQRequest::InTranslation:
        os << "InTranslation";
        break;
      case LSQ::LSQRequest::Translated:
        os << "Translated";
        break;
      case LSQ::LSQRequest::Failed:
        os << "Failed";
        break;
      case LSQ::LSQRequest::RequestIssuing:
        os << "RequestIssuing";
        break;
      case LSQ::LSQRequest::StoreToStoreBuffer:
        os << "StoreToStoreBuffer";
        break;
      case LSQ::LSQRequest::StoreInStoreBuffer:
        os << "StoreInStoreBuffer";
        break;
      case LSQ::LSQRequest::StoreBufferIssuing:
        os << "StoreBufferIssuing";
        break;
      case LSQ::LSQRequest::RequestNeedsRetry:
        os << "RequestNeedsRetry";
        break;
      case LSQ::LSQRequest::StoreBufferNeedsRetry:
        os << "StoreBufferNeedsRetry";
        break;
      case LSQ::LSQRequest::Complete:
        os << "Complete";
        break;
      default:
        os << "LSQRequestState-" << static_cast<int>(state);
        break;
    }
    return os;
}

void
LSQ::clearMemBarrier(MinorDynInstPtr inst)
{
    bool is_last_barrier =
        inst->id.execSeqNum >= lastMemBarrier[inst->id.threadId];

    DPRINTF(MinorMem, "Moving %s barrier out of store buffer inst: %s\n",
        (is_last_barrier ? "last" : "a"), *inst);

    if (is_last_barrier)
        lastMemBarrier[inst->id.threadId] = 0;
}

void
LSQ::SingleDataRequest::finish(const Fault &fault_, const RequestPtr &request_,
                               ThreadContext *tc, BaseTLB::Mode mode)
{
    port.numAccessesInDTLB--;

    DPRINTFS(MinorMem, (&port), "Received translation response for"
             " request: %s delayed:%d %s\n", *inst, isTranslationDelayed,
             fault_ != NoFault ? fault_->name() : "");

    if (fault_ != NoFault) {
        inst->translationFault = fault_;
        if (isTranslationDelayed) {
            tryToSuppressFault();
            if (inst->translationFault == NoFault) {
                completeDisabledMemAccess();
                setState(Complete);
            }
        }
        setState(Translated);
    } else {
        setState(Translated);
        makePacket();
    }
    port.tryToSendToTransfers(this);

    /* Let's try and wake up the processor for the next cycle */
    port.cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
}

void
LSQ::SingleDataRequest::startAddrTranslation()
{
    ThreadContext *thread = port.cpu.getContext(
        inst->id.threadId);

    const auto &byte_enable = request->getByteEnable();
    if (byte_enable.size() == 0 ||
        isAnyActiveElement(byte_enable.cbegin(), byte_enable.cend())) {
        port.numAccessesInDTLB++;

        setState(LSQ::LSQRequest::InTranslation);

        DPRINTFS(MinorMem, (&port), "Submitting DTLB request\n");
        /* Submit the translation request.  The response will come through
         *  finish/markDelayed on the LSQRequest as it bears the Translation
         *  interface */
        thread->getDTBPtr()->translateTiming(
            request, thread, this, (isLoad ? BaseTLB::Read : BaseTLB::Write));
    } else {
        disableMemAccess();
        setState(LSQ::LSQRequest::Complete);
    }
}

void
LSQ::SingleDataRequest::retireResponse(PacketPtr packet_)
{
    DPRINTFS(MinorMem, (&port), "Retiring packet\n");
    packet = packet_;
    packetInFlight = false;
    setState(Complete);
}

void
LSQ::SplitDataRequest::finish(const Fault &fault_, const RequestPtr &request_,
                              ThreadContext *tc, BaseTLB::Mode mode)
{
    port.numAccessesInDTLB--;

    unsigned int M5_VAR_USED expected_fragment_index =
        numTranslatedFragments;

    numInTranslationFragments--;
    numTranslatedFragments++;

    DPRINTFS(MinorMem, (&port), "Received translation response for fragment"
             " %d of request: %s delayed:%d %s\n", expected_fragment_index,
             *inst, isTranslationDelayed,
             fault_ != NoFault ? fault_->name() : "");

    assert(request_ == fragmentRequests[expected_fragment_index]);

    /* Wake up next cycle to get things going again in case the
     *  tryToSendToTransfers does take */
    port.cpu.wakeupOnEvent(Pipeline::ExecuteStageId);

    if (fault_ != NoFault) {
        /* tryToSendToTransfers will handle the fault */
        inst->translationFault = fault_;

        DPRINTFS(MinorMem, (&port), "Faulting translation for fragment:"
            " %d of request: %s\n",
            expected_fragment_index, *inst);

        if (expected_fragment_index > 0 || isTranslationDelayed)
            tryToSuppressFault();
        if (expected_fragment_index == 0) {
            if (isTranslationDelayed && inst->translationFault == NoFault) {
                completeDisabledMemAccess();
                setState(Complete);
            } else {
                setState(Translated);
            }
        } else if (inst->translationFault == NoFault) {
            setState(Translated);
            numTranslatedFragments--;
            makeFragmentPackets();
        } else {
            setState(Translated);
        }
        port.tryToSendToTransfers(this);
    } else if (numTranslatedFragments == numFragments) {
        makeFragmentPackets();
        setState(Translated);
        port.tryToSendToTransfers(this);
    } else {
        /* Avoid calling translateTiming from within ::finish */
        assert(!translationEvent.scheduled());
        port.cpu.schedule(translationEvent, curTick());
    }
}

LSQ::SplitDataRequest::SplitDataRequest(LSQ &port_, MinorDynInstPtr inst_,
    bool isLoad_, PacketDataPtr data_, uint64_t *res_) :
    LSQRequest(port_, inst_, isLoad_, data_, res_),
    translationEvent([this]{ sendNextFragmentToTranslation(); },
                     "translationEvent"),
    numFragments(0),
    numInTranslationFragments(0),
    numTranslatedFragments(0),
    numIssuedFragments(0),
    numRetiredFragments(0),
    fragmentRequests(),
    fragmentPackets()
{
    /* Don't know how many elements are needed until the request is
     *  populated by the caller. */
}

LSQ::SplitDataRequest::~SplitDataRequest()
{
    for (auto i = fragmentPackets.begin();
         i != fragmentPackets.end(); i++)
    {
        delete *i;
    }
}

void
LSQ::SplitDataRequest::makeFragmentRequests()
{
    Addr base_addr = request->getVaddr();
    unsigned int whole_size = request->getSize();
    unsigned int line_width = port.lineWidth;

    unsigned int fragment_size;
    Addr fragment_addr;

    std::vector<bool> fragment_write_byte_en;

    /* Assume that this transfer is across potentially many block snap
     * boundaries:
     *
     * |      _|________|________|________|___     |
     * |     |0| 1      | 2      | 3      | 4 |    |
     * |     |_|________|________|________|___|    |
     * |       |        |        |        |        |
     *
     *  The first transfer (0) can be up to lineWidth in size.
     *  All the middle transfers (1-3) are lineWidth in size
     *  The last transfer (4) can be from zero to lineWidth - 1 in size
     */
    unsigned int first_fragment_offset =
        addrBlockOffset(base_addr, line_width);
    unsigned int last_fragment_size =
        addrBlockOffset(base_addr + whole_size, line_width);
    unsigned int first_fragment_size =
        line_width - first_fragment_offset;

    unsigned int middle_fragments_total_size =
        whole_size - (first_fragment_size + last_fragment_size);

    assert(addrBlockOffset(middle_fragments_total_size, line_width) == 0);

    unsigned int middle_fragment_count =
        middle_fragments_total_size / line_width;

    numFragments = 1 /* first */ + middle_fragment_count +
        (last_fragment_size == 0 ? 0 : 1);

    DPRINTFS(MinorMem, (&port), "Dividing transfer into %d fragmentRequests."
        " First fragment size: %d Last fragment size: %d\n",
        numFragments, first_fragment_size,
        (last_fragment_size == 0 ? line_width : last_fragment_size));

    assert(((middle_fragment_count * line_width) +
        first_fragment_size + last_fragment_size) == whole_size);

    fragment_addr = base_addr;
    fragment_size = first_fragment_size;

    /* Just past the last address in the request */
    Addr end_addr = base_addr + whole_size;

    auto& byte_enable = request->getByteEnable();
    unsigned int num_disabled_fragments = 0;

    for (unsigned int fragment_index = 0; fragment_index < numFragments;
         fragment_index++)
    {
        bool M5_VAR_USED is_last_fragment = false;

        if (fragment_addr == base_addr) {
            /* First fragment */
            fragment_size = first_fragment_size;
        } else {
            if ((fragment_addr + line_width) > end_addr) {
                /* Adjust size of last fragment */
                fragment_size = end_addr - fragment_addr;
                is_last_fragment = true;
            } else {
                /* Middle fragments */
                fragment_size = line_width;
            }
        }

        RequestPtr fragment = std::make_shared<Request>();
        bool disabled_fragment = false;

        fragment->setContext(request->contextId());
        if (byte_enable.empty()) {
            fragment->setVirt(0 /* asid */,
                fragment_addr, fragment_size, request->getFlags(),
                request->masterId(),
                request->getPC());
        } else {
            // Set up byte-enable mask for the current fragment
            auto it_start = byte_enable.begin() +
                (fragment_addr - base_addr);
            auto it_end = byte_enable.begin() +
                (fragment_addr - base_addr) + fragment_size;
            if (isAnyActiveElement(it_start, it_end)) {
                fragment->setVirt(0 /* asid */,
                    fragment_addr, fragment_size, request->getFlags(),
                    request->masterId(),
                    request->getPC());
                fragment->setByteEnable(std::vector<bool>(it_start, it_end));
            } else {
                disabled_fragment = true;
            }
        }

        if (!disabled_fragment) {
            DPRINTFS(MinorMem, (&port), "Generating fragment addr: 0x%x"
                " size: %d (whole request addr: 0x%x size: %d) %s\n",
                fragment_addr, fragment_size, base_addr, whole_size,
                (is_last_fragment ? "last fragment" : ""));

            fragmentRequests.push_back(fragment);
        } else {
            num_disabled_fragments++;
        }

        fragment_addr += fragment_size;
    }
    assert(numFragments >= num_disabled_fragments);
    numFragments -= num_disabled_fragments;
}

void
LSQ::SplitDataRequest::makeFragmentPackets()
{
    assert(numTranslatedFragments > 0);
    Addr base_addr = request->getVaddr();

    DPRINTFS(MinorMem, (&port), "Making packets for request: %s\n", *inst);

    for (unsigned int fragment_index = 0;
         fragment_index < numTranslatedFragments;
         fragment_index++)
    {
        RequestPtr fragment = fragmentRequests[fragment_index];

        DPRINTFS(MinorMem, (&port), "Making packet %d for request: %s"
            " (%d, 0x%x)\n",
            fragment_index, *inst,
            (fragment->hasPaddr() ? "has paddr" : "no paddr"),
            (fragment->hasPaddr() ? fragment->getPaddr() : 0));

        Addr fragment_addr = fragment->getVaddr();
        unsigned int fragment_size = fragment->getSize();

        uint8_t *request_data = NULL;

        if (!isLoad) {
            /* Split data for Packets.  Will become the property of the
             *  outgoing Packets */
            request_data = new uint8_t[fragment_size];
            std::memcpy(request_data, data + (fragment_addr - base_addr),
                fragment_size);
        }

        assert(fragment->hasPaddr());

        PacketPtr fragment_packet =
            makePacketForRequest(fragment, isLoad, this, request_data);

        fragmentPackets.push_back(fragment_packet);
        /* Accumulate flags in parent request */
        request->setFlags(fragment->getFlags());
    }

    /* Might as well make the overall/response packet here */
    /* Get the physical address for the whole request/packet from the first
     *  fragment */
    request->setPaddr(fragmentRequests[0]->getPaddr());
    makePacket();
}

void
LSQ::SplitDataRequest::startAddrTranslation()
{
    makeFragmentRequests();

    if (numFragments > 0) {
        setState(LSQ::LSQRequest::InTranslation);
        numInTranslationFragments = 0;
        numTranslatedFragments = 0;

        /* @todo, just do these in sequence for now with
         * a loop of:
         * do {
         *  sendNextFragmentToTranslation ; translateTiming ; finish
         * } while (numTranslatedFragments != numFragments);
         */

        /* Do first translation */
        sendNextFragmentToTranslation();
    } else {
        disableMemAccess();
        setState(LSQ::LSQRequest::Complete);
    }
}

PacketPtr
LSQ::SplitDataRequest::getHeadPacket()
{
    assert(numIssuedFragments < numTranslatedFragments);

    return fragmentPackets[numIssuedFragments];
}

void
LSQ::SplitDataRequest::stepToNextPacket()
{
    assert(numIssuedFragments < numTranslatedFragments);

    numIssuedFragments++;
}

void
LSQ::SplitDataRequest::retireResponse(PacketPtr response)
{
    assert(inst->translationFault == NoFault);
    assert(numRetiredFragments < numTranslatedFragments);

    DPRINTFS(MinorMem, (&port), "Retiring fragment addr: 0x%x size: %d"
        " offset: 0x%x (retired fragment num: %d)\n",
        response->req->getVaddr(), response->req->getSize(),
        request->getVaddr() - response->req->getVaddr(),
        numRetiredFragments);

    numRetiredFragments++;

    if (skipped) {
        /* Skip because we already knew the request had faulted or been
         *  skipped */
        DPRINTFS(MinorMem, (&port), "Skipping this fragment\n");
    } else if (response->isError()) {
        /* Mark up the error and leave to execute to handle it */
        DPRINTFS(MinorMem, (&port), "Fragment has an error, skipping\n");
        setSkipped();
        packet->copyError(response);
    } else {
        if (isLoad) {
            if (!data) {
                /* For a split transfer, a Packet must be constructed
                 *  to contain all returning data.  This is that packet's
                 *  data */
                data = new uint8_t[request->getSize()];
            }

            /* Populate the portion of the overall response data represented
             *  by the response fragment */
            std::memcpy(
                data + (response->req->getVaddr() - request->getVaddr()),
                response->getConstPtr<uint8_t>(),
                response->req->getSize());
        }
    }

    /* Complete early if we're skipping are no more in-flight accesses */
    if (skipped && !hasPacketsInMemSystem()) {
        DPRINTFS(MinorMem, (&port), "Completed skipped burst\n");
        setState(Complete);
        if (packet->needsResponse())
            packet->makeResponse();
    }

    if (numRetiredFragments == numTranslatedFragments)
        setState(Complete);

    if (!skipped && isComplete()) {
        DPRINTFS(MinorMem, (&port), "Completed burst %d\n", packet != NULL);

        DPRINTFS(MinorMem, (&port), "Retired packet isRead: %d isWrite: %d"
             " needsResponse: %d packetSize: %s requestSize: %s responseSize:"
             " %s\n", packet->isRead(), packet->isWrite(),
             packet->needsResponse(), packet->getSize(), request->getSize(),
             response->getSize());

        /* A request can become complete by several paths, this is a sanity
         *  check to make sure the packet's data is created */
        if (!data) {
            data = new uint8_t[request->getSize()];
        }

        if (isLoad) {
            DPRINTFS(MinorMem, (&port), "Copying read data\n");
            std::memcpy(packet->getPtr<uint8_t>(), data, request->getSize());
        }
        packet->makeResponse();
    }

    /* Packets are all deallocated together in ~SplitLSQRequest */
}

void
LSQ::SplitDataRequest::sendNextFragmentToTranslation()
{
    unsigned int fragment_index = numTranslatedFragments;

    ThreadContext *thread = port.cpu.getContext(
        inst->id.threadId);

    DPRINTFS(MinorMem, (&port), "Submitting DTLB request for fragment: %d\n",
        fragment_index);

    port.numAccessesInDTLB++;
    numInTranslationFragments++;

    thread->getDTBPtr()->translateTiming(
        fragmentRequests[fragment_index], thread, this, (isLoad ?
        BaseTLB::Read : BaseTLB::Write));
}

bool
LSQ::StoreBuffer::canInsert() const
{
    /* @todo, support store amalgamation */
    return slots.size() < numSlots;
}

void
LSQ::StoreBuffer::deleteRequest(LSQRequestPtr request)
{
    auto found = std::find(slots.begin(), slots.end(), request);

    if (found != slots.end()) {
        DPRINTF(MinorMem, "Deleting request: %s %s %s from StoreBuffer\n",
            request, *found, *(request->inst));
        slots.erase(found);

        delete request;
    }
}

void
LSQ::StoreBuffer::insert(LSQRequestPtr request)
{
    if (!canInsert()) {
        warn("%s: store buffer insertion without space to insert from"
            " inst: %s\n", name(), *(request->inst));
    }

    DPRINTF(MinorMem, "Pushing store: %s into store buffer\n", request);

    numUnissuedAccesses++;

    if (request->state != LSQRequest::Complete)
        request->setState(LSQRequest::StoreInStoreBuffer);

    slots.push_back(request);

    /* Let's try and wake up the processor for the next cycle to step
     *  the store buffer */
    lsq.cpu.wakeupOnEvent(Pipeline::ExecuteStageId);
}

LSQ::AddrRangeCoverage
LSQ::StoreBuffer::canForwardDataToLoad(LSQRequestPtr request,
    unsigned int &found_slot)
{
    unsigned int slot_index = slots.size() - 1;
    auto i = slots.rbegin();
    AddrRangeCoverage ret = NoAddrRangeCoverage;

    /* Traverse the store buffer in reverse order (most to least recent)
     *  and try to find a slot whose address range overlaps this request */
    while (ret == NoAddrRangeCoverage && i != slots.rend()) {
        LSQRequestPtr slot = *i;

        /* Cache maintenance instructions go down via the store path but
         * they carry no data and they shouldn't be considered
         * for forwarding */
        if (slot->packet &&
            slot->inst->id.threadId == request->inst->id.threadId &&
            !slot->packet->req->isCacheMaintenance()) {
            AddrRangeCoverage coverage = slot->containsAddrRangeOf(request);

            if (coverage != NoAddrRangeCoverage) {
                DPRINTF(MinorMem, "Forwarding: slot: %d result: %s thisAddr:"
                    " 0x%x thisSize: %d slotAddr: 0x%x slotSize: %d\n",
                    slot_index, coverage,
                    request->request->getPaddr(), request->request->getSize(),
                    slot->request->getPaddr(), slot->request->getSize());

                found_slot = slot_index;
                ret = coverage;
            }
        }

        i++;
        slot_index--;
    }

    return ret;
}

/** Fill the given packet with appropriate date from slot slot_number */
void
LSQ::StoreBuffer::forwardStoreData(LSQRequestPtr load,
    unsigned int slot_number)
{
    assert(slot_number < slots.size());
    assert(load->packet);
    assert(load->isLoad);

    LSQRequestPtr store = slots[slot_number];

    assert(store->packet);
    assert(store->containsAddrRangeOf(load) == FullAddrRangeCoverage);

    Addr load_addr = load->request->getPaddr();
    Addr store_addr = store->request->getPaddr();
    Addr addr_offset = load_addr - store_addr;

    unsigned int load_size = load->request->getSize();

    DPRINTF(MinorMem, "Forwarding %d bytes for addr: 0x%x from store buffer"
        " slot: %d addr: 0x%x addressOffset: 0x%x\n",
        load_size, load_addr, slot_number,
        store_addr, addr_offset);

    void *load_packet_data = load->packet->getPtr<void>();
    void *store_packet_data = store->packet->getPtr<uint8_t>() + addr_offset;

    std::memcpy(load_packet_data, store_packet_data, load_size);
}

void
LSQ::StoreBuffer::countIssuedStore(LSQRequestPtr request)
{
    /* Barriers are accounted for as they are cleared from
     *  the queue, not after their transfers are complete */
    if (!request->isBarrier())
        numUnissuedAccesses--;
}

void
LSQ::StoreBuffer::step()
{
    DPRINTF(MinorMem, "StoreBuffer step numUnissuedAccesses: %d\n",
        numUnissuedAccesses);

    if (numUnissuedAccesses != 0 && lsq.state == LSQ::MemoryRunning) {
        /* Clear all the leading barriers */
        while (!slots.empty() &&
            slots.front()->isComplete() && slots.front()->isBarrier())
        {
            LSQRequestPtr barrier = slots.front();

            DPRINTF(MinorMem, "Clearing barrier for inst: %s\n",
                *(barrier->inst));

            numUnissuedAccesses--;
            lsq.clearMemBarrier(barrier->inst);
            slots.pop_front();

            delete barrier;
        }

        auto i = slots.begin();
        bool issued = true;
        unsigned int issue_count = 0;

        /* Skip trying if the memory system is busy */
        if (lsq.state == LSQ::MemoryNeedsRetry)
            issued = false;

        /* Try to issue all stores in order starting from the head
         *  of the queue.  Responses are allowed to be retired
         *  out of order */
        while (issued &&
            issue_count < storeLimitPerCycle &&
            lsq.canSendToMemorySystem() &&
            i != slots.end())
        {
            LSQRequestPtr request = *i;

            DPRINTF(MinorMem, "Considering request: %s, sentAllPackets: %d"
                " state: %s\n",
                *(request->inst), request->sentAllPackets(),
                request->state);

            if (request->isBarrier() && request->isComplete()) {
                /* Give up at barriers */
                issued = false;
            } else if (!(request->state == LSQRequest::StoreBufferIssuing &&
                request->sentAllPackets()))
            {
                DPRINTF(MinorMem, "Trying to send request: %s to memory"
                    " system\n", *(request->inst));

                if (lsq.tryToSend(request)) {
                    countIssuedStore(request);
                    issue_count++;
                } else {
                    /* Don't step on to the next store buffer entry if this
                     *  one hasn't issued all its packets as the store
                     *  buffer must still enforce ordering */
                    issued = false;
                }
            }
            i++;
        }
    }
}

void
LSQ::completeMemBarrierInst(MinorDynInstPtr inst,
    bool committed)
{
    if (committed) {
        /* Not already sent to the store buffer as a store request? */
        if (!inst->inStoreBuffer) {
            /* Insert an entry into the store buffer to tick off barriers
             *  until there are none in flight */
            storeBuffer.insert(new BarrierDataRequest(*this, inst));
        }
    } else {
        /* Clear the barrier anyway if it wasn't actually committed */
        clearMemBarrier(inst);
    }
}

void
LSQ::StoreBuffer::minorTrace() const
{
    unsigned int size = slots.size();
    unsigned int i = 0;
    std::ostringstream os;

    while (i < size) {
        LSQRequestPtr request = slots[i];

        request->reportData(os);

        i++;
        if (i < numSlots)
            os << ',';
    }

    while (i < numSlots) {
        os << '-';

        i++;
        if (i < numSlots)
            os << ',';
    }

    MINORTRACE("addr=%s num_unissued_stores=%d\n", os.str(),
        numUnissuedAccesses);
}

void
LSQ::tryToSendToTransfers(LSQRequestPtr request)
{
    if (state == MemoryNeedsRetry) {
        DPRINTF(MinorMem, "Request needs retry, not issuing to"
            " memory until retry arrives\n");
        return;
    }

    if (request->state == LSQRequest::InTranslation) {
        DPRINTF(MinorMem, "Request still in translation, not issuing to"
            " memory\n");
        return;
    }

    assert(request->state == LSQRequest::Translated ||
        request->state == LSQRequest::RequestIssuing ||
        request->state == LSQRequest::Failed ||
        request->state == LSQRequest::Complete);

    if (requests.empty() || requests.front() != request) {
        DPRINTF(MinorMem, "Request not at front of requests queue, can't"
            " issue to memory\n");
        return;
    }

    if (transfers.unreservedRemainingSpace() == 0) {
        DPRINTF(MinorMem, "No space to insert request into transfers"
            " queue\n");
        return;
    }

    if (request->isComplete() || request->state == LSQRequest::Failed) {
        DPRINTF(MinorMem, "Passing a %s transfer on to transfers"
            " queue\n", (request->isComplete() ? "completed" : "failed"));
        request->setState(LSQRequest::Complete);
        request->setSkipped();
        moveFromRequestsToTransfers(request);
        return;
    }

    if (!execute.instIsRightStream(request->inst)) {
        /* Wrong stream, try to abort the transfer but only do so if
         *  there are no packets in flight */
        if (request->hasPacketsInMemSystem()) {
            DPRINTF(MinorMem, "Request's inst. is from the wrong stream,"
                " waiting for responses before aborting request\n");
        } else {
            DPRINTF(MinorMem, "Request's inst. is from the wrong stream,"
                " aborting request\n");
            request->setState(LSQRequest::Complete);
            request->setSkipped();
            moveFromRequestsToTransfers(request);
        }
        return;
    }

    if (request->inst->translationFault != NoFault) {
        if (request->inst->staticInst->isPrefetch()) {
            DPRINTF(MinorMem, "Not signalling fault for faulting prefetch\n");
        }
        DPRINTF(MinorMem, "Moving faulting request into the transfers"
            " queue\n");
        request->setState(LSQRequest::Complete);
        request->setSkipped();
        moveFromRequestsToTransfers(request);
        return;
    }

    bool is_load = request->isLoad;
    bool is_llsc = request->request->isLLSC();
    bool is_swap = request->request->isSwap();
    bool is_atomic = request->request->isAtomic();
    bool bufferable = !(request->request->isStrictlyOrdered() ||
                        is_llsc || is_swap || is_atomic);

    if (is_load) {
        if (numStoresInTransfers != 0) {
            DPRINTF(MinorMem, "Load request with stores still in transfers"
                " queue, stalling\n");
            return;
        }
    } else {
        /* Store.  Can it be sent to the store buffer? */
        if (bufferable && !request->request->isMmappedIpr()) {
            request->setState(LSQRequest::StoreToStoreBuffer);
            moveFromRequestsToTransfers(request);
            DPRINTF(MinorMem, "Moving store into transfers queue\n");
            return;
        }
    }

    /* Check if this is the head instruction (and so must be executable as
     *  its stream sequence number was checked above) for loads which must
     *  not be speculatively issued and stores which must be issued here */
    if (!bufferable) {
        if (!execute.instIsHeadInst(request->inst)) {
            DPRINTF(MinorMem, "Memory access not the head inst., can't be"
                " sure it can be performed, not issuing\n");
            return;
        }

        unsigned int forwarding_slot = 0;

        if (storeBuffer.canForwardDataToLoad(request, forwarding_slot) !=
            NoAddrRangeCoverage)
        {
            // There's at least another request that targets the same
            // address and is staying in the storeBuffer. Since our
            // request is non-bufferable (e.g., strictly ordered or atomic),
            // we must wait for the other request in the storeBuffer to
            // complete before we can issue this non-bufferable request.
            // This is to make sure that the order they access the cache is
            // correct.
            DPRINTF(MinorMem, "Memory access can receive forwarded data"
                " from the store buffer, but need to wait for store buffer"
                " to drain\n");
            return;
        }
    }

    /* True: submit this packet to the transfers queue to be sent to the
     * memory system.
     * False: skip the memory and push a packet for this request onto
     * requests */
    bool do_access = true;

    if (!is_llsc) {
        /* Check for match in the store buffer */
        if (is_load) {
            unsigned int forwarding_slot = 0;
            AddrRangeCoverage forwarding_result =
                storeBuffer.canForwardDataToLoad(request,
                forwarding_slot);

            switch (forwarding_result) {
              case FullAddrRangeCoverage:
                /* Forward data from the store buffer into this request and
                 *  repurpose this request's packet into a response packet */
                storeBuffer.forwardStoreData(request, forwarding_slot);
                request->packet->makeResponse();

                /* Just move between queues, no access */
                do_access = false;
                break;
              case PartialAddrRangeCoverage:
                DPRINTF(MinorMem, "Load partly satisfied by store buffer"
                    " data. Must wait for the store to complete\n");
                return;
                break;
              case NoAddrRangeCoverage:
                DPRINTF(MinorMem, "No forwardable data from store buffer\n");
                /* Fall through to try access */
                break;
            }
        }
    } else {
        if (!canSendToMemorySystem()) {
            DPRINTF(MinorMem, "Can't send request to memory system yet\n");
            return;
        }

        SimpleThread &thread = *cpu.threads[request->inst->id.threadId];

        TheISA::PCState old_pc = thread.pcState();
        ExecContext context(cpu, thread, execute, request->inst);

        /* Handle LLSC requests and tests */
        if (is_load) {
            TheISA::handleLockedRead(&context, request->request);
        } else {
            do_access = TheISA::handleLockedWrite(&context,
                request->request, cacheBlockMask);

            if (!do_access) {
                DPRINTF(MinorMem, "Not perfoming a memory "
                    "access for store conditional\n");
            }
        }
        thread.pcState(old_pc);
    }

    /* See the do_access comment above */
    if (do_access) {
        if (!canSendToMemorySystem()) {
            DPRINTF(MinorMem, "Can't send request to memory system yet\n");
            return;
        }

        /* Remember if this is an access which can't be idly
         *  discarded by an interrupt */
        if (!bufferable && !request->issuedToMemory) {
            numAccessesIssuedToMemory++;
            request->issuedToMemory = true;
        }

        if (tryToSend(request)) {
            moveFromRequestsToTransfers(request);
        }
    } else {
        request->setState(LSQRequest::Complete);
        moveFromRequestsToTransfers(request);
    }
}

bool
LSQ::tryToSend(LSQRequestPtr request)
{
    bool ret = false;

    if (!canSendToMemorySystem()) {
        DPRINTF(MinorMem, "Can't send request: %s yet, no space in memory\n",
            *(request->inst));
    } else {
        PacketPtr packet = request->getHeadPacket();

        DPRINTF(MinorMem, "Trying to send request: %s addr: 0x%x\n",
            *(request->inst), packet->req->getVaddr());

        /* The sender state of the packet *must* be an LSQRequest
         *  so the response can be correctly handled */
        assert(packet->findNextSenderState<LSQRequest>());

        if (request->request->isMmappedIpr()) {
            ThreadContext *thread =
                cpu.getContext(cpu.contextToThread(
                                request->request->contextId()));

            if (request->isLoad) {
                DPRINTF(MinorMem, "IPR read inst: %s\n", *(request->inst));
                TheISA::handleIprRead(thread, packet);
            } else {
                DPRINTF(MinorMem, "IPR write inst: %s\n", *(request->inst));
                TheISA::handleIprWrite(thread, packet);
            }

            request->stepToNextPacket();
            ret = request->sentAllPackets();

            if (!ret) {
                DPRINTF(MinorMem, "IPR access has another packet: %s\n",
                    *(request->inst));
            }

            if (ret)
                request->setState(LSQRequest::Complete);
            else
                request->setState(LSQRequest::RequestIssuing);
        } else if (dcachePort.sendTimingReq(packet)) {
            DPRINTF(MinorMem, "Sent data memory request\n");

            numAccessesInMemorySystem++;

            request->stepToNextPacket();

            ret = request->sentAllPackets();

            switch (request->state) {
              case LSQRequest::Translated:
              case LSQRequest::RequestIssuing:
                /* Fully or partially issued a request in the transfers
                 *  queue */
                request->setState(LSQRequest::RequestIssuing);
                break;
              case LSQRequest::StoreInStoreBuffer:
              case LSQRequest::StoreBufferIssuing:
                /* Fully or partially issued a request in the store
                 *  buffer */
                request->setState(LSQRequest::StoreBufferIssuing);
                break;
              default:
                panic("Unrecognized LSQ request state %d.", request->state);
            }

            state = MemoryRunning;
        } else {
            DPRINTF(MinorMem,
                "Sending data memory request - needs retry\n");

            /* Needs to be resent, wait for that */
            state = MemoryNeedsRetry;
            retryRequest = request;

            switch (request->state) {
              case LSQRequest::Translated:
              case LSQRequest::RequestIssuing:
                request->setState(LSQRequest::RequestNeedsRetry);
                break;
              case LSQRequest::StoreInStoreBuffer:
              case LSQRequest::StoreBufferIssuing:
                request->setState(LSQRequest::StoreBufferNeedsRetry);
                break;
              default:
                panic("Unrecognized LSQ request state %d.", request->state);
            }
        }
    }

    if (ret)
        threadSnoop(request);

    return ret;
}

void
LSQ::moveFromRequestsToTransfers(LSQRequestPtr request)
{
    assert(!requests.empty() && requests.front() == request);
    assert(transfers.unreservedRemainingSpace() != 0);

    /* Need to count the number of stores in the transfers
     *  queue so that loads know when their store buffer forwarding
     *  results will be correct (only when all those stores
     *  have reached the store buffer) */
    if (!request->isLoad)
        numStoresInTransfers++;

    requests.pop();
    transfers.push(request);
}

bool
LSQ::canSendToMemorySystem()
{
    return state == MemoryRunning &&
        numAccessesInMemorySystem < inMemorySystemLimit;
}

bool
LSQ::recvTimingResp(PacketPtr response)
{
    LSQRequestPtr request =
        safe_cast<LSQRequestPtr>(response->popSenderState());

    DPRINTF(MinorMem, "Received response packet inst: %s"
        " addr: 0x%x cmd: %s\n",
        *(request->inst), response->getAddr(),
        response->cmd.toString());

    numAccessesInMemorySystem--;

    if (response->isError()) {
        DPRINTF(MinorMem, "Received error response packet: %s\n",
            *request->inst);
    }

    switch (request->state) {
      case LSQRequest::RequestIssuing:
      case LSQRequest::RequestNeedsRetry:
        /* Response to a request from the transfers queue */
        request->retireResponse(response);

        DPRINTF(MinorMem, "Has outstanding packets?: %d %d\n",
            request->hasPacketsInMemSystem(), request->isComplete());

        break;
      case LSQRequest::StoreBufferIssuing:
      case LSQRequest::StoreBufferNeedsRetry:
        /* Response to a request from the store buffer */
        request->retireResponse(response);

        /* Remove completed requests unless they are barriers (which will
         *  need to be removed in order */
        if (request->isComplete()) {
            if (!request->isBarrier()) {
                storeBuffer.deleteRequest(request);
            } else {
                DPRINTF(MinorMem, "Completed transfer for barrier: %s"
                    " leaving the request as it is also a barrier\n",
                    *(request->inst));
            }
        }
        break;
      default:
        panic("Shouldn't be allowed to receive a response from another state");
    }

    /* We go to idle even if there are more things in the requests queue
     * as it's the job of step to actually step us on to the next
     * transaction */

    /* Let's try and wake up the processor for the next cycle */
    cpu.wakeupOnEvent(Pipeline::ExecuteStageId);

    /* Never busy */
    return true;
}

void
LSQ::recvReqRetry()
{
    DPRINTF(MinorMem, "Received retry request\n");

    assert(state == MemoryNeedsRetry);

    switch (retryRequest->state) {
      case LSQRequest::RequestNeedsRetry:
        /* Retry in the requests queue */
        retryRequest->setState(LSQRequest::Translated);
        break;
      case LSQRequest::StoreBufferNeedsRetry:
        /* Retry in the store buffer */
        retryRequest->setState(LSQRequest::StoreInStoreBuffer);
        break;
      default:
        panic("Unrecognized retry request state %d.", retryRequest->state);
    }

    /* Set state back to MemoryRunning so that the following
     *  tryToSend can actually send.  Note that this won't
     *  allow another transfer in as tryToSend should
     *  issue a memory request and either succeed for this
     *  request or return the LSQ back to MemoryNeedsRetry */
    state = MemoryRunning;

    /* Try to resend the request */
    if (tryToSend(retryRequest)) {
        /* Successfully sent, need to move the request */
        switch (retryRequest->state) {
          case LSQRequest::RequestIssuing:
            /* In the requests queue */
            moveFromRequestsToTransfers(retryRequest);
            break;
          case LSQRequest::StoreBufferIssuing:
            /* In the store buffer */
            storeBuffer.countIssuedStore(retryRequest);
            break;
          default:
            panic("Unrecognized retry request state %d.", retryRequest->state);
        }

        retryRequest = NULL;
    }
}

LSQ::LSQ(std::string name_, std::string dcache_port_name_,
    MinorCPU &cpu_, Execute &execute_,
    unsigned int in_memory_system_limit, unsigned int line_width,
    unsigned int requests_queue_size, unsigned int transfers_queue_size,
    unsigned int store_buffer_size,
    unsigned int store_buffer_cycle_store_limit) :
    Named(name_),
    cpu(cpu_),
    execute(execute_),
    dcachePort(dcache_port_name_, *this, cpu_),
    lastMemBarrier(cpu.numThreads, 0),
    state(MemoryRunning),
    inMemorySystemLimit(in_memory_system_limit),
    lineWidth((line_width == 0 ? cpu.cacheLineSize() : line_width)),
    requests(name_ + ".requests", "addr", requests_queue_size),
    transfers(name_ + ".transfers", "addr", transfers_queue_size),
    storeBuffer(name_ + ".storeBuffer",
        *this, store_buffer_size, store_buffer_cycle_store_limit),
    numAccessesInMemorySystem(0),
    numAccessesInDTLB(0),
    numStoresInTransfers(0),
    numAccessesIssuedToMemory(0),
    retryRequest(NULL),
    cacheBlockMask(~(cpu_.cacheLineSize() - 1))
{
    if (in_memory_system_limit < 1) {
        fatal("%s: executeMaxAccessesInMemory must be >= 1 (%d)\n", name_,
            in_memory_system_limit);
    }

    if (store_buffer_cycle_store_limit < 1) {
        fatal("%s: executeLSQMaxStoreBufferStoresPerCycle must be"
            " >= 1 (%d)\n", name_, store_buffer_cycle_store_limit);
    }

    if (requests_queue_size < 1) {
        fatal("%s: executeLSQRequestsQueueSize must be"
            " >= 1 (%d)\n", name_, requests_queue_size);
    }

    if (transfers_queue_size < 1) {
        fatal("%s: executeLSQTransfersQueueSize must be"
            " >= 1 (%d)\n", name_, transfers_queue_size);
    }

    if (store_buffer_size < 1) {
        fatal("%s: executeLSQStoreBufferSize must be"
            " >= 1 (%d)\n", name_, store_buffer_size);
    }

    if ((lineWidth & (lineWidth - 1)) != 0) {
        fatal("%s: lineWidth: %d must be a power of 2\n", name(), lineWidth);
    }
}

LSQ::~LSQ()
{ }

LSQ::LSQRequest::~LSQRequest()
{
    if (packet)
        delete packet;
    if (data)
        delete [] data;
}

/**
 *  Step the memory access mechanism on to its next state.  In reality, most
 *  of the stepping is done by the callbacks on the LSQ but this
 *  function is responsible for issuing memory requests lodged in the
 *  requests queue.
 */
void
LSQ::step()
{
    /* Try to move address-translated requests between queues and issue
     *  them */
    if (!requests.empty())
        tryToSendToTransfers(requests.front());

    storeBuffer.step();
}

LSQ::LSQRequestPtr
LSQ::findResponse(MinorDynInstPtr inst)
{
    LSQ::LSQRequestPtr ret = NULL;

    if (!transfers.empty()) {
        LSQRequestPtr request = transfers.front();

        /* Same instruction and complete access or a store that's
         *  capable of being moved to the store buffer */
        if (request->inst->id == inst->id) {
            bool complete = request->isComplete();
            bool can_store = storeBuffer.canInsert();
            bool to_store_buffer = request->state ==
                LSQRequest::StoreToStoreBuffer;

            if ((complete && !(request->isBarrier() && !can_store)) ||
                (to_store_buffer && can_store))
            {
                ret = request;
            }
        }
    }

    if (ret) {
        DPRINTF(MinorMem, "Found matching memory response for inst: %s\n",
            *inst);
    } else {
        DPRINTF(MinorMem, "No matching memory response for inst: %s\n",
            *inst);
    }

    return ret;
}

void
LSQ::popResponse(LSQ::LSQRequestPtr response)
{
    assert(!transfers.empty() && transfers.front() == response);

    transfers.pop();

    if (!response->isLoad)
        numStoresInTransfers--;

    if (response->issuedToMemory)
        numAccessesIssuedToMemory--;

    if (response->state != LSQRequest::StoreInStoreBuffer) {
        DPRINTF(MinorMem, "Deleting %s request: %s\n",
            (response->isLoad ? "load" : "store"),
            *(response->inst));

        delete response;
    }
}

void
LSQ::sendStoreToStoreBuffer(LSQRequestPtr request)
{
    assert(request->state == LSQRequest::StoreToStoreBuffer);

    DPRINTF(MinorMem, "Sending store: %s to store buffer\n",
        *(request->inst));

    request->inst->inStoreBuffer = true;

    storeBuffer.insert(request);
}

bool
LSQ::isDrained()
{
    return requests.empty() && transfers.empty() &&
        storeBuffer.isDrained();
}

bool
LSQ::needsToTick()
{
    bool ret = false;

    if (canSendToMemorySystem()) {
        bool have_translated_requests = !requests.empty() &&
            requests.front()->state != LSQRequest::InTranslation &&
            transfers.unreservedRemainingSpace() != 0;

        ret = have_translated_requests ||
            storeBuffer.numUnissuedStores() != 0;
    }

    if (ret)
        DPRINTF(Activity, "Need to tick\n");

    return ret;
}

Fault
LSQ::pushRequest(MinorDynInstPtr inst, bool isLoad, uint8_t *data,
                 unsigned int size, Addr addr, Request::Flags flags,
                 uint64_t *res, AtomicOpFunctorPtr amo_op,
                 const std::vector<bool>& byte_enable)
{
    assert(inst->translationFault == NoFault || inst->inLSQ);

    if (inst->inLSQ) {
        return inst->translationFault;
    }

    bool needs_burst = transferNeedsBurst(addr, size, lineWidth);

    if (needs_burst && inst->staticInst->isAtomic()) {
        // AMO requests that access across a cache line boundary are not
        // allowed since the cache does not guarantee AMO ops to be executed
        // atomically in two cache lines
        // For ISAs such as x86 that requires AMO operations to work on
        // accesses that cross cache-line boundaries, the cache needs to be
        // modified to support locking both cache lines to guarantee the
        // atomicity.
        panic("Do not expect cross-cache-line atomic memory request\n");
    }

    LSQRequestPtr request;

    /* Copy given data into the request.  The request will pass this to the
     *  packet and then it will own the data */
    uint8_t *request_data = NULL;

    DPRINTF(MinorMem, "Pushing request (%s) addr: 0x%x size: %d flags:"
        " 0x%x%s lineWidth : 0x%x\n",
        (isLoad ? "load" : "store/atomic"), addr, size, flags,
            (needs_burst ? " (needs burst)" : ""), lineWidth);

    if (!isLoad) {
        /* Request_data becomes the property of a ...DataRequest (see below)
         *  and destroyed by its destructor */
        request_data = new uint8_t[size];
        if (inst->staticInst->isAtomic() ||
            (flags & Request::STORE_NO_DATA)) {
            /* For atomic or store-no-data, just use zeroed data */
            std::memset(request_data, 0, size);
        } else {
            std::memcpy(request_data, data, size);
        }
    }

    if (needs_burst) {
        request = new SplitDataRequest(
            *this, inst, isLoad, request_data, res);
    } else {
        request = new SingleDataRequest(
            *this, inst, isLoad, request_data, res);
    }

    if (inst->traceData)
        inst->traceData->setMem(addr, size, flags);

    int cid = cpu.threads[inst->id.threadId]->getTC()->contextId();
    request->request->setContext(cid);
    request->request->setVirt(0 /* asid */,
        addr, size, flags, cpu.dataMasterId(),
        /* I've no idea why we need the PC, but give it */
        inst->pc.instAddr(), std::move(amo_op));
    request->request->setByteEnable(byte_enable);

    requests.push(request);
    inst->inLSQ = true;
    request->startAddrTranslation();

    return inst->translationFault;
}

void
LSQ::pushFailedRequest(MinorDynInstPtr inst)
{
    LSQRequestPtr request = new FailedDataRequest(*this, inst);
    requests.push(request);
}

void
LSQ::minorTrace() const
{
    MINORTRACE("state=%s in_tlb_mem=%d/%d stores_in_transfers=%d"
        " lastMemBarrier=%d\n",
        state, numAccessesInDTLB, numAccessesInMemorySystem,
        numStoresInTransfers, lastMemBarrier[0]);
    requests.minorTrace();
    transfers.minorTrace();
    storeBuffer.minorTrace();
}

LSQ::StoreBuffer::StoreBuffer(std::string name_, LSQ &lsq_,
    unsigned int store_buffer_size,
    unsigned int store_limit_per_cycle) :
    Named(name_), lsq(lsq_),
    numSlots(store_buffer_size),
    storeLimitPerCycle(store_limit_per_cycle),
    slots(),
    numUnissuedAccesses(0)
{
}

PacketPtr
makePacketForRequest(const RequestPtr &request, bool isLoad,
    Packet::SenderState *sender_state, PacketDataPtr data)
{
    PacketPtr ret = isLoad ? Packet::createRead(request)
                           : Packet::createWrite(request);

    if (sender_state)
        ret->pushSenderState(sender_state);

    if (isLoad) {
        ret->allocate();
    } else if (!request->isCacheMaintenance()) {
        // CMOs are treated as stores but they don't have data. All
        // stores otherwise need to allocate for data.
        ret->dataDynamic(data);
    }

    return ret;
}

void
LSQ::issuedMemBarrierInst(MinorDynInstPtr inst)
{
    assert(inst->isInst() && inst->staticInst->isMemBarrier());
    assert(inst->id.execSeqNum > lastMemBarrier[inst->id.threadId]);

    /* Remember the barrier.  We only have a notion of one
     *  barrier so this may result in some mem refs being
     *  delayed if they are between barriers */
    lastMemBarrier[inst->id.threadId] = inst->id.execSeqNum;
}

void
LSQ::LSQRequest::makePacket()
{
    assert(inst->translationFault == NoFault);

    /* Make the function idempotent */
    if (packet)
        return;

    packet = makePacketForRequest(request, isLoad, this, data);
    /* Null the ret data so we know not to deallocate it when the
     * ret is destroyed.  The data now belongs to the ret and
     * the ret is responsible for its destruction */
    data = NULL;
}

std::ostream &
operator <<(std::ostream &os, LSQ::MemoryState state)
{
    switch (state) {
      case LSQ::MemoryRunning:
        os << "MemoryRunning";
        break;
      case LSQ::MemoryNeedsRetry:
        os << "MemoryNeedsRetry";
        break;
      default:
        os << "MemoryState-" << static_cast<int>(state);
        break;
    }
    return os;
}

void
LSQ::recvTimingSnoopReq(PacketPtr pkt)
{
    /* LLSC operations in Minor can't be speculative and are executed from
     * the head of the requests queue.  We shouldn't need to do more than
     * this action on snoops. */
    for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
        if (cpu.getCpuAddrMonitor(tid)->doMonitor(pkt)) {
            cpu.wakeup(tid);
        }
    }

    if (pkt->isInvalidate() || pkt->isWrite()) {
        for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
            TheISA::handleLockedSnoop(cpu.getContext(tid), pkt,
                                      cacheBlockMask);
        }
    }
}

void
LSQ::threadSnoop(LSQRequestPtr request)
{
    /* LLSC operations in Minor can't be speculative and are executed from
     * the head of the requests queue.  We shouldn't need to do more than
     * this action on snoops. */
    ThreadID req_tid = request->inst->id.threadId;
    PacketPtr pkt = request->packet;

    for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
        if (tid != req_tid) {
            if (cpu.getCpuAddrMonitor(tid)->doMonitor(pkt)) {
                cpu.wakeup(tid);
            }

            if (pkt->isInvalidate() || pkt->isWrite()) {
                TheISA::handleLockedSnoop(cpu.getContext(tid), pkt,
                                          cacheBlockMask);
            }
        }
    }
}

}