summaryrefslogtreecommitdiff
path: root/src/cpu/o3/decode_impl.hh
blob: fd8dc834bd557d22411b37e5dd8e032d42bfc0f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/*
 * Copyright (c) 2004-2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Kevin Lim
 */

#include "arch/types.hh"
#include "base/trace.hh"
#include "config/the_isa.hh"
#include "cpu/o3/decode.hh"
#include "cpu/inst_seq.hh"
#include "debug/Activity.hh"
#include "debug/Decode.hh"
#include "params/DerivO3CPU.hh"
#include "sim/full_system.hh"

// clang complains about std::set being overloaded with Packet::set if
// we open up the entire namespace std
using std::list;

template<class Impl>
DefaultDecode<Impl>::DefaultDecode(O3CPU *_cpu, DerivO3CPUParams *params)
    : cpu(_cpu),
      renameToDecodeDelay(params->renameToDecodeDelay),
      iewToDecodeDelay(params->iewToDecodeDelay),
      commitToDecodeDelay(params->commitToDecodeDelay),
      fetchToDecodeDelay(params->fetchToDecodeDelay),
      decodeWidth(params->decodeWidth),
      numThreads(params->numThreads)
{
    _status = Inactive;

    // Setup status, make sure stall signals are clear.
    for (ThreadID tid = 0; tid < numThreads; ++tid) {
        decodeStatus[tid] = Idle;

        stalls[tid].rename = false;
        stalls[tid].iew = false;
        stalls[tid].commit = false;
    }

    // @todo: Make into a parameter
    skidBufferMax = (fetchToDecodeDelay + 1) *  params->fetchWidth;
}

template <class Impl>
std::string
DefaultDecode<Impl>::name() const
{
    return cpu->name() + ".decode";
}

template <class Impl>
void
DefaultDecode<Impl>::regStats()
{
    decodeIdleCycles
        .name(name() + ".IdleCycles")
        .desc("Number of cycles decode is idle")
        .prereq(decodeIdleCycles);
    decodeBlockedCycles
        .name(name() + ".BlockedCycles")
        .desc("Number of cycles decode is blocked")
        .prereq(decodeBlockedCycles);
    decodeRunCycles
        .name(name() + ".RunCycles")
        .desc("Number of cycles decode is running")
        .prereq(decodeRunCycles);
    decodeUnblockCycles
        .name(name() + ".UnblockCycles")
        .desc("Number of cycles decode is unblocking")
        .prereq(decodeUnblockCycles);
    decodeSquashCycles
        .name(name() + ".SquashCycles")
        .desc("Number of cycles decode is squashing")
        .prereq(decodeSquashCycles);
    decodeBranchResolved
        .name(name() + ".BranchResolved")
        .desc("Number of times decode resolved a branch")
        .prereq(decodeBranchResolved);
    decodeBranchMispred
        .name(name() + ".BranchMispred")
        .desc("Number of times decode detected a branch misprediction")
        .prereq(decodeBranchMispred);
    decodeControlMispred
        .name(name() + ".ControlMispred")
        .desc("Number of times decode detected an instruction incorrectly"
              " predicted as a control")
        .prereq(decodeControlMispred);
    decodeDecodedInsts
        .name(name() + ".DecodedInsts")
        .desc("Number of instructions handled by decode")
        .prereq(decodeDecodedInsts);
    decodeSquashedInsts
        .name(name() + ".SquashedInsts")
        .desc("Number of squashed instructions handled by decode")
        .prereq(decodeSquashedInsts);
}

template<class Impl>
void
DefaultDecode<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
    timeBuffer = tb_ptr;

    // Setup wire to write information back to fetch.
    toFetch = timeBuffer->getWire(0);

    // Create wires to get information from proper places in time buffer.
    fromRename = timeBuffer->getWire(-renameToDecodeDelay);
    fromIEW = timeBuffer->getWire(-iewToDecodeDelay);
    fromCommit = timeBuffer->getWire(-commitToDecodeDelay);
}

template<class Impl>
void
DefaultDecode<Impl>::setDecodeQueue(TimeBuffer<DecodeStruct> *dq_ptr)
{
    decodeQueue = dq_ptr;

    // Setup wire to write information to proper place in decode queue.
    toRename = decodeQueue->getWire(0);
}

template<class Impl>
void
DefaultDecode<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
{
    fetchQueue = fq_ptr;

    // Setup wire to read information from fetch queue.
    fromFetch = fetchQueue->getWire(-fetchToDecodeDelay);
}

template<class Impl>
void
DefaultDecode<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
{
    activeThreads = at_ptr;
}

template <class Impl>
bool
DefaultDecode<Impl>::drain()
{
    // Decode is done draining at any time.
    cpu->signalDrained();
    return true;
}

template <class Impl>
void
DefaultDecode<Impl>::takeOverFrom()
{
    _status = Inactive;

    // Be sure to reset state and clear out any old instructions.
    for (ThreadID tid = 0; tid < numThreads; ++tid) {
        decodeStatus[tid] = Idle;

        stalls[tid].rename = false;
        stalls[tid].iew = false;
        stalls[tid].commit = false;
        while (!insts[tid].empty())
            insts[tid].pop();
        while (!skidBuffer[tid].empty())
            skidBuffer[tid].pop();
        branchCount[tid] = 0;
    }
    wroteToTimeBuffer = false;
}

template<class Impl>
bool
DefaultDecode<Impl>::checkStall(ThreadID tid) const
{
    bool ret_val = false;

    if (stalls[tid].rename) {
        DPRINTF(Decode,"[tid:%i]: Stall fom Rename stage detected.\n", tid);
        ret_val = true;
    } else if (stalls[tid].iew) {
        DPRINTF(Decode,"[tid:%i]: Stall fom IEW stage detected.\n", tid);
        ret_val = true;
    } else if (stalls[tid].commit) {
        DPRINTF(Decode,"[tid:%i]: Stall fom Commit stage detected.\n", tid);
        ret_val = true;
    }

    return ret_val;
}

template<class Impl>
inline bool
DefaultDecode<Impl>::fetchInstsValid()
{
    return fromFetch->size > 0;
}

template<class Impl>
bool
DefaultDecode<Impl>::block(ThreadID tid)
{
    DPRINTF(Decode, "[tid:%u]: Blocking.\n", tid);

    // Add the current inputs to the skid buffer so they can be
    // reprocessed when this stage unblocks.
    skidInsert(tid);

    // If the decode status is blocked or unblocking then decode has not yet
    // signalled fetch to unblock. In that case, there is no need to tell
    // fetch to block.
    if (decodeStatus[tid] != Blocked) {
        // Set the status to Blocked.
        decodeStatus[tid] = Blocked;

        if (decodeStatus[tid] != Unblocking) {
            toFetch->decodeBlock[tid] = true;
            wroteToTimeBuffer = true;
        }

        return true;
    }

    return false;
}

template<class Impl>
bool
DefaultDecode<Impl>::unblock(ThreadID tid)
{
    // Decode is done unblocking only if the skid buffer is empty.
    if (skidBuffer[tid].empty()) {
        DPRINTF(Decode, "[tid:%u]: Done unblocking.\n", tid);
        toFetch->decodeUnblock[tid] = true;
        wroteToTimeBuffer = true;

        decodeStatus[tid] = Running;
        return true;
    }

    DPRINTF(Decode, "[tid:%u]: Currently unblocking.\n", tid);

    return false;
}

template<class Impl>
void
DefaultDecode<Impl>::squash(DynInstPtr &inst, ThreadID tid)
{
    DPRINTF(Decode, "[tid:%i]: [sn:%i] Squashing due to incorrect branch "
            "prediction detected at decode.\n", tid, inst->seqNum);

    // Send back mispredict information.
    toFetch->decodeInfo[tid].branchMispredict = true;
    toFetch->decodeInfo[tid].predIncorrect = true;
    toFetch->decodeInfo[tid].mispredictInst = inst;
    toFetch->decodeInfo[tid].squash = true;
    toFetch->decodeInfo[tid].doneSeqNum = inst->seqNum;
    toFetch->decodeInfo[tid].nextPC = inst->branchTarget();
    toFetch->decodeInfo[tid].branchTaken = inst->pcState().branching();
    toFetch->decodeInfo[tid].squashInst = inst;
    if (toFetch->decodeInfo[tid].mispredictInst->isUncondCtrl()) {
            toFetch->decodeInfo[tid].branchTaken = true;
    }

    InstSeqNum squash_seq_num = inst->seqNum;

    // Might have to tell fetch to unblock.
    if (decodeStatus[tid] == Blocked ||
        decodeStatus[tid] == Unblocking) {
        toFetch->decodeUnblock[tid] = 1;
    }

    // Set status to squashing.
    decodeStatus[tid] = Squashing;

    for (int i=0; i<fromFetch->size; i++) {
        if (fromFetch->insts[i]->threadNumber == tid &&
            fromFetch->insts[i]->seqNum > squash_seq_num) {
            fromFetch->insts[i]->setSquashed();
        }
    }

    // Clear the instruction list and skid buffer in case they have any
    // insts in them.
    while (!insts[tid].empty()) {
        insts[tid].pop();
    }

    while (!skidBuffer[tid].empty()) {
        skidBuffer[tid].pop();
    }

    // Squash instructions up until this one
    cpu->removeInstsUntil(squash_seq_num, tid);
}

template<class Impl>
unsigned
DefaultDecode<Impl>::squash(ThreadID tid)
{
    DPRINTF(Decode, "[tid:%i]: Squashing.\n",tid);

    if (decodeStatus[tid] == Blocked ||
        decodeStatus[tid] == Unblocking) {
        if (FullSystem) {
            toFetch->decodeUnblock[tid] = 1;
        } else {
            // In syscall emulation, we can have both a block and a squash due
            // to a syscall in the same cycle.  This would cause both signals
            // to be high.  This shouldn't happen in full system.
            // @todo: Determine if this still happens.
            if (toFetch->decodeBlock[tid])
                toFetch->decodeBlock[tid] = 0;
            else
                toFetch->decodeUnblock[tid] = 1;
        }
    }

    // Set status to squashing.
    decodeStatus[tid] = Squashing;

    // Go through incoming instructions from fetch and squash them.
    unsigned squash_count = 0;

    for (int i=0; i<fromFetch->size; i++) {
        if (fromFetch->insts[i]->threadNumber == tid) {
            fromFetch->insts[i]->setSquashed();
            squash_count++;
        }
    }

    // Clear the instruction list and skid buffer in case they have any
    // insts in them.
    while (!insts[tid].empty()) {
        insts[tid].pop();
    }

    while (!skidBuffer[tid].empty()) {
        skidBuffer[tid].pop();
    }

    return squash_count;
}

template<class Impl>
void
DefaultDecode<Impl>::skidInsert(ThreadID tid)
{
    DynInstPtr inst = NULL;

    while (!insts[tid].empty()) {
        inst = insts[tid].front();

        insts[tid].pop();

        assert(tid == inst->threadNumber);

        DPRINTF(Decode,"Inserting [sn:%lli] PC: %s into decode skidBuffer %i\n",
                inst->seqNum, inst->pcState(), inst->threadNumber);

        skidBuffer[tid].push(inst);
    }

    // @todo: Eventually need to enforce this by not letting a thread
    // fetch past its skidbuffer
    assert(skidBuffer[tid].size() <= skidBufferMax);
}

template<class Impl>
bool
DefaultDecode<Impl>::skidsEmpty()
{
    list<ThreadID>::iterator threads = activeThreads->begin();
    list<ThreadID>::iterator end = activeThreads->end();

    while (threads != end) {
        ThreadID tid = *threads++;
        if (!skidBuffer[tid].empty())
            return false;
    }

    return true;
}

template<class Impl>
void
DefaultDecode<Impl>::updateStatus()
{
    bool any_unblocking = false;

    list<ThreadID>::iterator threads = activeThreads->begin();
    list<ThreadID>::iterator end = activeThreads->end();

    while (threads != end) {
        ThreadID tid = *threads++;

        if (decodeStatus[tid] == Unblocking) {
            any_unblocking = true;
            break;
        }
    }

    // Decode will have activity if it's unblocking.
    if (any_unblocking) {
        if (_status == Inactive) {
            _status = Active;

            DPRINTF(Activity, "Activating stage.\n");

            cpu->activateStage(O3CPU::DecodeIdx);
        }
    } else {
        // If it's not unblocking, then decode will not have any internal
        // activity.  Switch it to inactive.
        if (_status == Active) {
            _status = Inactive;
            DPRINTF(Activity, "Deactivating stage.\n");

            cpu->deactivateStage(O3CPU::DecodeIdx);
        }
    }
}

template <class Impl>
void
DefaultDecode<Impl>::sortInsts()
{
    int insts_from_fetch = fromFetch->size;
    for (int i = 0; i < insts_from_fetch; ++i) {
        insts[fromFetch->insts[i]->threadNumber].push(fromFetch->insts[i]);
    }
}

template<class Impl>
void
DefaultDecode<Impl>::readStallSignals(ThreadID tid)
{
    if (fromRename->renameBlock[tid]) {
        stalls[tid].rename = true;
    }

    if (fromRename->renameUnblock[tid]) {
        assert(stalls[tid].rename);
        stalls[tid].rename = false;
    }

    if (fromIEW->iewBlock[tid]) {
        stalls[tid].iew = true;
    }

    if (fromIEW->iewUnblock[tid]) {
        assert(stalls[tid].iew);
        stalls[tid].iew = false;
    }

    if (fromCommit->commitBlock[tid]) {
        stalls[tid].commit = true;
    }

    if (fromCommit->commitUnblock[tid]) {
        assert(stalls[tid].commit);
        stalls[tid].commit = false;
    }
}

template <class Impl>
bool
DefaultDecode<Impl>::checkSignalsAndUpdate(ThreadID tid)
{
    // Check if there's a squash signal, squash if there is.
    // Check stall signals, block if necessary.
    // If status was blocked
    //     Check if stall conditions have passed
    //         if so then go to unblocking
    // If status was Squashing
    //     check if squashing is not high.  Switch to running this cycle.

    // Update the per thread stall statuses.
    readStallSignals(tid);

    // Check squash signals from commit.
    if (fromCommit->commitInfo[tid].squash) {

        DPRINTF(Decode, "[tid:%u]: Squashing instructions due to squash "
                "from commit.\n", tid);

        squash(tid);

        return true;
    }

    // Check ROB squash signals from commit.
    if (fromCommit->commitInfo[tid].robSquashing) {
        DPRINTF(Decode, "[tid:%u]: ROB is still squashing.\n", tid);

        // Continue to squash.
        decodeStatus[tid] = Squashing;

        return true;
    }

    if (checkStall(tid)) {
        return block(tid);
    }

    if (decodeStatus[tid] == Blocked) {
        DPRINTF(Decode, "[tid:%u]: Done blocking, switching to unblocking.\n",
                tid);

        decodeStatus[tid] = Unblocking;

        unblock(tid);

        return true;
    }

    if (decodeStatus[tid] == Squashing) {
        // Switch status to running if decode isn't being told to block or
        // squash this cycle.
        DPRINTF(Decode, "[tid:%u]: Done squashing, switching to running.\n",
                tid);

        decodeStatus[tid] = Running;

        return false;
    }

    // If we've reached this point, we have not gotten any signals that
    // cause decode to change its status.  Decode remains the same as before.
    return false;
}

template<class Impl>
void
DefaultDecode<Impl>::tick()
{
    wroteToTimeBuffer = false;

    bool status_change = false;

    toRenameIndex = 0;

    list<ThreadID>::iterator threads = activeThreads->begin();
    list<ThreadID>::iterator end = activeThreads->end();

    sortInsts();

    //Check stall and squash signals.
    while (threads != end) {
        ThreadID tid = *threads++;

        DPRINTF(Decode,"Processing [tid:%i]\n",tid);
        status_change =  checkSignalsAndUpdate(tid) || status_change;

        decode(status_change, tid);
    }

    if (status_change) {
        updateStatus();
    }

    if (wroteToTimeBuffer) {
        DPRINTF(Activity, "Activity this cycle.\n");

        cpu->activityThisCycle();
    }
}

template<class Impl>
void
DefaultDecode<Impl>::decode(bool &status_change, ThreadID tid)
{
    // If status is Running or idle,
    //     call decodeInsts()
    // If status is Unblocking,
    //     buffer any instructions coming from fetch
    //     continue trying to empty skid buffer
    //     check if stall conditions have passed

    if (decodeStatus[tid] == Blocked) {
        ++decodeBlockedCycles;
    } else if (decodeStatus[tid] == Squashing) {
        ++decodeSquashCycles;
    }

    // Decode should try to decode as many instructions as its bandwidth
    // will allow, as long as it is not currently blocked.
    if (decodeStatus[tid] == Running ||
        decodeStatus[tid] == Idle) {
        DPRINTF(Decode, "[tid:%u]: Not blocked, so attempting to run "
                "stage.\n",tid);

        decodeInsts(tid);
    } else if (decodeStatus[tid] == Unblocking) {
        // Make sure that the skid buffer has something in it if the
        // status is unblocking.
        assert(!skidsEmpty());

        // If the status was unblocking, then instructions from the skid
        // buffer were used.  Remove those instructions and handle
        // the rest of unblocking.
        decodeInsts(tid);

        if (fetchInstsValid()) {
            // Add the current inputs to the skid buffer so they can be
            // reprocessed when this stage unblocks.
            skidInsert(tid);
        }

        status_change = unblock(tid) || status_change;
    }
}

template <class Impl>
void
DefaultDecode<Impl>::decodeInsts(ThreadID tid)
{
    // Instructions can come either from the skid buffer or the list of
    // instructions coming from fetch, depending on decode's status.
    int insts_available = decodeStatus[tid] == Unblocking ?
        skidBuffer[tid].size() : insts[tid].size();

    if (insts_available == 0) {
        DPRINTF(Decode, "[tid:%u] Nothing to do, breaking out"
                " early.\n",tid);
        // Should I change the status to idle?
        ++decodeIdleCycles;
        return;
    } else if (decodeStatus[tid] == Unblocking) {
        DPRINTF(Decode, "[tid:%u] Unblocking, removing insts from skid "
                "buffer.\n",tid);
        ++decodeUnblockCycles;
    } else if (decodeStatus[tid] == Running) {
        ++decodeRunCycles;
    }

    DynInstPtr inst;

    std::queue<DynInstPtr>
        &insts_to_decode = decodeStatus[tid] == Unblocking ?
        skidBuffer[tid] : insts[tid];

    DPRINTF(Decode, "[tid:%u]: Sending instruction to rename.\n",tid);

    while (insts_available > 0 && toRenameIndex < decodeWidth) {
        assert(!insts_to_decode.empty());

        inst = insts_to_decode.front();

        insts_to_decode.pop();

        DPRINTF(Decode, "[tid:%u]: Processing instruction [sn:%lli] with "
                "PC %s\n", tid, inst->seqNum, inst->pcState());

        if (inst->isSquashed()) {
            DPRINTF(Decode, "[tid:%u]: Instruction %i with PC %s is "
                    "squashed, skipping.\n",
                    tid, inst->seqNum, inst->pcState());

            ++decodeSquashedInsts;

            --insts_available;

            continue;
        }

        // Also check if instructions have no source registers.  Mark
        // them as ready to issue at any time.  Not sure if this check
        // should exist here or at a later stage; however it doesn't matter
        // too much for function correctness.
        if (inst->numSrcRegs() == 0) {
            inst->setCanIssue();
        }

        // This current instruction is valid, so add it into the decode
        // queue.  The next instruction may not be valid, so check to
        // see if branches were predicted correctly.
        toRename->insts[toRenameIndex] = inst;

        ++(toRename->size);
        ++toRenameIndex;
        ++decodeDecodedInsts;
        --insts_available;

#if TRACING_ON
        inst->decodeTick = curTick();
#endif

        // Ensure that if it was predicted as a branch, it really is a
        // branch.
        if (inst->readPredTaken() && !inst->isControl()) {
            panic("Instruction predicted as a branch!");

            ++decodeControlMispred;

            // Might want to set some sort of boolean and just do
            // a check at the end
            squash(inst, inst->threadNumber);

            break;
        }

        // Go ahead and compute any PC-relative branches.
        if (inst->isDirectCtrl() && inst->isUncondCtrl()) {
            ++decodeBranchResolved;

            if (!(inst->branchTarget() == inst->readPredTarg())) {
                ++decodeBranchMispred;

                // Might want to set some sort of boolean and just do
                // a check at the end
                squash(inst, inst->threadNumber);
                TheISA::PCState target = inst->branchTarget();

                DPRINTF(Decode, "[sn:%i]: Updating predictions: PredPC: %s\n",
                        inst->seqNum, target);
                //The micro pc after an instruction level branch should be 0
                inst->setPredTarg(target);
                break;
            }
        }
    }

    // If we didn't process all instructions, then we will need to block
    // and put all those instructions into the skid buffer.
    if (!insts_to_decode.empty()) {
        block(tid);
    }

    // Record that decode has written to the time buffer for activity
    // tracking.
    if (toRenameIndex) {
        wroteToTimeBuffer = true;
    }
}