summaryrefslogtreecommitdiff
path: root/src/cpu/o3/inst_queue_impl.hh
blob: e7991662b3b1e2b3b95b805db789aa1f66d5e166 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
/*
 * Copyright (c) 2004-2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Kevin Lim
 *          Korey Sewell
 */

#include <limits>
#include <vector>

#include "sim/root.hh"

#include "cpu/o3/fu_pool.hh"
#include "cpu/o3/inst_queue.hh"

template <class Impl>
InstructionQueue<Impl>::FUCompletion::FUCompletion(DynInstPtr &_inst,
                                                   int fu_idx,
                                                   InstructionQueue<Impl> *iq_ptr)
    : Event(&mainEventQueue, Stat_Event_Pri),
      inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false)
{
    this->setFlags(Event::AutoDelete);
}

template <class Impl>
void
InstructionQueue<Impl>::FUCompletion::process()
{
    iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
    inst = NULL;
}


template <class Impl>
const char *
InstructionQueue<Impl>::FUCompletion::description()
{
    return "Functional unit completion event";
}

template <class Impl>
InstructionQueue<Impl>::InstructionQueue(Params *params)
    : fuPool(params->fuPool),
      numEntries(params->numIQEntries),
      totalWidth(params->issueWidth),
      numPhysIntRegs(params->numPhysIntRegs),
      numPhysFloatRegs(params->numPhysFloatRegs),
      commitToIEWDelay(params->commitToIEWDelay)
{
    assert(fuPool);

    switchedOut = false;

    numThreads = params->numberOfThreads;

    // Set the number of physical registers as the number of int + float
    numPhysRegs = numPhysIntRegs + numPhysFloatRegs;

    DPRINTF(IQ, "There are %i physical registers.\n", numPhysRegs);

    //Create an entry for each physical register within the
    //dependency graph.
    dependGraph.resize(numPhysRegs);

    // Resize the register scoreboard.
    regScoreboard.resize(numPhysRegs);

    //Initialize Mem Dependence Units
    for (int i = 0; i < numThreads; i++) {
        memDepUnit[i].init(params,i);
        memDepUnit[i].setIQ(this);
    }

    resetState();

    std::string policy = params->smtIQPolicy;

    //Convert string to lowercase
    std::transform(policy.begin(), policy.end(), policy.begin(),
                   (int(*)(int)) tolower);

    //Figure out resource sharing policy
    if (policy == "dynamic") {
        iqPolicy = Dynamic;

        //Set Max Entries to Total ROB Capacity
        for (int i = 0; i < numThreads; i++) {
            maxEntries[i] = numEntries;
        }

    } else if (policy == "partitioned") {
        iqPolicy = Partitioned;

        //@todo:make work if part_amt doesnt divide evenly.
        int part_amt = numEntries / numThreads;

        //Divide ROB up evenly
        for (int i = 0; i < numThreads; i++) {
            maxEntries[i] = part_amt;
        }

        DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
                "%i entries per thread.\n",part_amt);

    } else if (policy == "threshold") {
        iqPolicy = Threshold;

        double threshold =  (double)params->smtIQThreshold / 100;

        int thresholdIQ = (int)((double)threshold * numEntries);

        //Divide up by threshold amount
        for (int i = 0; i < numThreads; i++) {
            maxEntries[i] = thresholdIQ;
        }

        DPRINTF(IQ, "IQ sharing policy set to Threshold:"
                "%i entries per thread.\n",thresholdIQ);
   } else {
       assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
              "Partitioned, Threshold}");
   }
}

template <class Impl>
InstructionQueue<Impl>::~InstructionQueue()
{
    dependGraph.reset();
#ifdef DEBUG
    cprintf("Nodes traversed: %i, removed: %i\n",
            dependGraph.nodesTraversed, dependGraph.nodesRemoved);
#endif
}

template <class Impl>
std::string
InstructionQueue<Impl>::name() const
{
    return cpu->name() + ".iq";
}

template <class Impl>
void
InstructionQueue<Impl>::regStats()
{
    using namespace Stats;
    iqInstsAdded
        .name(name() + ".iqInstsAdded")
        .desc("Number of instructions added to the IQ (excludes non-spec)")
        .prereq(iqInstsAdded);

    iqNonSpecInstsAdded
        .name(name() + ".iqNonSpecInstsAdded")
        .desc("Number of non-speculative instructions added to the IQ")
        .prereq(iqNonSpecInstsAdded);

    iqInstsIssued
        .name(name() + ".iqInstsIssued")
        .desc("Number of instructions issued")
        .prereq(iqInstsIssued);

    iqIntInstsIssued
        .name(name() + ".iqIntInstsIssued")
        .desc("Number of integer instructions issued")
        .prereq(iqIntInstsIssued);

    iqFloatInstsIssued
        .name(name() + ".iqFloatInstsIssued")
        .desc("Number of float instructions issued")
        .prereq(iqFloatInstsIssued);

    iqBranchInstsIssued
        .name(name() + ".iqBranchInstsIssued")
        .desc("Number of branch instructions issued")
        .prereq(iqBranchInstsIssued);

    iqMemInstsIssued
        .name(name() + ".iqMemInstsIssued")
        .desc("Number of memory instructions issued")
        .prereq(iqMemInstsIssued);

    iqMiscInstsIssued
        .name(name() + ".iqMiscInstsIssued")
        .desc("Number of miscellaneous instructions issued")
        .prereq(iqMiscInstsIssued);

    iqSquashedInstsIssued
        .name(name() + ".iqSquashedInstsIssued")
        .desc("Number of squashed instructions issued")
        .prereq(iqSquashedInstsIssued);

    iqSquashedInstsExamined
        .name(name() + ".iqSquashedInstsExamined")
        .desc("Number of squashed instructions iterated over during squash;"
              " mainly for profiling")
        .prereq(iqSquashedInstsExamined);

    iqSquashedOperandsExamined
        .name(name() + ".iqSquashedOperandsExamined")
        .desc("Number of squashed operands that are examined and possibly "
              "removed from graph")
        .prereq(iqSquashedOperandsExamined);

    iqSquashedNonSpecRemoved
        .name(name() + ".iqSquashedNonSpecRemoved")
        .desc("Number of squashed non-spec instructions that were removed")
        .prereq(iqSquashedNonSpecRemoved);

    queueResDist
        .init(Num_OpClasses, 0, 99, 2)
        .name(name() + ".IQ:residence:")
        .desc("cycles from dispatch to issue")
        .flags(total | pdf | cdf )
        ;
    for (int i = 0; i < Num_OpClasses; ++i) {
        queueResDist.subname(i, opClassStrings[i]);
    }
    numIssuedDist
        .init(0,totalWidth,1)
        .name(name() + ".ISSUE:issued_per_cycle")
        .desc("Number of insts issued each cycle")
        .flags(pdf)
        ;
/*
    dist_unissued
        .init(Num_OpClasses+2)
        .name(name() + ".ISSUE:unissued_cause")
        .desc("Reason ready instruction not issued")
        .flags(pdf | dist)
        ;
    for (int i=0; i < (Num_OpClasses + 2); ++i) {
        dist_unissued.subname(i, unissued_names[i]);
    }
*/
    statIssuedInstType
        .init(numThreads,Num_OpClasses)
        .name(name() + ".ISSUE:FU_type")
        .desc("Type of FU issued")
        .flags(total | pdf | dist)
        ;
    statIssuedInstType.ysubnames(opClassStrings);

    //
    //  How long did instructions for a particular FU type wait prior to issue
    //

    issueDelayDist
        .init(Num_OpClasses,0,99,2)
        .name(name() + ".ISSUE:")
        .desc("cycles from operands ready to issue")
        .flags(pdf | cdf)
        ;

    for (int i=0; i<Num_OpClasses; ++i) {
        std::stringstream subname;
        subname << opClassStrings[i] << "_delay";
        issueDelayDist.subname(i, subname.str());
    }

    issueRate
        .name(name() + ".ISSUE:rate")
        .desc("Inst issue rate")
        .flags(total)
        ;
    issueRate = iqInstsIssued / cpu->numCycles;

    statFuBusy
        .init(Num_OpClasses)
        .name(name() + ".ISSUE:fu_full")
        .desc("attempts to use FU when none available")
        .flags(pdf | dist)
        ;
    for (int i=0; i < Num_OpClasses; ++i) {
        statFuBusy.subname(i, opClassStrings[i]);
    }

    fuBusy
        .init(numThreads)
        .name(name() + ".ISSUE:fu_busy_cnt")
        .desc("FU busy when requested")
        .flags(total)
        ;

    fuBusyRate
        .name(name() + ".ISSUE:fu_busy_rate")
        .desc("FU busy rate (busy events/executed inst)")
        .flags(total)
        ;
    fuBusyRate = fuBusy / iqInstsIssued;

    for ( int i=0; i < numThreads; i++) {
        // Tell mem dependence unit to reg stats as well.
        memDepUnit[i].regStats();
    }
}

template <class Impl>
void
InstructionQueue<Impl>::resetState()
{
    //Initialize thread IQ counts
    for (int i = 0; i <numThreads; i++) {
        count[i] = 0;
        instList[i].clear();
    }

    // Initialize the number of free IQ entries.
    freeEntries = numEntries;

    // Note that in actuality, the registers corresponding to the logical
    // registers start off as ready.  However this doesn't matter for the
    // IQ as the instruction should have been correctly told if those
    // registers are ready in rename.  Thus it can all be initialized as
    // unready.
    for (int i = 0; i < numPhysRegs; ++i) {
        regScoreboard[i] = false;
    }

    for (int i = 0; i < numThreads; ++i) {
        squashedSeqNum[i] = 0;
    }

    for (int i = 0; i < Num_OpClasses; ++i) {
        while (!readyInsts[i].empty())
            readyInsts[i].pop();
        queueOnList[i] = false;
        readyIt[i] = listOrder.end();
    }
    nonSpecInsts.clear();
    listOrder.clear();
}

template <class Impl>
void
InstructionQueue<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
{
    DPRINTF(IQ, "Setting active threads list pointer.\n");
    activeThreads = at_ptr;
}

template <class Impl>
void
InstructionQueue<Impl>::setIssueToExecuteQueue(TimeBuffer<IssueStruct> *i2e_ptr)
{
    DPRINTF(IQ, "Set the issue to execute queue.\n");
    issueToExecuteQueue = i2e_ptr;
}

template <class Impl>
void
InstructionQueue<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
    DPRINTF(IQ, "Set the time buffer.\n");
    timeBuffer = tb_ptr;

    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
}

template <class Impl>
void
InstructionQueue<Impl>::switchOut()
{
    resetState();
    dependGraph.reset();
    switchedOut = true;
    for (int i = 0; i < numThreads; ++i) {
        memDepUnit[i].switchOut();
    }
}

template <class Impl>
void
InstructionQueue<Impl>::takeOverFrom()
{
    switchedOut = false;
}

template <class Impl>
int
InstructionQueue<Impl>::entryAmount(int num_threads)
{
    if (iqPolicy == Partitioned) {
        return numEntries / num_threads;
    } else {
        return 0;
    }
}


template <class Impl>
void
InstructionQueue<Impl>::resetEntries()
{
    if (iqPolicy != Dynamic || numThreads > 1) {
        int active_threads = (*activeThreads).size();

        std::list<unsigned>::iterator threads  = (*activeThreads).begin();
        std::list<unsigned>::iterator list_end = (*activeThreads).end();

        while (threads != list_end) {
            if (iqPolicy == Partitioned) {
                maxEntries[*threads++] = numEntries / active_threads;
            } else if(iqPolicy == Threshold && active_threads == 1) {
                maxEntries[*threads++] = numEntries;
            }
        }
    }
}

template <class Impl>
unsigned
InstructionQueue<Impl>::numFreeEntries()
{
    return freeEntries;
}

template <class Impl>
unsigned
InstructionQueue<Impl>::numFreeEntries(unsigned tid)
{
    return maxEntries[tid] - count[tid];
}

// Might want to do something more complex if it knows how many instructions
// will be issued this cycle.
template <class Impl>
bool
InstructionQueue<Impl>::isFull()
{
    if (freeEntries == 0) {
        return(true);
    } else {
        return(false);
    }
}

template <class Impl>
bool
InstructionQueue<Impl>::isFull(unsigned tid)
{
    if (numFreeEntries(tid) == 0) {
        return(true);
    } else {
        return(false);
    }
}

template <class Impl>
bool
InstructionQueue<Impl>::hasReadyInsts()
{
    if (!listOrder.empty()) {
        return true;
    }

    for (int i = 0; i < Num_OpClasses; ++i) {
        if (!readyInsts[i].empty()) {
            return true;
        }
    }

    return false;
}

template <class Impl>
void
InstructionQueue<Impl>::insert(DynInstPtr &new_inst)
{
    // Make sure the instruction is valid
    assert(new_inst);

    DPRINTF(IQ, "Adding instruction [sn:%lli] PC %#x to the IQ.\n",
            new_inst->seqNum, new_inst->readPC());

    assert(freeEntries != 0);

    instList[new_inst->threadNumber].push_back(new_inst);

    --freeEntries;

    new_inst->setInIQ();

    // Look through its source registers (physical regs), and mark any
    // dependencies.
    addToDependents(new_inst);

    // Have this instruction set itself as the producer of its destination
    // register(s).
    addToProducers(new_inst);

    if (new_inst->isMemRef()) {
        memDepUnit[new_inst->threadNumber].insert(new_inst);
    } else {
        addIfReady(new_inst);
    }

    ++iqInstsAdded;

    count[new_inst->threadNumber]++;

    assert(freeEntries == (numEntries - countInsts()));
}

template <class Impl>
void
InstructionQueue<Impl>::insertNonSpec(DynInstPtr &new_inst)
{
    // @todo: Clean up this code; can do it by setting inst as unable
    // to issue, then calling normal insert on the inst.

    assert(new_inst);

    nonSpecInsts[new_inst->seqNum] = new_inst;

    DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %#x "
            "to the IQ.\n",
            new_inst->seqNum, new_inst->readPC());

    assert(freeEntries != 0);

    instList[new_inst->threadNumber].push_back(new_inst);

    --freeEntries;

    new_inst->setInIQ();

    // Have this instruction set itself as the producer of its destination
    // register(s).
    addToProducers(new_inst);

    // If it's a memory instruction, add it to the memory dependency
    // unit.
    if (new_inst->isMemRef()) {
        memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
    }

    ++iqNonSpecInstsAdded;

    count[new_inst->threadNumber]++;

    assert(freeEntries == (numEntries - countInsts()));
}

template <class Impl>
void
InstructionQueue<Impl>::insertBarrier(DynInstPtr &barr_inst)
{
    memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);

    insertNonSpec(barr_inst);
}

template <class Impl>
typename Impl::DynInstPtr
InstructionQueue<Impl>::getInstToExecute()
{
    assert(!instsToExecute.empty());
    DynInstPtr inst = instsToExecute.front();
    instsToExecute.pop_front();
    return inst;
}

template <class Impl>
void
InstructionQueue<Impl>::addToOrderList(OpClass op_class)
{
    assert(!readyInsts[op_class].empty());

    ListOrderEntry queue_entry;

    queue_entry.queueType = op_class;

    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;

    ListOrderIt list_it = listOrder.begin();
    ListOrderIt list_end_it = listOrder.end();

    while (list_it != list_end_it) {
        if ((*list_it).oldestInst > queue_entry.oldestInst) {
            break;
        }

        list_it++;
    }

    readyIt[op_class] = listOrder.insert(list_it, queue_entry);
    queueOnList[op_class] = true;
}

template <class Impl>
void
InstructionQueue<Impl>::moveToYoungerInst(ListOrderIt list_order_it)
{
    // Get iterator of next item on the list
    // Delete the original iterator
    // Determine if the next item is either the end of the list or younger
    // than the new instruction.  If so, then add in a new iterator right here.
    // If not, then move along.
    ListOrderEntry queue_entry;
    OpClass op_class = (*list_order_it).queueType;
    ListOrderIt next_it = list_order_it;

    ++next_it;

    queue_entry.queueType = op_class;
    queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;

    while (next_it != listOrder.end() &&
           (*next_it).oldestInst < queue_entry.oldestInst) {
        ++next_it;
    }

    readyIt[op_class] = listOrder.insert(next_it, queue_entry);
}

template <class Impl>
void
InstructionQueue<Impl>::processFUCompletion(DynInstPtr &inst, int fu_idx)
{
    // The CPU could have been sleeping until this op completed (*extremely*
    // long latency op).  Wake it if it was.  This may be overkill.
    if (isSwitchedOut()) {
        return;
    }

    iewStage->wakeCPU();

    if (fu_idx > -1)
        fuPool->freeUnitNextCycle(fu_idx);

    // @todo: Ensure that these FU Completions happen at the beginning
    // of a cycle, otherwise they could add too many instructions to
    // the queue.
    issueToExecuteQueue->access(0)->size++;
    instsToExecute.push_back(inst);
}

// @todo: Figure out a better way to remove the squashed items from the
// lists.  Checking the top item of each list to see if it's squashed
// wastes time and forces jumps.
template <class Impl>
void
InstructionQueue<Impl>::scheduleReadyInsts()
{
    DPRINTF(IQ, "Attempting to schedule ready instructions from "
            "the IQ.\n");

    IssueStruct *i2e_info = issueToExecuteQueue->access(0);

    // Have iterator to head of the list
    // While I haven't exceeded bandwidth or reached the end of the list,
    // Try to get a FU that can do what this op needs.
    // If successful, change the oldestInst to the new top of the list, put
    // the queue in the proper place in the list.
    // Increment the iterator.
    // This will avoid trying to schedule a certain op class if there are no
    // FUs that handle it.
    ListOrderIt order_it = listOrder.begin();
    ListOrderIt order_end_it = listOrder.end();
    int total_issued = 0;

    while (total_issued < totalWidth &&
           iewStage->canIssue() &&
           order_it != order_end_it) {
        OpClass op_class = (*order_it).queueType;

        assert(!readyInsts[op_class].empty());

        DynInstPtr issuing_inst = readyInsts[op_class].top();

        assert(issuing_inst->seqNum == (*order_it).oldestInst);

        if (issuing_inst->isSquashed()) {
            readyInsts[op_class].pop();

            if (!readyInsts[op_class].empty()) {
                moveToYoungerInst(order_it);
            } else {
                readyIt[op_class] = listOrder.end();
                queueOnList[op_class] = false;
            }

            listOrder.erase(order_it++);

            ++iqSquashedInstsIssued;

            continue;
        }

        int idx = -2;
        int op_latency = 1;
        int tid = issuing_inst->threadNumber;

        if (op_class != No_OpClass) {
            idx = fuPool->getUnit(op_class);

            if (idx > -1) {
                op_latency = fuPool->getOpLatency(op_class);
            }
        }

        // If we have an instruction that doesn't require a FU, or a
        // valid FU, then schedule for execution.
        if (idx == -2 || idx != -1) {
            if (op_latency == 1) {
                i2e_info->size++;
                instsToExecute.push_back(issuing_inst);

                // Add the FU onto the list of FU's to be freed next
                // cycle if we used one.
                if (idx >= 0)
                    fuPool->freeUnitNextCycle(idx);
            } else {
                int issue_latency = fuPool->getIssueLatency(op_class);
                // Generate completion event for the FU
                FUCompletion *execution = new FUCompletion(issuing_inst,
                                                           idx, this);

                execution->schedule(curTick + cpu->cycles(issue_latency - 1));

                // @todo: Enforce that issue_latency == 1 or op_latency
                if (issue_latency > 1) {
                    // If FU isn't pipelined, then it must be freed
                    // upon the execution completing.
                    execution->setFreeFU();
                } else {
                    // Add the FU onto the list of FU's to be freed next cycle.
                    fuPool->freeUnitNextCycle(idx);
                }
            }

            DPRINTF(IQ, "Thread %i: Issuing instruction PC %#x "
                    "[sn:%lli]\n",
                    tid, issuing_inst->readPC(),
                    issuing_inst->seqNum);

            readyInsts[op_class].pop();

            if (!readyInsts[op_class].empty()) {
                moveToYoungerInst(order_it);
            } else {
                readyIt[op_class] = listOrder.end();
                queueOnList[op_class] = false;
            }

            issuing_inst->setIssued();
            ++total_issued;

            if (!issuing_inst->isMemRef()) {
                // Memory instructions can not be freed from the IQ until they
                // complete.
                ++freeEntries;
                count[tid]--;
                issuing_inst->clearInIQ();
            } else {
                memDepUnit[tid].issue(issuing_inst);
            }

            listOrder.erase(order_it++);
            statIssuedInstType[tid][op_class]++;
            iewStage->incrWb(issuing_inst->seqNum);
        } else {
            statFuBusy[op_class]++;
            fuBusy[tid]++;
            ++order_it;
        }
    }

    numIssuedDist.sample(total_issued);
    iqInstsIssued+= total_issued;

    // If we issued any instructions, tell the CPU we had activity.
    if (total_issued) {
        cpu->activityThisCycle();
    } else {
        DPRINTF(IQ, "Not able to schedule any instructions.\n");
    }
}

template <class Impl>
void
InstructionQueue<Impl>::scheduleNonSpec(const InstSeqNum &inst)
{
    DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
            "to execute.\n", inst);

    NonSpecMapIt inst_it = nonSpecInsts.find(inst);

    assert(inst_it != nonSpecInsts.end());

    unsigned tid = (*inst_it).second->threadNumber;

    (*inst_it).second->setCanIssue();

    if (!(*inst_it).second->isMemRef()) {
        addIfReady((*inst_it).second);
    } else {
        memDepUnit[tid].nonSpecInstReady((*inst_it).second);
    }

    (*inst_it).second = NULL;

    nonSpecInsts.erase(inst_it);
}

template <class Impl>
void
InstructionQueue<Impl>::commit(const InstSeqNum &inst, unsigned tid)
{
    DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
            tid,inst);

    ListIt iq_it = instList[tid].begin();

    while (iq_it != instList[tid].end() &&
           (*iq_it)->seqNum <= inst) {
        ++iq_it;
        instList[tid].pop_front();
    }

    assert(freeEntries == (numEntries - countInsts()));
}

template <class Impl>
int
InstructionQueue<Impl>::wakeDependents(DynInstPtr &completed_inst)
{
    int dependents = 0;

    DPRINTF(IQ, "Waking dependents of completed instruction.\n");

    assert(!completed_inst->isSquashed());

    // Tell the memory dependence unit to wake any dependents on this
    // instruction if it is a memory instruction.  Also complete the memory
    // instruction at this point since we know it executed without issues.
    // @todo: Might want to rename "completeMemInst" to something that
    // indicates that it won't need to be replayed, and call this
    // earlier.  Might not be a big deal.
    if (completed_inst->isMemRef()) {
        memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
        completeMemInst(completed_inst);
    } else if (completed_inst->isMemBarrier() ||
               completed_inst->isWriteBarrier()) {
        memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
    }

    for (int dest_reg_idx = 0;
         dest_reg_idx < completed_inst->numDestRegs();
         dest_reg_idx++)
    {
        PhysRegIndex dest_reg =
            completed_inst->renamedDestRegIdx(dest_reg_idx);

        // Special case of uniq or control registers.  They are not
        // handled by the IQ and thus have no dependency graph entry.
        // @todo Figure out a cleaner way to handle this.
        if (dest_reg >= numPhysRegs) {
            continue;
        }

        DPRINTF(IQ, "Waking any dependents on register %i.\n",
                (int) dest_reg);

        //Go through the dependency chain, marking the registers as
        //ready within the waiting instructions.
        DynInstPtr dep_inst = dependGraph.pop(dest_reg);

        while (dep_inst) {
            DPRINTF(IQ, "Waking up a dependent instruction, PC%#x.\n",
                    dep_inst->readPC());

            // Might want to give more information to the instruction
            // so that it knows which of its source registers is
            // ready.  However that would mean that the dependency
            // graph entries would need to hold the src_reg_idx.
            dep_inst->markSrcRegReady();

            addIfReady(dep_inst);

            dep_inst = dependGraph.pop(dest_reg);

            ++dependents;
        }

        // Reset the head node now that all of its dependents have
        // been woken up.
        assert(dependGraph.empty(dest_reg));
        dependGraph.clearInst(dest_reg);

        // Mark the scoreboard as having that register ready.
        regScoreboard[dest_reg] = true;
    }
    return dependents;
}

template <class Impl>
void
InstructionQueue<Impl>::addReadyMemInst(DynInstPtr &ready_inst)
{
    OpClass op_class = ready_inst->opClass();

    readyInsts[op_class].push(ready_inst);

    // Will need to reorder the list if either a queue is not on the list,
    // or it has an older instruction than last time.
    if (!queueOnList[op_class]) {
        addToOrderList(op_class);
    } else if (readyInsts[op_class].top()->seqNum  <
               (*readyIt[op_class]).oldestInst) {
        listOrder.erase(readyIt[op_class]);
        addToOrderList(op_class);
    }

    DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
            "the ready list, PC %#x opclass:%i [sn:%lli].\n",
            ready_inst->readPC(), op_class, ready_inst->seqNum);
}

template <class Impl>
void
InstructionQueue<Impl>::rescheduleMemInst(DynInstPtr &resched_inst)
{
    memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
}

template <class Impl>
void
InstructionQueue<Impl>::replayMemInst(DynInstPtr &replay_inst)
{
    memDepUnit[replay_inst->threadNumber].replay(replay_inst);
}

template <class Impl>
void
InstructionQueue<Impl>::completeMemInst(DynInstPtr &completed_inst)
{
    int tid = completed_inst->threadNumber;

    DPRINTF(IQ, "Completing mem instruction PC:%#x [sn:%lli]\n",
            completed_inst->readPC(), completed_inst->seqNum);

    ++freeEntries;

    completed_inst->memOpDone = true;

    memDepUnit[tid].completed(completed_inst);

    count[tid]--;
}

template <class Impl>
void
InstructionQueue<Impl>::violation(DynInstPtr &store,
                                  DynInstPtr &faulting_load)
{
    memDepUnit[store->threadNumber].violation(store, faulting_load);
}

template <class Impl>
void
InstructionQueue<Impl>::squash(unsigned tid)
{
    DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
            "the IQ.\n", tid);

    // Read instruction sequence number of last instruction out of the
    // time buffer.
#if THE_ISA == ALPHA_ISA
    squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
#else
    squashedSeqNum[tid] = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
#endif

    // Call doSquash if there are insts in the IQ
    if (count[tid] > 0) {
        doSquash(tid);
    }

    // Also tell the memory dependence unit to squash.
    memDepUnit[tid].squash(squashedSeqNum[tid], tid);
}

template <class Impl>
void
InstructionQueue<Impl>::doSquash(unsigned tid)
{
    // Start at the tail.
    ListIt squash_it = instList[tid].end();
    --squash_it;

    DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
            tid, squashedSeqNum[tid]);

    // Squash any instructions younger than the squashed sequence number
    // given.
    while (squash_it != instList[tid].end() &&
           (*squash_it)->seqNum > squashedSeqNum[tid]) {

        DynInstPtr squashed_inst = (*squash_it);

        // Only handle the instruction if it actually is in the IQ and
        // hasn't already been squashed in the IQ.
        if (squashed_inst->threadNumber != tid ||
            squashed_inst->isSquashedInIQ()) {
            --squash_it;
            continue;
        }

        if (!squashed_inst->isIssued() ||
            (squashed_inst->isMemRef() &&
             !squashed_inst->memOpDone)) {

            // Remove the instruction from the dependency list.
            if (!squashed_inst->isNonSpeculative() &&
                !squashed_inst->isStoreConditional() &&
                !squashed_inst->isMemBarrier() &&
                !squashed_inst->isWriteBarrier()) {

                for (int src_reg_idx = 0;
                     src_reg_idx < squashed_inst->numSrcRegs();
                     src_reg_idx++)
                {
                    PhysRegIndex src_reg =
                        squashed_inst->renamedSrcRegIdx(src_reg_idx);

                    // Only remove it from the dependency graph if it
                    // was placed there in the first place.

                    // Instead of doing a linked list traversal, we
                    // can just remove these squashed instructions
                    // either at issue time, or when the register is
                    // overwritten.  The only downside to this is it
                    // leaves more room for error.

                    if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
                        src_reg < numPhysRegs) {
                        dependGraph.remove(src_reg, squashed_inst);
                    }


                    ++iqSquashedOperandsExamined;
                }
            } else {
                NonSpecMapIt ns_inst_it =
                    nonSpecInsts.find(squashed_inst->seqNum);
                assert(ns_inst_it != nonSpecInsts.end());

                (*ns_inst_it).second = NULL;

                nonSpecInsts.erase(ns_inst_it);

                ++iqSquashedNonSpecRemoved;
            }

            // Might want to also clear out the head of the dependency graph.

            // Mark it as squashed within the IQ.
            squashed_inst->setSquashedInIQ();

            // @todo: Remove this hack where several statuses are set so the
            // inst will flow through the rest of the pipeline.
            squashed_inst->setIssued();
            squashed_inst->setCanCommit();
            squashed_inst->clearInIQ();

            //Update Thread IQ Count
            count[squashed_inst->threadNumber]--;

            ++freeEntries;

            DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %#x "
                    "squashed.\n",
                    tid, squashed_inst->seqNum, squashed_inst->readPC());
        }

        instList[tid].erase(squash_it--);
        ++iqSquashedInstsExamined;
    }
}

template <class Impl>
bool
InstructionQueue<Impl>::addToDependents(DynInstPtr &new_inst)
{
    // Loop through the instruction's source registers, adding
    // them to the dependency list if they are not ready.
    int8_t total_src_regs = new_inst->numSrcRegs();
    bool return_val = false;

    for (int src_reg_idx = 0;
         src_reg_idx < total_src_regs;
         src_reg_idx++)
    {
        // Only add it to the dependency graph if it's not ready.
        if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
            PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);

            // Check the IQ's scoreboard to make sure the register
            // hasn't become ready while the instruction was in flight
            // between stages.  Only if it really isn't ready should
            // it be added to the dependency graph.
            if (src_reg >= numPhysRegs) {
                continue;
            } else if (regScoreboard[src_reg] == false) {
                DPRINTF(IQ, "Instruction PC %#x has src reg %i that "
                        "is being added to the dependency chain.\n",
                        new_inst->readPC(), src_reg);

                dependGraph.insert(src_reg, new_inst);

                // Change the return value to indicate that something
                // was added to the dependency graph.
                return_val = true;
            } else {
                DPRINTF(IQ, "Instruction PC %#x has src reg %i that "
                        "became ready before it reached the IQ.\n",
                        new_inst->readPC(), src_reg);
                // Mark a register ready within the instruction.
                new_inst->markSrcRegReady(src_reg_idx);
            }
        }
    }

    return return_val;
}

template <class Impl>
void
InstructionQueue<Impl>::addToProducers(DynInstPtr &new_inst)
{
    // Nothing really needs to be marked when an instruction becomes
    // the producer of a register's value, but for convenience a ptr
    // to the producing instruction will be placed in the head node of
    // the dependency links.
    int8_t total_dest_regs = new_inst->numDestRegs();

    for (int dest_reg_idx = 0;
         dest_reg_idx < total_dest_regs;
         dest_reg_idx++)
    {
        PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);

        // Instructions that use the misc regs will have a reg number
        // higher than the normal physical registers.  In this case these
        // registers are not renamed, and there is no need to track
        // dependencies as these instructions must be executed at commit.
        if (dest_reg >= numPhysRegs) {
            continue;
        }

        if (!dependGraph.empty(dest_reg)) {
            dependGraph.dump();
            panic("Dependency graph %i not empty!", dest_reg);
        }

        dependGraph.setInst(dest_reg, new_inst);

        // Mark the scoreboard to say it's not yet ready.
        regScoreboard[dest_reg] = false;
    }
}

template <class Impl>
void
InstructionQueue<Impl>::addIfReady(DynInstPtr &inst)
{
    // If the instruction now has all of its source registers
    // available, then add it to the list of ready instructions.
    if (inst->readyToIssue()) {

        //Add the instruction to the proper ready list.
        if (inst->isMemRef()) {

            DPRINTF(IQ, "Checking if memory instruction can issue.\n");

            // Message to the mem dependence unit that this instruction has
            // its registers ready.
            memDepUnit[inst->threadNumber].regsReady(inst);

            return;
        }

        OpClass op_class = inst->opClass();

        DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
                "the ready list, PC %#x opclass:%i [sn:%lli].\n",
                inst->readPC(), op_class, inst->seqNum);

        readyInsts[op_class].push(inst);

        // Will need to reorder the list if either a queue is not on the list,
        // or it has an older instruction than last time.
        if (!queueOnList[op_class]) {
            addToOrderList(op_class);
        } else if (readyInsts[op_class].top()->seqNum  <
                   (*readyIt[op_class]).oldestInst) {
            listOrder.erase(readyIt[op_class]);
            addToOrderList(op_class);
        }
    }
}

template <class Impl>
int
InstructionQueue<Impl>::countInsts()
{
#if 0
    //ksewell:This works but definitely could use a cleaner write
    //with a more intuitive way of counting. Right now it's
    //just brute force ....
    // Change the #if if you want to use this method.
    int total_insts = 0;

    for (int i = 0; i < numThreads; ++i) {
        ListIt count_it = instList[i].begin();

        while (count_it != instList[i].end()) {
            if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
                if (!(*count_it)->isIssued()) {
                    ++total_insts;
                } else if ((*count_it)->isMemRef() &&
                           !(*count_it)->memOpDone) {
                    // Loads that have not been marked as executed still count
                    // towards the total instructions.
                    ++total_insts;
                }
            }

            ++count_it;
        }
    }

    return total_insts;
#else
    return numEntries - freeEntries;
#endif
}

template <class Impl>
void
InstructionQueue<Impl>::dumpLists()
{
    for (int i = 0; i < Num_OpClasses; ++i) {
        cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());

        cprintf("\n");
    }

    cprintf("Non speculative list size: %i\n", nonSpecInsts.size());

    NonSpecMapIt non_spec_it = nonSpecInsts.begin();
    NonSpecMapIt non_spec_end_it = nonSpecInsts.end();

    cprintf("Non speculative list: ");

    while (non_spec_it != non_spec_end_it) {
        cprintf("%#x [sn:%lli]", (*non_spec_it).second->readPC(),
                (*non_spec_it).second->seqNum);
        ++non_spec_it;
    }

    cprintf("\n");

    ListOrderIt list_order_it = listOrder.begin();
    ListOrderIt list_order_end_it = listOrder.end();
    int i = 1;

    cprintf("List order: ");

    while (list_order_it != list_order_end_it) {
        cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
                (*list_order_it).oldestInst);

        ++list_order_it;
        ++i;
    }

    cprintf("\n");
}


template <class Impl>
void
InstructionQueue<Impl>::dumpInsts()
{
    for (int i = 0; i < numThreads; ++i) {
        int num = 0;
        int valid_num = 0;
        ListIt inst_list_it = instList[i].begin();

        while (inst_list_it != instList[i].end())
        {
            cprintf("Instruction:%i\n",
                    num);
            if (!(*inst_list_it)->isSquashed()) {
                if (!(*inst_list_it)->isIssued()) {
                    ++valid_num;
                    cprintf("Count:%i\n", valid_num);
                } else if ((*inst_list_it)->isMemRef() &&
                           !(*inst_list_it)->memOpDone) {
                    // Loads that have not been marked as executed
                    // still count towards the total instructions.
                    ++valid_num;
                    cprintf("Count:%i\n", valid_num);
                }
            }

            cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
                    "Issued:%i\nSquashed:%i\n",
                    (*inst_list_it)->readPC(),
                    (*inst_list_it)->seqNum,
                    (*inst_list_it)->threadNumber,
                    (*inst_list_it)->isIssued(),
                    (*inst_list_it)->isSquashed());

            if ((*inst_list_it)->isMemRef()) {
                cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
            }

            cprintf("\n");

            inst_list_it++;
            ++num;
        }
    }

    cprintf("Insts to Execute list:\n");

    int num = 0;
    int valid_num = 0;
    ListIt inst_list_it = instsToExecute.begin();

    while (inst_list_it != instsToExecute.end())
    {
        cprintf("Instruction:%i\n",
                num);
        if (!(*inst_list_it)->isSquashed()) {
            if (!(*inst_list_it)->isIssued()) {
                ++valid_num;
                cprintf("Count:%i\n", valid_num);
            } else if ((*inst_list_it)->isMemRef() &&
                       !(*inst_list_it)->memOpDone) {
                // Loads that have not been marked as executed
                // still count towards the total instructions.
                ++valid_num;
                cprintf("Count:%i\n", valid_num);
            }
        }

        cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
                "Issued:%i\nSquashed:%i\n",
                (*inst_list_it)->readPC(),
                (*inst_list_it)->seqNum,
                (*inst_list_it)->threadNumber,
                (*inst_list_it)->isIssued(),
                (*inst_list_it)->isSquashed());

        if ((*inst_list_it)->isMemRef()) {
            cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone);
        }

        cprintf("\n");

        inst_list_it++;
        ++num;
    }
}