summaryrefslogtreecommitdiff
path: root/src/cpu/o3/lsq_unit.hh
blob: 7093b5fee228a53e474cfd8a64f7fd35b8b0feee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
/*
 * Copyright (c) 2004-2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Kevin Lim
 *          Korey Sewell
 */

#ifndef __CPU_O3_LSQ_UNIT_HH__
#define __CPU_O3_LSQ_UNIT_HH__

#include <algorithm>
#include <cstring>
#include <map>
#include <queue>

#include "arch/generic/debugfaults.hh"
#include "arch/isa_traits.hh"
#include "arch/locked_mem.hh"
#include "arch/mmapped_ipr.hh"
#include "base/hashmap.hh"
#include "config/the_isa.hh"
#include "cpu/inst_seq.hh"
#include "cpu/timebuf.hh"
#include "debug/LSQUnit.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
#include "sim/fault_fwd.hh"

struct DerivO3CPUParams;

/**
 * Class that implements the actual LQ and SQ for each specific
 * thread.  Both are circular queues; load entries are freed upon
 * committing, while store entries are freed once they writeback. The
 * LSQUnit tracks if there are memory ordering violations, and also
 * detects partial load to store forwarding cases (a store only has
 * part of a load's data) that requires the load to wait until the
 * store writes back. In the former case it holds onto the instruction
 * until the dependence unit looks at it, and in the latter it stalls
 * the LSQ until the store writes back. At that point the load is
 * replayed.
 */
template <class Impl>
class LSQUnit {
  public:
    typedef typename Impl::O3CPU O3CPU;
    typedef typename Impl::DynInstPtr DynInstPtr;
    typedef typename Impl::CPUPol::IEW IEW;
    typedef typename Impl::CPUPol::LSQ LSQ;
    typedef typename Impl::CPUPol::IssueStruct IssueStruct;

  public:
    /** Constructs an LSQ unit. init() must be called prior to use. */
    LSQUnit();

    /** Initializes the LSQ unit with the specified number of entries. */
    void init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
            LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
            unsigned id);

    /** Returns the name of the LSQ unit. */
    std::string name() const;

    /** Registers statistics. */
    void regStats();

    /** Sets the pointer to the dcache port. */
    void setDcachePort(MasterPort *dcache_port);

    /** Switches out LSQ unit. */
    void switchOut();

    /** Takes over from another CPU's thread. */
    void takeOverFrom();

    /** Returns if the LSQ is switched out. */
    bool isSwitchedOut() { return switchedOut; }

    /** Ticks the LSQ unit, which in this case only resets the number of
     * used cache ports.
     * @todo: Move the number of used ports up to the LSQ level so it can
     * be shared by all LSQ units.
     */
    void tick() { usedPorts = 0; }

    /** Inserts an instruction. */
    void insert(DynInstPtr &inst);
    /** Inserts a load instruction. */
    void insertLoad(DynInstPtr &load_inst);
    /** Inserts a store instruction. */
    void insertStore(DynInstPtr &store_inst);

    /** Check for ordering violations in the LSQ. For a store squash if we
     * ever find a conflicting load. For a load, only squash if we
     * an external snoop invalidate has been seen for that load address
     * @param load_idx index to start checking at
     * @param inst the instruction to check
     */
    Fault checkViolations(int load_idx, DynInstPtr &inst);

    /** Check if an incoming invalidate hits in the lsq on a load
     * that might have issued out of order wrt another load beacuse
     * of the intermediate invalidate.
     */
    void checkSnoop(PacketPtr pkt);

    /** Executes a load instruction. */
    Fault executeLoad(DynInstPtr &inst);

    Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
    /** Executes a store instruction. */
    Fault executeStore(DynInstPtr &inst);

    /** Commits the head load. */
    void commitLoad();
    /** Commits loads older than a specific sequence number. */
    void commitLoads(InstSeqNum &youngest_inst);

    /** Commits stores older than a specific sequence number. */
    void commitStores(InstSeqNum &youngest_inst);

    /** Writes back stores. */
    void writebackStores();

    /** Completes the data access that has been returned from the
     * memory system. */
    void completeDataAccess(PacketPtr pkt);

    /** Clears all the entries in the LQ. */
    void clearLQ();

    /** Clears all the entries in the SQ. */
    void clearSQ();

    /** Resizes the LQ to a given size. */
    void resizeLQ(unsigned size);

    /** Resizes the SQ to a given size. */
    void resizeSQ(unsigned size);

    /** Squashes all instructions younger than a specific sequence number. */
    void squash(const InstSeqNum &squashed_num);

    /** Returns if there is a memory ordering violation. Value is reset upon
     * call to getMemDepViolator().
     */
    bool violation() { return memDepViolator; }

    /** Returns the memory ordering violator. */
    DynInstPtr getMemDepViolator();

    /** Returns if a load became blocked due to the memory system. */
    bool loadBlocked()
    { return isLoadBlocked; }

    /** Clears the signal that a load became blocked. */
    void clearLoadBlocked()
    { isLoadBlocked = false; }

    /** Returns if the blocked load was handled. */
    bool isLoadBlockedHandled()
    { return loadBlockedHandled; }

    /** Records the blocked load as being handled. */
    void setLoadBlockedHandled()
    { loadBlockedHandled = true; }

    /** Returns the number of free entries (min of free LQ and SQ entries). */
    unsigned numFreeEntries();

    /** Returns the number of loads ready to execute. */
    int numLoadsReady();

    /** Returns the number of loads in the LQ. */
    int numLoads() { return loads; }

    /** Returns the number of stores in the SQ. */
    int numStores() { return stores; }

    /** Returns if either the LQ or SQ is full. */
    bool isFull() { return lqFull() || sqFull(); }

    /** Returns if the LQ is full. */
    bool lqFull() { return loads >= (LQEntries - 1); }

    /** Returns if the SQ is full. */
    bool sqFull() { return stores >= (SQEntries - 1); }

    /** Returns the number of instructions in the LSQ. */
    unsigned getCount() { return loads + stores; }

    /** Returns if there are any stores to writeback. */
    bool hasStoresToWB() { return storesToWB; }

    /** Returns the number of stores to writeback. */
    int numStoresToWB() { return storesToWB; }

    /** Returns if the LSQ unit will writeback on this cycle. */
    bool willWB() { return storeQueue[storeWBIdx].canWB &&
                        !storeQueue[storeWBIdx].completed &&
                        !isStoreBlocked; }

    /** Handles doing the retry. */
    void recvRetry();

  private:
    /** Writes back the instruction, sending it to IEW. */
    void writeback(DynInstPtr &inst, PacketPtr pkt);

    /** Writes back a store that couldn't be completed the previous cycle. */
    void writebackPendingStore();

    /** Handles completing the send of a store to memory. */
    void storePostSend(PacketPtr pkt);

    /** Completes the store at the specified index. */
    void completeStore(int store_idx);

    /** Attempts to send a store to the cache. */
    bool sendStore(PacketPtr data_pkt);

    /** Increments the given store index (circular queue). */
    inline void incrStIdx(int &store_idx);
    /** Decrements the given store index (circular queue). */
    inline void decrStIdx(int &store_idx);
    /** Increments the given load index (circular queue). */
    inline void incrLdIdx(int &load_idx);
    /** Decrements the given load index (circular queue). */
    inline void decrLdIdx(int &load_idx);

  public:
    /** Debugging function to dump instructions in the LSQ. */
    void dumpInsts();

  private:
    /** Pointer to the CPU. */
    O3CPU *cpu;

    /** Pointer to the IEW stage. */
    IEW *iewStage;

    /** Pointer to the LSQ. */
    LSQ *lsq;

    /** Pointer to the dcache port.  Used only for sending. */
    MasterPort *dcachePort;

    /** Derived class to hold any sender state the LSQ needs. */
    class LSQSenderState : public Packet::SenderState
    {
      public:
        /** Default constructor. */
        LSQSenderState()
            : mainPkt(NULL), pendingPacket(NULL), outstanding(1),
              noWB(false), isSplit(false), pktToSend(false)
          { }

        /** Instruction who initiated the access to memory. */
        DynInstPtr inst;
        /** The main packet from a split load, used during writeback. */
        PacketPtr mainPkt;
        /** A second packet from a split store that needs sending. */
        PacketPtr pendingPacket;
        /** The LQ/SQ index of the instruction. */
        uint8_t idx;
        /** Number of outstanding packets to complete. */
        uint8_t outstanding;
        /** Whether or not it is a load. */
        bool isLoad;
        /** Whether or not the instruction will need to writeback. */
        bool noWB;
        /** Whether or not this access is split in two. */
        bool isSplit;
        /** Whether or not there is a packet that needs sending. */
        bool pktToSend;

        /** Completes a packet and returns whether the access is finished. */
        inline bool complete() { return --outstanding == 0; }
    };

    /** Writeback event, specifically for when stores forward data to loads. */
    class WritebackEvent : public Event {
      public:
        /** Constructs a writeback event. */
        WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);

        /** Processes the writeback event. */
        void process();

        /** Returns the description of this event. */
        const char *description() const;

      private:
        /** Instruction whose results are being written back. */
        DynInstPtr inst;

        /** The packet that would have been sent to memory. */
        PacketPtr pkt;

        /** The pointer to the LSQ unit that issued the store. */
        LSQUnit<Impl> *lsqPtr;
    };

  public:
    struct SQEntry {
        /** Constructs an empty store queue entry. */
        SQEntry()
            : inst(NULL), req(NULL), size(0),
              canWB(0), committed(0), completed(0)
        {
            std::memset(data, 0, sizeof(data));
        }

        /** Constructs a store queue entry for a given instruction. */
        SQEntry(DynInstPtr &_inst)
            : inst(_inst), req(NULL), sreqLow(NULL), sreqHigh(NULL), size(0),
              isSplit(0), canWB(0), committed(0), completed(0)
        {
            std::memset(data, 0, sizeof(data));
        }
        /** The store data. */
        char data[16];
        /** The store instruction. */
        DynInstPtr inst;
        /** The request for the store. */
        RequestPtr req;
        /** The split requests for the store. */
        RequestPtr sreqLow;
        RequestPtr sreqHigh;
        /** The size of the store. */
        uint8_t size;
        /** Whether or not the store is split into two requests. */
        bool isSplit;
        /** Whether or not the store can writeback. */
        bool canWB;
        /** Whether or not the store is committed. */
        bool committed;
        /** Whether or not the store is completed. */
        bool completed;
    };

  private:
    /** The LSQUnit thread id. */
    ThreadID lsqID;

    /** The store queue. */
    std::vector<SQEntry> storeQueue;

    /** The load queue. */
    std::vector<DynInstPtr> loadQueue;

    /** The number of LQ entries, plus a sentinel entry (circular queue).
     *  @todo: Consider having var that records the true number of LQ entries.
     */
    unsigned LQEntries;
    /** The number of SQ entries, plus a sentinel entry (circular queue).
     *  @todo: Consider having var that records the true number of SQ entries.
     */
    unsigned SQEntries;

    /** The number of places to shift addresses in the LSQ before checking
     * for dependency violations
     */
    unsigned depCheckShift;

    /** Should loads be checked for dependency issues */
    bool checkLoads;

    /** The number of load instructions in the LQ. */
    int loads;
    /** The number of store instructions in the SQ. */
    int stores;
    /** The number of store instructions in the SQ waiting to writeback. */
    int storesToWB;

    /** The index of the head instruction in the LQ. */
    int loadHead;
    /** The index of the tail instruction in the LQ. */
    int loadTail;

    /** The index of the head instruction in the SQ. */
    int storeHead;
    /** The index of the first instruction that may be ready to be
     * written back, and has not yet been written back.
     */
    int storeWBIdx;
    /** The index of the tail instruction in the SQ. */
    int storeTail;

    /// @todo Consider moving to a more advanced model with write vs read ports
    /** The number of cache ports available each cycle. */
    int cachePorts;

    /** The number of used cache ports in this cycle. */
    int usedPorts;

    /** Is the LSQ switched out. */
    bool switchedOut;

    //list<InstSeqNum> mshrSeqNums;

    /** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */
    Addr cacheBlockMask;

    /** Wire to read information from the issue stage time queue. */
    typename TimeBuffer<IssueStruct>::wire fromIssue;

    /** Whether or not the LSQ is stalled. */
    bool stalled;
    /** The store that causes the stall due to partial store to load
     * forwarding.
     */
    InstSeqNum stallingStoreIsn;
    /** The index of the above store. */
    int stallingLoadIdx;

    /** The packet that needs to be retried. */
    PacketPtr retryPkt;

    /** Whehter or not a store is blocked due to the memory system. */
    bool isStoreBlocked;

    /** Whether or not a load is blocked due to the memory system. */
    bool isLoadBlocked;

    /** Has the blocked load been handled. */
    bool loadBlockedHandled;

    /** Whether or not a store is in flight. */
    bool storeInFlight;

    /** The sequence number of the blocked load. */
    InstSeqNum blockedLoadSeqNum;

    /** The oldest load that caused a memory ordering violation. */
    DynInstPtr memDepViolator;

    /** Whether or not there is a packet that couldn't be sent because of
     * a lack of cache ports. */
    bool hasPendingPkt;

    /** The packet that is pending free cache ports. */
    PacketPtr pendingPkt;

    /** Flag for memory model. */
    bool needsTSO;

    // Will also need how many read/write ports the Dcache has.  Or keep track
    // of that in stage that is one level up, and only call executeLoad/Store
    // the appropriate number of times.
    /** Total number of loads forwaded from LSQ stores. */
    Stats::Scalar lsqForwLoads;

    /** Total number of loads ignored due to invalid addresses. */
    Stats::Scalar invAddrLoads;

    /** Total number of squashed loads. */
    Stats::Scalar lsqSquashedLoads;

    /** Total number of responses from the memory system that are
     * ignored due to the instruction already being squashed. */
    Stats::Scalar lsqIgnoredResponses;

    /** Tota number of memory ordering violations. */
    Stats::Scalar lsqMemOrderViolation;

    /** Total number of squashed stores. */
    Stats::Scalar lsqSquashedStores;

    /** Total number of software prefetches ignored due to invalid addresses. */
    Stats::Scalar invAddrSwpfs;

    /** Ready loads blocked due to partial store-forwarding. */
    Stats::Scalar lsqBlockedLoads;

    /** Number of loads that were rescheduled. */
    Stats::Scalar lsqRescheduledLoads;

    /** Number of times the LSQ is blocked due to the cache. */
    Stats::Scalar lsqCacheBlocked;

  public:
    /** Executes the load at the given index. */
    Fault read(Request *req, Request *sreqLow, Request *sreqHigh,
               uint8_t *data, int load_idx);

    /** Executes the store at the given index. */
    Fault write(Request *req, Request *sreqLow, Request *sreqHigh,
                uint8_t *data, int store_idx);

    /** Returns the index of the head load instruction. */
    int getLoadHead() { return loadHead; }
    /** Returns the sequence number of the head load instruction. */
    InstSeqNum getLoadHeadSeqNum()
    {
        if (loadQueue[loadHead]) {
            return loadQueue[loadHead]->seqNum;
        } else {
            return 0;
        }

    }

    /** Returns the index of the head store instruction. */
    int getStoreHead() { return storeHead; }
    /** Returns the sequence number of the head store instruction. */
    InstSeqNum getStoreHeadSeqNum()
    {
        if (storeQueue[storeHead].inst) {
            return storeQueue[storeHead].inst->seqNum;
        } else {
            return 0;
        }

    }

    /** Returns whether or not the LSQ unit is stalled. */
    bool isStalled()  { return stalled; }
};

template <class Impl>
Fault
LSQUnit<Impl>::read(Request *req, Request *sreqLow, Request *sreqHigh,
                    uint8_t *data, int load_idx)
{
    DynInstPtr load_inst = loadQueue[load_idx];

    assert(load_inst);

    assert(!load_inst->isExecuted());

    // Make sure this isn't an uncacheable access
    // A bit of a hackish way to get uncached accesses to work only if they're
    // at the head of the LSQ and are ready to commit (at the head of the ROB
    // too).
    if (req->isUncacheable() &&
        (load_idx != loadHead || !load_inst->isAtCommit())) {
        iewStage->rescheduleMemInst(load_inst);
        ++lsqRescheduledLoads;
        DPRINTF(LSQUnit, "Uncachable load [sn:%lli] PC %s\n",
                load_inst->seqNum, load_inst->pcState());

        // Must delete request now that it wasn't handed off to
        // memory.  This is quite ugly.  @todo: Figure out the proper
        // place to really handle request deletes.
        delete req;
        if (TheISA::HasUnalignedMemAcc && sreqLow) {
            delete sreqLow;
            delete sreqHigh;
        }
        return new GenericISA::M5PanicFault(
                "Uncachable load [sn:%llx] PC %s\n",
                load_inst->seqNum, load_inst->pcState());
    }

    // Check the SQ for any previous stores that might lead to forwarding
    int store_idx = load_inst->sqIdx;

    int store_size = 0;

    DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
            "storeHead: %i addr: %#x%s\n",
            load_idx, store_idx, storeHead, req->getPaddr(),
            sreqLow ? " split" : "");

    if (req->isLLSC()) {
        assert(!sreqLow);
        // Disable recording the result temporarily.  Writing to misc
        // regs normally updates the result, but this is not the
        // desired behavior when handling store conditionals.
        load_inst->recordResult(false);
        TheISA::handleLockedRead(load_inst.get(), req);
        load_inst->recordResult(true);
    }

    if (req->isMmappedIpr()) {
        assert(!load_inst->memData);
        load_inst->memData = new uint8_t[64];

        ThreadContext *thread = cpu->tcBase(lsqID);
        Tick delay;
        PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);

        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {
            data_pkt->dataStatic(load_inst->memData);
            delay = TheISA::handleIprRead(thread, data_pkt);
        } else {
            assert(sreqLow->isMmappedIpr() && sreqHigh->isMmappedIpr());
            PacketPtr fst_data_pkt = new Packet(sreqLow, MemCmd::ReadReq);
            PacketPtr snd_data_pkt = new Packet(sreqHigh, MemCmd::ReadReq);

            fst_data_pkt->dataStatic(load_inst->memData);
            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());

            delay = TheISA::handleIprRead(thread, fst_data_pkt);
            unsigned delay2 = TheISA::handleIprRead(thread, snd_data_pkt);
            if (delay2 > delay)
                delay = delay2;

            delete sreqLow;
            delete sreqHigh;
            delete fst_data_pkt;
            delete snd_data_pkt;
        }
        WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
        cpu->schedule(wb, curTick() + delay);
        return NoFault;
    }

    while (store_idx != -1) {
        // End once we've reached the top of the LSQ
        if (store_idx == storeWBIdx) {
            break;
        }

        // Move the index to one younger
        if (--store_idx < 0)
            store_idx += SQEntries;

        assert(storeQueue[store_idx].inst);

        store_size = storeQueue[store_idx].size;

        if (store_size == 0)
            continue;
        else if (storeQueue[store_idx].inst->uncacheable())
            continue;

        assert(storeQueue[store_idx].inst->effAddrValid());

        // Check if the store data is within the lower and upper bounds of
        // addresses that the request needs.
        bool store_has_lower_limit =
            req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
        bool store_has_upper_limit =
            (req->getVaddr() + req->getSize()) <=
            (storeQueue[store_idx].inst->effAddr + store_size);
        bool lower_load_has_store_part =
            req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
                           store_size);
        bool upper_load_has_store_part =
            (req->getVaddr() + req->getSize()) >
            storeQueue[store_idx].inst->effAddr;

        // If the store's data has all of the data needed, we can forward.
        if ((store_has_lower_limit && store_has_upper_limit)) {
            // Get shift amount for offset into the store's data.
            int shift_amt = req->getVaddr() - storeQueue[store_idx].inst->effAddr;

            memcpy(data, storeQueue[store_idx].data + shift_amt,
                   req->getSize());

            assert(!load_inst->memData);
            load_inst->memData = new uint8_t[64];

            memcpy(load_inst->memData,
                    storeQueue[store_idx].data + shift_amt, req->getSize());

            DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
                    "addr %#x, data %#x\n",
                    store_idx, req->getVaddr(), data);

            PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq);
            data_pkt->dataStatic(load_inst->memData);

            WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);

            // We'll say this has a 1 cycle load-store forwarding latency
            // for now.
            // @todo: Need to make this a parameter.
            cpu->schedule(wb, curTick());

            // Don't need to do anything special for split loads.
            if (TheISA::HasUnalignedMemAcc && sreqLow) {
                delete sreqLow;
                delete sreqHigh;
            }

            ++lsqForwLoads;
            return NoFault;
        } else if ((store_has_lower_limit && lower_load_has_store_part) ||
                   (store_has_upper_limit && upper_load_has_store_part) ||
                   (lower_load_has_store_part && upper_load_has_store_part)) {
            // This is the partial store-load forwarding case where a store
            // has only part of the load's data.

            // If it's already been written back, then don't worry about
            // stalling on it.
            if (storeQueue[store_idx].completed) {
                panic("Should not check one of these");
                continue;
            }

            // Must stall load and force it to retry, so long as it's the oldest
            // load that needs to do so.
            if (!stalled ||
                (stalled &&
                 load_inst->seqNum <
                 loadQueue[stallingLoadIdx]->seqNum)) {
                stalled = true;
                stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
                stallingLoadIdx = load_idx;
            }

            // Tell IQ/mem dep unit that this instruction will need to be
            // rescheduled eventually
            iewStage->rescheduleMemInst(load_inst);
            iewStage->decrWb(load_inst->seqNum);
            load_inst->clearIssued();
            ++lsqRescheduledLoads;

            // Do not generate a writeback event as this instruction is not
            // complete.
            DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
                    "Store idx %i to load addr %#x\n",
                    store_idx, req->getVaddr());

            // Must delete request now that it wasn't handed off to
            // memory.  This is quite ugly.  @todo: Figure out the
            // proper place to really handle request deletes.
            delete req;
            if (TheISA::HasUnalignedMemAcc && sreqLow) {
                delete sreqLow;
                delete sreqHigh;
            }

            return NoFault;
        }
    }

    // If there's no forwarding case, then go access memory
    DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %s\n",
            load_inst->seqNum, load_inst->pcState());

    assert(!load_inst->memData);
    load_inst->memData = new uint8_t[64];

    ++usedPorts;

    // if we the cache is not blocked, do cache access
    bool completedFirst = false;
    if (!lsq->cacheBlocked()) {
        MemCmd command =
            req->isLLSC() ? MemCmd::LoadLockedReq : MemCmd::ReadReq;
        PacketPtr data_pkt = new Packet(req, command);
        PacketPtr fst_data_pkt = NULL;
        PacketPtr snd_data_pkt = NULL;

        data_pkt->dataStatic(load_inst->memData);

        LSQSenderState *state = new LSQSenderState;
        state->isLoad = true;
        state->idx = load_idx;
        state->inst = load_inst;
        data_pkt->senderState = state;

        if (!TheISA::HasUnalignedMemAcc || !sreqLow) {

            // Point the first packet at the main data packet.
            fst_data_pkt = data_pkt;
        } else {

            // Create the split packets.
            fst_data_pkt = new Packet(sreqLow, command);
            snd_data_pkt = new Packet(sreqHigh, command);

            fst_data_pkt->dataStatic(load_inst->memData);
            snd_data_pkt->dataStatic(load_inst->memData + sreqLow->getSize());

            fst_data_pkt->senderState = state;
            snd_data_pkt->senderState = state;

            state->isSplit = true;
            state->outstanding = 2;
            state->mainPkt = data_pkt;
        }

        if (!dcachePort->sendTimingReq(fst_data_pkt)) {
            // Delete state and data packet because a load retry
            // initiates a pipeline restart; it does not retry.
            delete state;
            delete data_pkt->req;
            delete data_pkt;
            if (TheISA::HasUnalignedMemAcc && sreqLow) {
                delete fst_data_pkt->req;
                delete fst_data_pkt;
                delete snd_data_pkt->req;
                delete snd_data_pkt;
                sreqLow = NULL;
                sreqHigh = NULL;
            }

            req = NULL;

            // If the access didn't succeed, tell the LSQ by setting
            // the retry thread id.
            lsq->setRetryTid(lsqID);
        } else if (TheISA::HasUnalignedMemAcc && sreqLow) {
            completedFirst = true;

            // The first packet was sent without problems, so send this one
            // too. If there is a problem with this packet then the whole
            // load will be squashed, so indicate this to the state object.
            // The first packet will return in completeDataAccess and be
            // handled there.
            ++usedPorts;
            if (!dcachePort->sendTimingReq(snd_data_pkt)) {

                // The main packet will be deleted in completeDataAccess.
                delete snd_data_pkt->req;
                delete snd_data_pkt;

                state->complete();

                req = NULL;
                sreqHigh = NULL;

                lsq->setRetryTid(lsqID);
            }
        }
    }

    // If the cache was blocked, or has become blocked due to the access,
    // handle it.
    if (lsq->cacheBlocked()) {
        if (req)
            delete req;
        if (TheISA::HasUnalignedMemAcc && sreqLow && !completedFirst) {
            delete sreqLow;
            delete sreqHigh;
        }

        ++lsqCacheBlocked;

        // If the first part of a split access succeeds, then let the LSQ
        // handle the decrWb when completeDataAccess is called upon return
        // of the requested first part of data
        if (!completedFirst)
            iewStage->decrWb(load_inst->seqNum);

        // There's an older load that's already going to squash.
        if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
            return NoFault;

        // Record that the load was blocked due to memory.  This
        // load will squash all instructions after it, be
        // refetched, and re-executed.
        isLoadBlocked = true;
        loadBlockedHandled = false;
        blockedLoadSeqNum = load_inst->seqNum;
        // No fault occurred, even though the interface is blocked.
        return NoFault;
    }

    return NoFault;
}

template <class Impl>
Fault
LSQUnit<Impl>::write(Request *req, Request *sreqLow, Request *sreqHigh,
                     uint8_t *data, int store_idx)
{
    assert(storeQueue[store_idx].inst);

    DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
            " | storeHead:%i [sn:%i]\n",
            store_idx, req->getPaddr(), data, storeHead,
            storeQueue[store_idx].inst->seqNum);

    storeQueue[store_idx].req = req;
    storeQueue[store_idx].sreqLow = sreqLow;
    storeQueue[store_idx].sreqHigh = sreqHigh;
    unsigned size = req->getSize();
    storeQueue[store_idx].size = size;
    assert(size <= sizeof(storeQueue[store_idx].data));

    // Split stores can only occur in ISAs with unaligned memory accesses.  If
    // a store request has been split, sreqLow and sreqHigh will be non-null.
    if (TheISA::HasUnalignedMemAcc && sreqLow) {
        storeQueue[store_idx].isSplit = true;
    }

    memcpy(storeQueue[store_idx].data, data, size);

    // This function only writes the data to the store queue, so no fault
    // can happen here.
    return NoFault;
}

#endif // __CPU_O3_LSQ_UNIT_HH__