summaryrefslogtreecommitdiff
path: root/src/cpu/o3/lsq_unit_impl.hh
blob: b87ab02401b80bdaed1cccf7ccf1cb0e950f1c38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

/*
 * Copyright (c) 2010-2014 ARM Limited
 * Copyright (c) 2013 Advanced Micro Devices, Inc.
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2004-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Kevin Lim
 *          Korey Sewell
 */

#ifndef __CPU_O3_LSQ_UNIT_IMPL_HH__
#define __CPU_O3_LSQ_UNIT_IMPL_HH__

#include "arch/generic/debugfaults.hh"
#include "arch/locked_mem.hh"
#include "base/str.hh"
#include "config/the_isa.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/o3/lsq.hh"
#include "cpu/o3/lsq_unit.hh"
#include "debug/Activity.hh"
#include "debug/IEW.hh"
#include "debug/LSQUnit.hh"
#include "debug/O3PipeView.hh"
#include "mem/packet.hh"
#include "mem/request.hh"

template<class Impl>
LSQUnit<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, PacketPtr _pkt,
                                              LSQUnit *lsq_ptr)
    : Event(Default_Pri, AutoDelete),
      inst(_inst), pkt(_pkt), lsqPtr(lsq_ptr)
{
}

template<class Impl>
void
LSQUnit<Impl>::WritebackEvent::process()
{
    assert(!lsqPtr->cpu->switchedOut());

    lsqPtr->writeback(inst, pkt);

    if (pkt->senderState)
        delete pkt->senderState;

    delete pkt->req;
    delete pkt;
}

template<class Impl>
const char *
LSQUnit<Impl>::WritebackEvent::description() const
{
    return "Store writeback";
}

template<class Impl>
void
LSQUnit<Impl>::completeDataAccess(PacketPtr pkt)
{
    LSQSenderState *state = dynamic_cast<LSQSenderState *>(pkt->senderState);
    DynInstPtr inst = state->inst;
    DPRINTF(IEW, "Writeback event [sn:%lli].\n", inst->seqNum);
    DPRINTF(Activity, "Activity: Writeback event [sn:%lli].\n", inst->seqNum);

    if (state->cacheBlocked) {
        // This is the first half of a previous split load,
        // where the 2nd half blocked, ignore this response
        DPRINTF(IEW, "[sn:%lli]: Response from first half of earlier "
                "blocked split load recieved. Ignoring.\n", inst->seqNum);
        delete state;
        return;
    }

    // If this is a split access, wait until all packets are received.
    if (TheISA::HasUnalignedMemAcc && !state->complete()) {
        return;
    }

    assert(!cpu->switchedOut());
    if (!inst->isSquashed()) {
        if (!state->noWB) {
            if (!TheISA::HasUnalignedMemAcc || !state->isSplit ||
                !state->isLoad) {
                writeback(inst, pkt);
            } else {
                writeback(inst, state->mainPkt);
            }
        }

        if (inst->isStore()) {
            completeStore(state->idx);
        }
    }

    if (TheISA::HasUnalignedMemAcc && state->isSplit && state->isLoad) {
        delete state->mainPkt->req;
        delete state->mainPkt;
    }

    pkt->req->setAccessLatency();
    cpu->ppDataAccessComplete->notify(std::make_pair(inst, pkt));

    delete state;
}

template <class Impl>
LSQUnit<Impl>::LSQUnit()
    : loads(0), stores(0), storesToWB(0), cacheBlockMask(0), stalled(false),
      isStoreBlocked(false), storeInFlight(false), hasPendingPkt(false),
      pendingPkt(nullptr)
{
}

template<class Impl>
void
LSQUnit<Impl>::init(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params,
        LSQ *lsq_ptr, unsigned maxLQEntries, unsigned maxSQEntries,
        unsigned id)
{
    cpu = cpu_ptr;
    iewStage = iew_ptr;

    lsq = lsq_ptr;

    lsqID = id;

    DPRINTF(LSQUnit, "Creating LSQUnit%i object.\n",id);

    // Add 1 for the sentinel entry (they are circular queues).
    LQEntries = maxLQEntries + 1;
    SQEntries = maxSQEntries + 1;

    //Due to uint8_t index in LSQSenderState
    assert(LQEntries <= 256);
    assert(SQEntries <= 256);

    loadQueue.resize(LQEntries);
    storeQueue.resize(SQEntries);

    depCheckShift = params->LSQDepCheckShift;
    checkLoads = params->LSQCheckLoads;
    cachePorts = params->cachePorts;
    needsTSO = params->needsTSO;

    resetState();
}


template<class Impl>
void
LSQUnit<Impl>::resetState()
{
    loads = stores = storesToWB = 0;

    loadHead = loadTail = 0;

    storeHead = storeWBIdx = storeTail = 0;

    usedPorts = 0;

    retryPkt = NULL;
    memDepViolator = NULL;

    stalled = false;

    cacheBlockMask = ~(cpu->cacheLineSize() - 1);
}

template<class Impl>
std::string
LSQUnit<Impl>::name() const
{
    if (Impl::MaxThreads == 1) {
        return iewStage->name() + ".lsq";
    } else {
        return iewStage->name() + ".lsq.thread" + std::to_string(lsqID);
    }
}

template<class Impl>
void
LSQUnit<Impl>::regStats()
{
    lsqForwLoads
        .name(name() + ".forwLoads")
        .desc("Number of loads that had data forwarded from stores");

    invAddrLoads
        .name(name() + ".invAddrLoads")
        .desc("Number of loads ignored due to an invalid address");

    lsqSquashedLoads
        .name(name() + ".squashedLoads")
        .desc("Number of loads squashed");

    lsqIgnoredResponses
        .name(name() + ".ignoredResponses")
        .desc("Number of memory responses ignored because the instruction is squashed");

    lsqMemOrderViolation
        .name(name() + ".memOrderViolation")
        .desc("Number of memory ordering violations");

    lsqSquashedStores
        .name(name() + ".squashedStores")
        .desc("Number of stores squashed");

    invAddrSwpfs
        .name(name() + ".invAddrSwpfs")
        .desc("Number of software prefetches ignored due to an invalid address");

    lsqBlockedLoads
        .name(name() + ".blockedLoads")
        .desc("Number of blocked loads due to partial load-store forwarding");

    lsqRescheduledLoads
        .name(name() + ".rescheduledLoads")
        .desc("Number of loads that were rescheduled");

    lsqCacheBlocked
        .name(name() + ".cacheBlocked")
        .desc("Number of times an access to memory failed due to the cache being blocked");
}

template<class Impl>
void
LSQUnit<Impl>::setDcachePort(MasterPort *dcache_port)
{
    dcachePort = dcache_port;
}

template<class Impl>
void
LSQUnit<Impl>::clearLQ()
{
    loadQueue.clear();
}

template<class Impl>
void
LSQUnit<Impl>::clearSQ()
{
    storeQueue.clear();
}

template<class Impl>
void
LSQUnit<Impl>::drainSanityCheck() const
{
    for (int i = 0; i < loadQueue.size(); ++i)
        assert(!loadQueue[i]);

    assert(storesToWB == 0);
    assert(!retryPkt);
}

template<class Impl>
void
LSQUnit<Impl>::takeOverFrom()
{
    resetState();
}

template<class Impl>
void
LSQUnit<Impl>::resizeLQ(unsigned size)
{
    unsigned size_plus_sentinel = size + 1;
    assert(size_plus_sentinel >= LQEntries);

    if (size_plus_sentinel > LQEntries) {
        while (size_plus_sentinel > loadQueue.size()) {
            DynInstPtr dummy;
            loadQueue.push_back(dummy);
            LQEntries++;
        }
    } else {
        LQEntries = size_plus_sentinel;
    }

    assert(LQEntries <= 256);
}

template<class Impl>
void
LSQUnit<Impl>::resizeSQ(unsigned size)
{
    unsigned size_plus_sentinel = size + 1;
    if (size_plus_sentinel > SQEntries) {
        while (size_plus_sentinel > storeQueue.size()) {
            SQEntry dummy;
            storeQueue.push_back(dummy);
            SQEntries++;
        }
    } else {
        SQEntries = size_plus_sentinel;
    }

    assert(SQEntries <= 256);
}

template <class Impl>
void
LSQUnit<Impl>::insert(DynInstPtr &inst)
{
    assert(inst->isMemRef());

    assert(inst->isLoad() || inst->isStore());

    if (inst->isLoad()) {
        insertLoad(inst);
    } else {
        insertStore(inst);
    }

    inst->setInLSQ();
}

template <class Impl>
void
LSQUnit<Impl>::insertLoad(DynInstPtr &load_inst)
{
    assert((loadTail + 1) % LQEntries != loadHead);
    assert(loads < LQEntries);

    DPRINTF(LSQUnit, "Inserting load PC %s, idx:%i [sn:%lli]\n",
            load_inst->pcState(), loadTail, load_inst->seqNum);

    load_inst->lqIdx = loadTail;

    if (stores == 0) {
        load_inst->sqIdx = -1;
    } else {
        load_inst->sqIdx = storeTail;
    }

    loadQueue[loadTail] = load_inst;

    incrLdIdx(loadTail);

    ++loads;
}

template <class Impl>
void
LSQUnit<Impl>::insertStore(DynInstPtr &store_inst)
{
    // Make sure it is not full before inserting an instruction.
    assert((storeTail + 1) % SQEntries != storeHead);
    assert(stores < SQEntries);

    DPRINTF(LSQUnit, "Inserting store PC %s, idx:%i [sn:%lli]\n",
            store_inst->pcState(), storeTail, store_inst->seqNum);

    store_inst->sqIdx = storeTail;
    store_inst->lqIdx = loadTail;

    storeQueue[storeTail] = SQEntry(store_inst);

    incrStIdx(storeTail);

    ++stores;
}

template <class Impl>
typename Impl::DynInstPtr
LSQUnit<Impl>::getMemDepViolator()
{
    DynInstPtr temp = memDepViolator;

    memDepViolator = NULL;

    return temp;
}

template <class Impl>
unsigned
LSQUnit<Impl>::numFreeLoadEntries()
{
        //LQ has an extra dummy entry to differentiate
        //empty/full conditions. Subtract 1 from the free entries.
        DPRINTF(LSQUnit, "LQ size: %d, #loads occupied: %d\n", LQEntries, loads);
        return LQEntries - loads - 1;
}

template <class Impl>
unsigned
LSQUnit<Impl>::numFreeStoreEntries()
{
        //SQ has an extra dummy entry to differentiate
        //empty/full conditions. Subtract 1 from the free entries.
        DPRINTF(LSQUnit, "SQ size: %d, #stores occupied: %d\n", SQEntries, stores);
        return SQEntries - stores - 1;

 }

template <class Impl>
void
LSQUnit<Impl>::checkSnoop(PacketPtr pkt)
{
    int load_idx = loadHead;
    DPRINTF(LSQUnit, "Got snoop for address %#x\n", pkt->getAddr());

    // Only Invalidate packet calls checkSnoop
    assert(pkt->isInvalidate());
    for (int x = 0; x < cpu->numContexts(); x++) {
        ThreadContext *tc = cpu->getContext(x);
        bool no_squash = cpu->thread[x]->noSquashFromTC;
        cpu->thread[x]->noSquashFromTC = true;
        TheISA::handleLockedSnoop(tc, pkt, cacheBlockMask);
        cpu->thread[x]->noSquashFromTC = no_squash;
    }

    Addr invalidate_addr = pkt->getAddr() & cacheBlockMask;

    DynInstPtr ld_inst = loadQueue[load_idx];
    if (ld_inst) {
        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;

        // Check that this snoop didn't just invalidate our lock flag
        if (ld_inst->effAddrValid() && (load_addr_low == invalidate_addr
                                        || load_addr_high == invalidate_addr)
            && ld_inst->memReqFlags & Request::LLSC)
            TheISA::handleLockedSnoopHit(ld_inst.get());
    }

    // If this is the only load in the LSQ we don't care
    if (load_idx == loadTail)
        return;

    incrLdIdx(load_idx);

    bool force_squash = false;

    while (load_idx != loadTail) {
        DynInstPtr ld_inst = loadQueue[load_idx];

        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
            incrLdIdx(load_idx);
            continue;
        }

        Addr load_addr_low = ld_inst->physEffAddrLow & cacheBlockMask;
        Addr load_addr_high = ld_inst->physEffAddrHigh & cacheBlockMask;

        DPRINTF(LSQUnit, "-- inst [sn:%lli] load_addr: %#x to pktAddr:%#x\n",
                    ld_inst->seqNum, load_addr_low, invalidate_addr);

        if ((load_addr_low == invalidate_addr
             || load_addr_high == invalidate_addr) || force_squash) {
            if (needsTSO) {
                // If we have a TSO system, as all loads must be ordered with
                // all other loads, this load as well as *all* subsequent loads
                // need to be squashed to prevent possible load reordering.
                force_squash = true;
            }
            if (ld_inst->possibleLoadViolation() || force_squash) {
                DPRINTF(LSQUnit, "Conflicting load at addr %#x [sn:%lli]\n",
                        pkt->getAddr(), ld_inst->seqNum);

                // Mark the load for re-execution
                ld_inst->fault = std::make_shared<ReExec>();
            } else {
                DPRINTF(LSQUnit, "HitExternal Snoop for addr %#x [sn:%lli]\n",
                        pkt->getAddr(), ld_inst->seqNum);

                // Make sure that we don't lose a snoop hitting a LOCKED
                // address since the LOCK* flags don't get updated until
                // commit.
                if (ld_inst->memReqFlags & Request::LLSC)
                    TheISA::handleLockedSnoopHit(ld_inst.get());

                // If a older load checks this and it's true
                // then we might have missed the snoop
                // in which case we need to invalidate to be sure
                ld_inst->hitExternalSnoop(true);
            }
        }
        incrLdIdx(load_idx);
    }
    return;
}

template <class Impl>
Fault
LSQUnit<Impl>::checkViolations(int load_idx, DynInstPtr &inst)
{
    Addr inst_eff_addr1 = inst->effAddr >> depCheckShift;
    Addr inst_eff_addr2 = (inst->effAddr + inst->effSize - 1) >> depCheckShift;

    /** @todo in theory you only need to check an instruction that has executed
     * however, there isn't a good way in the pipeline at the moment to check
     * all instructions that will execute before the store writes back. Thus,
     * like the implementation that came before it, we're overly conservative.
     */
    while (load_idx != loadTail) {
        DynInstPtr ld_inst = loadQueue[load_idx];
        if (!ld_inst->effAddrValid() || ld_inst->strictlyOrdered()) {
            incrLdIdx(load_idx);
            continue;
        }

        Addr ld_eff_addr1 = ld_inst->effAddr >> depCheckShift;
        Addr ld_eff_addr2 =
            (ld_inst->effAddr + ld_inst->effSize - 1) >> depCheckShift;

        if (inst_eff_addr2 >= ld_eff_addr1 && inst_eff_addr1 <= ld_eff_addr2) {
            if (inst->isLoad()) {
                // If this load is to the same block as an external snoop
                // invalidate that we've observed then the load needs to be
                // squashed as it could have newer data
                if (ld_inst->hitExternalSnoop()) {
                    if (!memDepViolator ||
                            ld_inst->seqNum < memDepViolator->seqNum) {
                        DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] "
                                "and [sn:%lli] at address %#x\n",
                                inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
                        memDepViolator = ld_inst;

                        ++lsqMemOrderViolation;

                        return std::make_shared<GenericISA::M5PanicFault>(
                            "Detected fault with inst [sn:%lli] and "
                            "[sn:%lli] at address %#x\n",
                            inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
                    }
                }

                // Otherwise, mark the load has a possible load violation
                // and if we see a snoop before it's commited, we need to squash
                ld_inst->possibleLoadViolation(true);
                DPRINTF(LSQUnit, "Found possible load violation at addr: %#x"
                        " between instructions [sn:%lli] and [sn:%lli]\n",
                        inst_eff_addr1, inst->seqNum, ld_inst->seqNum);
            } else {
                // A load/store incorrectly passed this store.
                // Check if we already have a violator, or if it's newer
                // squash and refetch.
                if (memDepViolator && ld_inst->seqNum > memDepViolator->seqNum)
                    break;

                DPRINTF(LSQUnit, "Detected fault with inst [sn:%lli] and "
                        "[sn:%lli] at address %#x\n",
                        inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
                memDepViolator = ld_inst;

                ++lsqMemOrderViolation;

                return std::make_shared<GenericISA::M5PanicFault>(
                    "Detected fault with "
                    "inst [sn:%lli] and [sn:%lli] at address %#x\n",
                    inst->seqNum, ld_inst->seqNum, ld_eff_addr1);
            }
        }

        incrLdIdx(load_idx);
    }
    return NoFault;
}




template <class Impl>
Fault
LSQUnit<Impl>::executeLoad(DynInstPtr &inst)
{
    using namespace TheISA;
    // Execute a specific load.
    Fault load_fault = NoFault;

    DPRINTF(LSQUnit, "Executing load PC %s, [sn:%lli]\n",
            inst->pcState(), inst->seqNum);

    assert(!inst->isSquashed());

    load_fault = inst->initiateAcc();

    if (inst->isTranslationDelayed() &&
        load_fault == NoFault)
        return load_fault;

    // If the instruction faulted or predicated false, then we need to send it
    // along to commit without the instruction completing.
    if (load_fault != NoFault || !inst->readPredicate()) {
        // Send this instruction to commit, also make sure iew stage
        // realizes there is activity.  Mark it as executed unless it
        // is a strictly ordered load that needs to hit the head of
        // commit.
        if (!inst->readPredicate())
            inst->forwardOldRegs();
        DPRINTF(LSQUnit, "Load [sn:%lli] not executed from %s\n",
                inst->seqNum,
                (load_fault != NoFault ? "fault" : "predication"));
        if (!(inst->hasRequest() && inst->strictlyOrdered()) ||
            inst->isAtCommit()) {
            inst->setExecuted();
        }
        iewStage->instToCommit(inst);
        iewStage->activityThisCycle();
    } else {
        assert(inst->effAddrValid());
        int load_idx = inst->lqIdx;
        incrLdIdx(load_idx);

        if (checkLoads)
            return checkViolations(load_idx, inst);
    }

    return load_fault;
}

template <class Impl>
Fault
LSQUnit<Impl>::executeStore(DynInstPtr &store_inst)
{
    using namespace TheISA;
    // Make sure that a store exists.
    assert(stores != 0);

    int store_idx = store_inst->sqIdx;

    DPRINTF(LSQUnit, "Executing store PC %s [sn:%lli]\n",
            store_inst->pcState(), store_inst->seqNum);

    assert(!store_inst->isSquashed());

    // Check the recently completed loads to see if any match this store's
    // address.  If so, then we have a memory ordering violation.
    int load_idx = store_inst->lqIdx;

    Fault store_fault = store_inst->initiateAcc();

    if (store_inst->isTranslationDelayed() &&
        store_fault == NoFault)
        return store_fault;

    if (!store_inst->readPredicate())
        store_inst->forwardOldRegs();

    if (storeQueue[store_idx].size == 0) {
        DPRINTF(LSQUnit,"Fault on Store PC %s, [sn:%lli], Size = 0\n",
                store_inst->pcState(), store_inst->seqNum);

        return store_fault;
    } else if (!store_inst->readPredicate()) {
        DPRINTF(LSQUnit, "Store [sn:%lli] not executed from predication\n",
                store_inst->seqNum);
        return store_fault;
    }

    assert(store_fault == NoFault);

    if (store_inst->isStoreConditional()) {
        // Store conditionals need to set themselves as able to
        // writeback if we haven't had a fault by here.
        storeQueue[store_idx].canWB = true;

        ++storesToWB;
    }

    return checkViolations(load_idx, store_inst);

}

template <class Impl>
void
LSQUnit<Impl>::commitLoad()
{
    assert(loadQueue[loadHead]);

    DPRINTF(LSQUnit, "Committing head load instruction, PC %s\n",
            loadQueue[loadHead]->pcState());

    loadQueue[loadHead] = NULL;

    incrLdIdx(loadHead);

    --loads;
}

template <class Impl>
void
LSQUnit<Impl>::commitLoads(InstSeqNum &youngest_inst)
{
    assert(loads == 0 || loadQueue[loadHead]);

    while (loads != 0 && loadQueue[loadHead]->seqNum <= youngest_inst) {
        commitLoad();
    }
}

template <class Impl>
void
LSQUnit<Impl>::commitStores(InstSeqNum &youngest_inst)
{
    assert(stores == 0 || storeQueue[storeHead].inst);

    int store_idx = storeHead;

    while (store_idx != storeTail) {
        assert(storeQueue[store_idx].inst);
        // Mark any stores that are now committed and have not yet
        // been marked as able to write back.
        if (!storeQueue[store_idx].canWB) {
            if (storeQueue[store_idx].inst->seqNum > youngest_inst) {
                break;
            }
            DPRINTF(LSQUnit, "Marking store as able to write back, PC "
                    "%s [sn:%lli]\n",
                    storeQueue[store_idx].inst->pcState(),
                    storeQueue[store_idx].inst->seqNum);

            storeQueue[store_idx].canWB = true;

            ++storesToWB;
        }

        incrStIdx(store_idx);
    }
}

template <class Impl>
void
LSQUnit<Impl>::writebackPendingStore()
{
    if (hasPendingPkt) {
        assert(pendingPkt != NULL);

        // If the cache is blocked, this will store the packet for retry.
        if (sendStore(pendingPkt)) {
            storePostSend(pendingPkt);
        }
        pendingPkt = NULL;
        hasPendingPkt = false;
    }
}

template <class Impl>
void
LSQUnit<Impl>::writebackStores()
{
    // First writeback the second packet from any split store that didn't
    // complete last cycle because there weren't enough cache ports available.
    if (TheISA::HasUnalignedMemAcc) {
        writebackPendingStore();
    }

    while (storesToWB > 0 &&
           storeWBIdx != storeTail &&
           storeQueue[storeWBIdx].inst &&
           storeQueue[storeWBIdx].canWB &&
           ((!needsTSO) || (!storeInFlight)) &&
           usedPorts < cachePorts) {

        if (isStoreBlocked) {
            DPRINTF(LSQUnit, "Unable to write back any more stores, cache"
                    " is blocked!\n");
            break;
        }

        // Store didn't write any data so no need to write it back to
        // memory.
        if (storeQueue[storeWBIdx].size == 0) {
            completeStore(storeWBIdx);

            incrStIdx(storeWBIdx);

            continue;
        }

        ++usedPorts;

        if (storeQueue[storeWBIdx].inst->isDataPrefetch()) {
            incrStIdx(storeWBIdx);

            continue;
        }

        assert(storeQueue[storeWBIdx].req);
        assert(!storeQueue[storeWBIdx].committed);

        if (TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit) {
            assert(storeQueue[storeWBIdx].sreqLow);
            assert(storeQueue[storeWBIdx].sreqHigh);
        }

        DynInstPtr inst = storeQueue[storeWBIdx].inst;

        Request *req = storeQueue[storeWBIdx].req;
        RequestPtr sreqLow = storeQueue[storeWBIdx].sreqLow;
        RequestPtr sreqHigh = storeQueue[storeWBIdx].sreqHigh;

        storeQueue[storeWBIdx].committed = true;

        assert(!inst->memData);
        inst->memData = new uint8_t[req->getSize()];

        if (storeQueue[storeWBIdx].isAllZeros)
            memset(inst->memData, 0, req->getSize());
        else
            memcpy(inst->memData, storeQueue[storeWBIdx].data, req->getSize());

        PacketPtr data_pkt;
        PacketPtr snd_data_pkt = NULL;

        LSQSenderState *state = new LSQSenderState;
        state->isLoad = false;
        state->idx = storeWBIdx;
        state->inst = inst;

        if (!TheISA::HasUnalignedMemAcc || !storeQueue[storeWBIdx].isSplit) {

            // Build a single data packet if the store isn't split.
            data_pkt = Packet::createWrite(req);
            data_pkt->dataStatic(inst->memData);
            data_pkt->senderState = state;
        } else {
            // Create two packets if the store is split in two.
            data_pkt = Packet::createWrite(sreqLow);
            snd_data_pkt = Packet::createWrite(sreqHigh);

            data_pkt->dataStatic(inst->memData);
            snd_data_pkt->dataStatic(inst->memData + sreqLow->getSize());

            data_pkt->senderState = state;
            snd_data_pkt->senderState = state;

            state->isSplit = true;
            state->outstanding = 2;

            // Can delete the main request now.
            delete req;
            req = sreqLow;
        }

        DPRINTF(LSQUnit, "D-Cache: Writing back store idx:%i PC:%s "
                "to Addr:%#x, data:%#x [sn:%lli]\n",
                storeWBIdx, inst->pcState(),
                req->getPaddr(), (int)*(inst->memData),
                inst->seqNum);

        // @todo: Remove this SC hack once the memory system handles it.
        if (inst->isStoreConditional()) {
            assert(!storeQueue[storeWBIdx].isSplit);
            // Disable recording the result temporarily.  Writing to
            // misc regs normally updates the result, but this is not
            // the desired behavior when handling store conditionals.
            inst->recordResult(false);
            bool success = TheISA::handleLockedWrite(inst.get(), req, cacheBlockMask);
            inst->recordResult(true);

            if (!success) {
                // Instantly complete this store.
                DPRINTF(LSQUnit, "Store conditional [sn:%lli] failed.  "
                        "Instantly completing it.\n",
                        inst->seqNum);
                WritebackEvent *wb = new WritebackEvent(inst, data_pkt, this);
                cpu->schedule(wb, curTick() + 1);
                if (cpu->checker) {
                    // Make sure to set the LLSC data for verification
                    // if checker is loaded
                    inst->reqToVerify->setExtraData(0);
                    inst->completeAcc(data_pkt);
                }
                completeStore(storeWBIdx);
                incrStIdx(storeWBIdx);
                continue;
            }
        } else {
            // Non-store conditionals do not need a writeback.
            state->noWB = true;
        }

        bool split =
            TheISA::HasUnalignedMemAcc && storeQueue[storeWBIdx].isSplit;

        ThreadContext *thread = cpu->tcBase(lsqID);

        if (req->isMmappedIpr()) {
            assert(!inst->isStoreConditional());
            TheISA::handleIprWrite(thread, data_pkt);
            delete data_pkt;
            if (split) {
                assert(snd_data_pkt->req->isMmappedIpr());
                TheISA::handleIprWrite(thread, snd_data_pkt);
                delete snd_data_pkt;
                delete sreqLow;
                delete sreqHigh;
            }
            delete state;
            delete req;
            completeStore(storeWBIdx);
            incrStIdx(storeWBIdx);
        } else if (!sendStore(data_pkt)) {
            DPRINTF(IEW, "D-Cache became blocked when writing [sn:%lli], will"
                    "retry later\n",
                    inst->seqNum);

            // Need to store the second packet, if split.
            if (split) {
                state->pktToSend = true;
                state->pendingPacket = snd_data_pkt;
            }
        } else {

            // If split, try to send the second packet too
            if (split) {
                assert(snd_data_pkt);

                // Ensure there are enough ports to use.
                if (usedPorts < cachePorts) {
                    ++usedPorts;
                    if (sendStore(snd_data_pkt)) {
                        storePostSend(snd_data_pkt);
                    } else {
                        DPRINTF(IEW, "D-Cache became blocked when writing"
                                " [sn:%lli] second packet, will retry later\n",
                                inst->seqNum);
                    }
                } else {

                    // Store the packet for when there's free ports.
                    assert(pendingPkt == NULL);
                    pendingPkt = snd_data_pkt;
                    hasPendingPkt = true;
                }
            } else {

                // Not a split store.
                storePostSend(data_pkt);
            }
        }
    }

    // Not sure this should set it to 0.
    usedPorts = 0;

    assert(stores >= 0 && storesToWB >= 0);
}

/*template <class Impl>
void
LSQUnit<Impl>::removeMSHR(InstSeqNum seqNum)
{
    list<InstSeqNum>::iterator mshr_it = find(mshrSeqNums.begin(),
                                              mshrSeqNums.end(),
                                              seqNum);

    if (mshr_it != mshrSeqNums.end()) {
        mshrSeqNums.erase(mshr_it);
        DPRINTF(LSQUnit, "Removing MSHR. count = %i\n",mshrSeqNums.size());
    }
}*/

template <class Impl>
void
LSQUnit<Impl>::squash(const InstSeqNum &squashed_num)
{
    DPRINTF(LSQUnit, "Squashing until [sn:%lli]!"
            "(Loads:%i Stores:%i)\n", squashed_num, loads, stores);

    int load_idx = loadTail;
    decrLdIdx(load_idx);

    while (loads != 0 && loadQueue[load_idx]->seqNum > squashed_num) {
        DPRINTF(LSQUnit,"Load Instruction PC %s squashed, "
                "[sn:%lli]\n",
                loadQueue[load_idx]->pcState(),
                loadQueue[load_idx]->seqNum);

        if (isStalled() && load_idx == stallingLoadIdx) {
            stalled = false;
            stallingStoreIsn = 0;
            stallingLoadIdx = 0;
        }

        // Clear the smart pointer to make sure it is decremented.
        loadQueue[load_idx]->setSquashed();
        loadQueue[load_idx] = NULL;
        --loads;

        // Inefficient!
        loadTail = load_idx;

        decrLdIdx(load_idx);
        ++lsqSquashedLoads;
    }

    if (memDepViolator && squashed_num < memDepViolator->seqNum) {
        memDepViolator = NULL;
    }

    int store_idx = storeTail;
    decrStIdx(store_idx);

    while (stores != 0 &&
           storeQueue[store_idx].inst->seqNum > squashed_num) {
        // Instructions marked as can WB are already committed.
        if (storeQueue[store_idx].canWB) {
            break;
        }

        DPRINTF(LSQUnit,"Store Instruction PC %s squashed, "
                "idx:%i [sn:%lli]\n",
                storeQueue[store_idx].inst->pcState(),
                store_idx, storeQueue[store_idx].inst->seqNum);

        // I don't think this can happen.  It should have been cleared
        // by the stalling load.
        if (isStalled() &&
            storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
            panic("Is stalled should have been cleared by stalling load!\n");
            stalled = false;
            stallingStoreIsn = 0;
        }

        // Clear the smart pointer to make sure it is decremented.
        storeQueue[store_idx].inst->setSquashed();
        storeQueue[store_idx].inst = NULL;
        storeQueue[store_idx].canWB = 0;

        // Must delete request now that it wasn't handed off to
        // memory.  This is quite ugly.  @todo: Figure out the proper
        // place to really handle request deletes.
        delete storeQueue[store_idx].req;
        if (TheISA::HasUnalignedMemAcc && storeQueue[store_idx].isSplit) {
            delete storeQueue[store_idx].sreqLow;
            delete storeQueue[store_idx].sreqHigh;

            storeQueue[store_idx].sreqLow = NULL;
            storeQueue[store_idx].sreqHigh = NULL;
        }

        storeQueue[store_idx].req = NULL;
        --stores;

        // Inefficient!
        storeTail = store_idx;

        decrStIdx(store_idx);
        ++lsqSquashedStores;
    }
}

template <class Impl>
void
LSQUnit<Impl>::storePostSend(PacketPtr pkt)
{
    if (isStalled() &&
        storeQueue[storeWBIdx].inst->seqNum == stallingStoreIsn) {
        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
                "load idx:%i\n",
                stallingStoreIsn, stallingLoadIdx);
        stalled = false;
        stallingStoreIsn = 0;
        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
    }

    if (!storeQueue[storeWBIdx].inst->isStoreConditional()) {
        // The store is basically completed at this time. This
        // only works so long as the checker doesn't try to
        // verify the value in memory for stores.
        storeQueue[storeWBIdx].inst->setCompleted();

        if (cpu->checker) {
            cpu->checker->verify(storeQueue[storeWBIdx].inst);
        }
    }

    if (needsTSO) {
        storeInFlight = true;
    }

    incrStIdx(storeWBIdx);
}

template <class Impl>
void
LSQUnit<Impl>::writeback(DynInstPtr &inst, PacketPtr pkt)
{
    iewStage->wakeCPU();

    // Squashed instructions do not need to complete their access.
    if (inst->isSquashed()) {
        assert(!inst->isStore());
        ++lsqIgnoredResponses;
        return;
    }

    if (!inst->isExecuted()) {
        inst->setExecuted();

        if (inst->fault == NoFault) {
            // Complete access to copy data to proper place.
            inst->completeAcc(pkt);
        } else {
            // If the instruction has an outstanding fault, we cannot complete
            // the access as this discards the current fault.

            // If we have an outstanding fault, the fault should only be of
            // type ReExec.
            assert(dynamic_cast<ReExec*>(inst->fault.get()) != nullptr);

            DPRINTF(LSQUnit, "Not completing instruction [sn:%lli] access "
                    "due to pending fault.\n", inst->seqNum);
        }
    }

    // Need to insert instruction into queue to commit
    iewStage->instToCommit(inst);

    iewStage->activityThisCycle();

    // see if this load changed the PC
    iewStage->checkMisprediction(inst);
}

template <class Impl>
void
LSQUnit<Impl>::completeStore(int store_idx)
{
    assert(storeQueue[store_idx].inst);
    storeQueue[store_idx].completed = true;
    --storesToWB;
    // A bit conservative because a store completion may not free up entries,
    // but hopefully avoids two store completions in one cycle from making
    // the CPU tick twice.
    cpu->wakeCPU();
    cpu->activityThisCycle();

    if (store_idx == storeHead) {
        do {
            incrStIdx(storeHead);

            --stores;
        } while (storeQueue[storeHead].completed &&
                 storeHead != storeTail);

        iewStage->updateLSQNextCycle = true;
    }

    DPRINTF(LSQUnit, "Completing store [sn:%lli], idx:%i, store head "
            "idx:%i\n",
            storeQueue[store_idx].inst->seqNum, store_idx, storeHead);

#if TRACING_ON
    if (DTRACE(O3PipeView)) {
        storeQueue[store_idx].inst->storeTick =
            curTick() - storeQueue[store_idx].inst->fetchTick;
    }
#endif

    if (isStalled() &&
        storeQueue[store_idx].inst->seqNum == stallingStoreIsn) {
        DPRINTF(LSQUnit, "Unstalling, stalling store [sn:%lli] "
                "load idx:%i\n",
                stallingStoreIsn, stallingLoadIdx);
        stalled = false;
        stallingStoreIsn = 0;
        iewStage->replayMemInst(loadQueue[stallingLoadIdx]);
    }

    storeQueue[store_idx].inst->setCompleted();

    if (needsTSO) {
        storeInFlight = false;
    }

    // Tell the checker we've completed this instruction.  Some stores
    // may get reported twice to the checker, but the checker can
    // handle that case.
    if (cpu->checker) {
        cpu->checker->verify(storeQueue[store_idx].inst);
    }
}

template <class Impl>
bool
LSQUnit<Impl>::sendStore(PacketPtr data_pkt)
{
    if (!dcachePort->sendTimingReq(data_pkt)) {
        // Need to handle becoming blocked on a store.
        isStoreBlocked = true;
        ++lsqCacheBlocked;
        assert(retryPkt == NULL);
        retryPkt = data_pkt;
        return false;
    }
    return true;
}

template <class Impl>
void
LSQUnit<Impl>::recvRetry()
{
    if (isStoreBlocked) {
        DPRINTF(LSQUnit, "Receiving retry: store blocked\n");
        assert(retryPkt != NULL);

        LSQSenderState *state =
            dynamic_cast<LSQSenderState *>(retryPkt->senderState);

        if (dcachePort->sendTimingReq(retryPkt)) {
            // Don't finish the store unless this is the last packet.
            if (!TheISA::HasUnalignedMemAcc || !state->pktToSend ||
                    state->pendingPacket == retryPkt) {
                state->pktToSend = false;
                storePostSend(retryPkt);
            }
            retryPkt = NULL;
            isStoreBlocked = false;

            // Send any outstanding packet.
            if (TheISA::HasUnalignedMemAcc && state->pktToSend) {
                assert(state->pendingPacket);
                if (sendStore(state->pendingPacket)) {
                    storePostSend(state->pendingPacket);
                }
            }
        } else {
            // Still blocked!
            ++lsqCacheBlocked;
        }
    }
}

template <class Impl>
inline void
LSQUnit<Impl>::incrStIdx(int &store_idx) const
{
    if (++store_idx >= SQEntries)
        store_idx = 0;
}

template <class Impl>
inline void
LSQUnit<Impl>::decrStIdx(int &store_idx) const
{
    if (--store_idx < 0)
        store_idx += SQEntries;
}

template <class Impl>
inline void
LSQUnit<Impl>::incrLdIdx(int &load_idx) const
{
    if (++load_idx >= LQEntries)
        load_idx = 0;
}

template <class Impl>
inline void
LSQUnit<Impl>::decrLdIdx(int &load_idx) const
{
    if (--load_idx < 0)
        load_idx += LQEntries;
}

template <class Impl>
void
LSQUnit<Impl>::dumpInsts() const
{
    cprintf("Load store queue: Dumping instructions.\n");
    cprintf("Load queue size: %i\n", loads);
    cprintf("Load queue: ");

    int load_idx = loadHead;

    while (load_idx != loadTail && loadQueue[load_idx]) {
        const DynInstPtr &inst(loadQueue[load_idx]);
        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);

        incrLdIdx(load_idx);
    }
    cprintf("\n");

    cprintf("Store queue size: %i\n", stores);
    cprintf("Store queue: ");

    int store_idx = storeHead;

    while (store_idx != storeTail && storeQueue[store_idx].inst) {
        const DynInstPtr &inst(storeQueue[store_idx].inst);
        cprintf("%s.[sn:%i] ", inst->pcState(), inst->seqNum);

        incrStIdx(store_idx);
    }

    cprintf("\n");
}

#endif//__CPU_O3_LSQ_UNIT_IMPL_HH__