1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#ifndef __CPU_O3_SPARC_DYN_INST_HH__
#define __CPU_O3_SPARC_DYN_INST_HH__
#include "arch/sparc/isa_traits.hh"
#include "arch/sparc/types.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/inst_seq.hh"
#include "cpu/o3/sparc/cpu.hh"
#include "cpu/o3/sparc/impl.hh"
class Packet;
/**
* Mostly implementation & ISA specific SparcDynInst. As with most
* other classes in the new CPU model, it is templated on the Impl to
* allow for passing in of all types, such as the CPU type and the ISA
* type. The SparcDynInst serves as the primary interface to the CPU
* for instructions that are executing.
*/
template <class Impl>
class SparcDynInst : public BaseDynInst<Impl>
{
public:
/** Typedef for the CPU. */
typedef typename Impl::O3CPU O3CPU;
public:
/** BaseDynInst constructor given a binary instruction. */
SparcDynInst(StaticInstPtr staticInst, Addr PC, Addr NPC, Addr microPC,
Addr Pred_PC, Addr Pred_NPC, Addr Pred_MicroPC,
InstSeqNum seq_num, O3CPU *cpu);
/** BaseDynInst constructor given a binary instruction. */
SparcDynInst(TheISA::ExtMachInst inst, Addr PC, Addr NPC, Addr microPC,
Addr Pred_PC, Addr Pred_NPC, Addr Pred_MicroPC,
InstSeqNum seq_num, O3CPU *cpu);
/** BaseDynInst constructor given a static inst pointer. */
SparcDynInst(StaticInstPtr &_staticInst);
/** Executes the instruction.*/
Fault execute();
/** Initiates the access. Only valid for memory operations. */
Fault initiateAcc();
/** Completes the access. Only valid for memory operations. */
Fault completeAcc(PacketPtr pkt);
private:
/** Initializes variables. */
void initVars();
public:
/** Reads a miscellaneous register. */
TheISA::MiscReg readMiscRegNoEffect(int misc_reg)
{
return this->cpu->readMiscRegNoEffect(misc_reg, this->threadNumber);
}
/** Reads a misc. register, including any side-effects the read
* might have as defined by the architecture.
*/
TheISA::MiscReg readMiscReg(int misc_reg)
{
return this->cpu->readMiscReg(misc_reg, this->threadNumber);
}
/** Sets a misc. register. */
void setMiscRegNoEffect(int misc_reg, const TheISA::MiscReg &val)
{
this->instResult.integer = val;
return this->cpu->setMiscRegNoEffect(misc_reg, val, this->threadNumber);
}
/** Sets a misc. register, including any side-effects the write
* might have as defined by the architecture.
*/
void setMiscReg(int misc_reg, const TheISA::MiscReg &val)
{
return this->cpu->setMiscReg(misc_reg, val,
this->threadNumber);
}
/** Reads a miscellaneous register. */
TheISA::MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx)
{
return this->cpu->readMiscRegNoEffect(
si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag,
this->threadNumber);
}
/** Reads a misc. register, including any side-effects the read
* might have as defined by the architecture.
*/
TheISA::MiscReg readMiscRegOperand(const StaticInst *si, int idx)
{
return this->cpu->readMiscReg(
si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag,
this->threadNumber);
}
/** Sets a misc. register. */
void setMiscRegOperandNoEffect(const StaticInst * si,
int idx, const TheISA::MiscReg &val)
{
this->instResult.integer = val;
return this->cpu->setMiscRegNoEffect(
si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag,
val, this->threadNumber);
}
/** Sets a misc. register, including any side-effects the write
* might have as defined by the architecture.
*/
void setMiscRegOperand(
const StaticInst *si, int idx, const TheISA::MiscReg &val)
{
return this->cpu->setMiscReg(
si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag,
val, this->threadNumber);
}
#if FULL_SYSTEM
/** Calls hardware return from error interrupt. */
Fault hwrei();
/** Traps to handle specified fault. */
void trap(Fault fault);
bool simPalCheck(int palFunc);
#else
/** Calls a syscall. */
void syscall(int64_t callnum);
#endif
public:
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
uint64_t readIntRegOperand(const StaticInst *si, int idx)
{
uint64_t val = this->cpu->readIntReg(this->_srcRegIdx[idx]);
DPRINTF(Sparc, "Reading int reg %d (%d, %d) as %x\n", (int)this->_flatSrcRegIdx[idx], (int)this->_srcRegIdx[idx], idx, val);
return val;
}
TheISA::FloatReg readFloatRegOperand(const StaticInst *si,
int idx, int width)
{
return this->cpu->readFloatReg(this->_srcRegIdx[idx], width);
}
TheISA::FloatReg readFloatRegOperand(const StaticInst *si, int idx)
{
return this->cpu->readFloatReg(this->_srcRegIdx[idx]);
}
TheISA::FloatRegBits readFloatRegOperandBits(const StaticInst *si,
int idx, int width)
{
return this->cpu->readFloatRegBits(this->_srcRegIdx[idx], width);
}
TheISA::FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
{
return this->cpu->readFloatRegBits(this->_srcRegIdx[idx]);
}
/** @todo: Make results into arrays so they can handle multiple dest
* registers.
*/
void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
{
DPRINTF(Sparc, "Setting int reg %d (%d, %d) to %x\n", (int)this->_flatDestRegIdx[idx], (int)this->_destRegIdx[idx], idx, val);
this->cpu->setIntReg(this->_destRegIdx[idx], val);
BaseDynInst<Impl>::setIntRegOperand(si, idx, val);
}
void setFloatRegOperand(const StaticInst *si, int idx,
TheISA::FloatReg val, int width)
{
this->cpu->setFloatReg(this->_destRegIdx[idx], val, width);
BaseDynInst<Impl>::setFloatRegOperand(si, idx, val, width);
}
void setFloatRegOperand(const StaticInst *si, int idx, TheISA::FloatReg val)
{
this->cpu->setFloatReg(this->_destRegIdx[idx], val);
BaseDynInst<Impl>::setFloatRegOperand(si, idx, val);
}
void setFloatRegOperandBits(const StaticInst *si, int idx,
TheISA::FloatRegBits val, int width)
{
this->cpu->setFloatRegBits(this->_destRegIdx[idx], val, width);
BaseDynInst<Impl>::setFloatRegOperandBits(si, idx, val);
}
void setFloatRegOperandBits(const StaticInst *si,
int idx, TheISA::FloatRegBits val)
{
this->cpu->setFloatRegBits(this->_destRegIdx[idx], val);
BaseDynInst<Impl>::setFloatRegOperandBits(si, idx, val);
}
public:
/** Calculates EA part of a memory instruction. Currently unused,
* though it may be useful in the future if we want to split
* memory operations into EA calculation and memory access parts.
*/
Fault calcEA()
{
return this->staticInst->eaCompInst()->execute(this, this->traceData);
}
/** Does the memory access part of a memory instruction. Currently unused,
* though it may be useful in the future if we want to split
* memory operations into EA calculation and memory access parts.
*/
Fault memAccess()
{
return this->staticInst->memAccInst()->execute(this, this->traceData);
}
};
#endif // __CPU_O3_SPARC_DYN_INST_HH__
|