1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
|
/*
* Copyright (c) 2011-2012, 2016-2018 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_O3_THREAD_CONTEXT_HH__
#define __CPU_O3_THREAD_CONTEXT_HH__
#include "config/the_isa.hh"
#include "cpu/o3/isa_specific.hh"
#include "cpu/thread_context.hh"
class EndQuiesceEvent;
namespace Kernel {
class Statistics;
}
/**
* Derived ThreadContext class for use with the O3CPU. It
* provides the interface for any external objects to access a
* single thread's state and some general CPU state. Any time
* external objects try to update state through this interface,
* the CPU will create an event to squash all in-flight
* instructions in order to ensure state is maintained correctly.
* It must be defined specifically for the O3CPU because
* not all architectural state is located within the O3ThreadState
* (such as the commit PC, and registers), and specific actions
* must be taken when using this interface (such as squashing all
* in-flight instructions when doing a write to this interface).
*/
template <class Impl>
class O3ThreadContext : public ThreadContext
{
public:
typedef typename Impl::O3CPU O3CPU;
/** Pointer to the CPU. */
O3CPU *cpu;
/** Pointer to the thread state that this TC corrseponds to. */
O3ThreadState<Impl> *thread;
/** Returns a pointer to the ITB. */
BaseTLB *getITBPtr() override { return cpu->itb; }
/** Returns a pointer to the DTB. */
BaseTLB *getDTBPtr() override { return cpu->dtb; }
CheckerCPU *getCheckerCpuPtr() override { return NULL; }
TheISA::ISA *
getIsaPtr() override
{
return cpu->isa[thread->threadId()];
}
TheISA::Decoder *
getDecoderPtr() override
{
return cpu->fetch.decoder[thread->threadId()];
}
/** Returns a pointer to this CPU. */
BaseCPU *getCpuPtr() override { return cpu; }
/** Reads this CPU's ID. */
int cpuId() const override { return cpu->cpuId(); }
/** Reads this CPU's Socket ID. */
uint32_t socketId() const override { return cpu->socketId(); }
ContextID contextId() const override { return thread->contextId(); }
void setContextId(ContextID id) override { thread->setContextId(id); }
/** Returns this thread's ID number. */
int threadId() const override { return thread->threadId(); }
void setThreadId(int id) override { return thread->setThreadId(id); }
/** Returns a pointer to the system. */
System *getSystemPtr() override { return cpu->system; }
/** Returns a pointer to this thread's kernel statistics. */
::Kernel::Statistics *
getKernelStats() override
{
return thread->kernelStats;
}
/** Returns a pointer to this thread's process. */
Process *getProcessPtr() override { return thread->getProcessPtr(); }
void setProcessPtr(Process *p) override { thread->setProcessPtr(p); }
PortProxy &getPhysProxy() override { return thread->getPhysProxy(); }
FSTranslatingPortProxy &getVirtProxy() override;
void
initMemProxies(ThreadContext *tc) override
{
thread->initMemProxies(tc);
}
SETranslatingPortProxy &
getMemProxy() override
{
return thread->getMemProxy();
}
/** Returns this thread's status. */
Status status() const override { return thread->status(); }
/** Sets this thread's status. */
void
setStatus(Status new_status) override
{
thread->setStatus(new_status);
}
/** Set the status to Active. */
void activate() override;
/** Set the status to Suspended. */
void suspend() override;
/** Set the status to Halted. */
void halt() override;
/** Dumps the function profiling information.
* @todo: Implement.
*/
void dumpFuncProfile() override;
/** Takes over execution of a thread from another CPU. */
void takeOverFrom(ThreadContext *old_context) override;
/** Registers statistics associated with this TC. */
void regStats(const std::string &name) override;
/** Reads the last tick that this thread was activated on. */
Tick readLastActivate() override;
/** Reads the last tick that this thread was suspended on. */
Tick readLastSuspend() override;
/** Clears the function profiling information. */
void profileClear() override;
/** Samples the function profiling information. */
void profileSample() override;
/** Copies the architectural registers from another TC into this TC. */
void copyArchRegs(ThreadContext *tc) override;
/** Resets all architectural registers to 0. */
void clearArchRegs() override;
/** Reads an integer register. */
RegVal
readReg(RegIndex reg_idx)
{
return readIntRegFlat(flattenRegId(RegId(IntRegClass,
reg_idx)).index());
}
RegVal
readIntReg(RegIndex reg_idx) const override
{
return readIntRegFlat(flattenRegId(RegId(IntRegClass,
reg_idx)).index());
}
RegVal
readFloatReg(RegIndex reg_idx) const override
{
return readFloatRegFlat(flattenRegId(RegId(FloatRegClass,
reg_idx)).index());
}
const VecRegContainer &
readVecReg(const RegId& id) const override
{
return readVecRegFlat(flattenRegId(id).index());
}
/**
* Read vector register operand for modification, hierarchical indexing.
*/
VecRegContainer &
getWritableVecReg(const RegId& id) override
{
return getWritableVecRegFlat(flattenRegId(id).index());
}
/** Vector Register Lane Interfaces. */
/** @{ */
/** Reads source vector 8bit operand. */
ConstVecLane8
readVec8BitLaneReg(const RegId& id) const override
{
return readVecLaneFlat<uint8_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Reads source vector 16bit operand. */
ConstVecLane16
readVec16BitLaneReg(const RegId& id) const override
{
return readVecLaneFlat<uint16_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Reads source vector 32bit operand. */
ConstVecLane32
readVec32BitLaneReg(const RegId& id) const override
{
return readVecLaneFlat<uint32_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Reads source vector 64bit operand. */
ConstVecLane64
readVec64BitLaneReg(const RegId& id) const override
{
return readVecLaneFlat<uint64_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Write a lane of the destination vector register. */
void
setVecLane(const RegId& reg,
const LaneData<LaneSize::Byte>& val) override
{
return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
void
setVecLane(const RegId& reg,
const LaneData<LaneSize::TwoByte>& val) override
{
return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
void
setVecLane(const RegId& reg,
const LaneData<LaneSize::FourByte>& val) override
{
return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
void
setVecLane(const RegId& reg,
const LaneData<LaneSize::EightByte>& val) override
{
return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
/** @} */
const VecElem &
readVecElem(const RegId& reg) const override
{
return readVecElemFlat(flattenRegId(reg).index(), reg.elemIndex());
}
const VecPredRegContainer &
readVecPredReg(const RegId& id) const override
{
return readVecPredRegFlat(flattenRegId(id).index());
}
VecPredRegContainer&
getWritableVecPredReg(const RegId& id) override
{
return getWritableVecPredRegFlat(flattenRegId(id).index());
}
RegVal
readCCReg(RegIndex reg_idx) const override
{
return readCCRegFlat(flattenRegId(RegId(CCRegClass,
reg_idx)).index());
}
/** Sets an integer register to a value. */
void
setIntReg(RegIndex reg_idx, RegVal val) override
{
setIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index(), val);
}
void
setFloatReg(RegIndex reg_idx, RegVal val) override
{
setFloatRegFlat(flattenRegId(RegId(FloatRegClass,
reg_idx)).index(), val);
}
void
setVecReg(const RegId& reg, const VecRegContainer& val) override
{
setVecRegFlat(flattenRegId(reg).index(), val);
}
void
setVecElem(const RegId& reg, const VecElem& val) override
{
setVecElemFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
void
setVecPredReg(const RegId& reg,
const VecPredRegContainer& val) override
{
setVecPredRegFlat(flattenRegId(reg).index(), val);
}
void
setCCReg(RegIndex reg_idx, RegVal val) override
{
setCCRegFlat(flattenRegId(RegId(CCRegClass, reg_idx)).index(), val);
}
/** Reads this thread's PC state. */
TheISA::PCState
pcState() const override
{
return cpu->pcState(thread->threadId());
}
/** Sets this thread's PC state. */
void pcState(const TheISA::PCState &val) override;
void pcStateNoRecord(const TheISA::PCState &val) override;
/** Reads this thread's PC. */
Addr
instAddr() const override
{
return cpu->instAddr(thread->threadId());
}
/** Reads this thread's next PC. */
Addr
nextInstAddr() const override
{
return cpu->nextInstAddr(thread->threadId());
}
/** Reads this thread's next PC. */
MicroPC
microPC() const override
{
return cpu->microPC(thread->threadId());
}
/** Reads a miscellaneous register. */
RegVal
readMiscRegNoEffect(RegIndex misc_reg) const override
{
return cpu->readMiscRegNoEffect(misc_reg, thread->threadId());
}
/** Reads a misc. register, including any side-effects the
* read might have as defined by the architecture. */
RegVal
readMiscReg(RegIndex misc_reg) override
{
return cpu->readMiscReg(misc_reg, thread->threadId());
}
/** Sets a misc. register. */
void setMiscRegNoEffect(RegIndex misc_reg, RegVal val) override;
/** Sets a misc. register, including any side-effects the
* write might have as defined by the architecture. */
void setMiscReg(RegIndex misc_reg, RegVal val) override;
RegId flattenRegId(const RegId& regId) const override;
/** Returns the number of consecutive store conditional failures. */
// @todo: Figure out where these store cond failures should go.
unsigned
readStCondFailures() const override
{
return thread->storeCondFailures;
}
/** Sets the number of consecutive store conditional failures. */
void
setStCondFailures(unsigned sc_failures) override
{
thread->storeCondFailures = sc_failures;
}
/** Executes a syscall in SE mode. */
void
syscall(int64_t callnum, Fault *fault) override
{
return cpu->syscall(callnum, thread->threadId(), fault);
}
/** Reads the funcExeInst counter. */
Counter readFuncExeInst() const override { return thread->funcExeInst; }
/** Returns pointer to the quiesce event. */
EndQuiesceEvent *
getQuiesceEvent() override
{
return this->thread->quiesceEvent;
}
/** check if the cpu is currently in state update mode and squash if not.
* This function will return true if a trap is pending or if a fault or
* similar is currently writing to the thread context and doesn't want
* reset all the state (see noSquashFromTC).
*/
inline void
conditionalSquash()
{
if (!thread->trapPending && !thread->noSquashFromTC)
cpu->squashFromTC(thread->threadId());
}
RegVal readIntRegFlat(RegIndex idx) const override;
void setIntRegFlat(RegIndex idx, RegVal val) override;
RegVal readFloatRegFlat(RegIndex idx) const override;
void setFloatRegFlat(RegIndex idx, RegVal val) override;
const VecRegContainer& readVecRegFlat(RegIndex idx) const override;
/** Read vector register operand for modification, flat indexing. */
VecRegContainer& getWritableVecRegFlat(RegIndex idx) override;
void setVecRegFlat(RegIndex idx, const VecRegContainer& val) override;
template <typename VecElem>
VecLaneT<VecElem, true>
readVecLaneFlat(RegIndex idx, int lId) const
{
return cpu->template readArchVecLane<VecElem>(idx, lId,
thread->threadId());
}
template <typename LD>
void
setVecLaneFlat(int idx, int lId, const LD& val)
{
cpu->template setArchVecLane(idx, lId, thread->threadId(), val);
}
const VecElem &readVecElemFlat(RegIndex idx,
const ElemIndex& elemIndex) const override;
void setVecElemFlat(RegIndex idx, const ElemIndex& elemIdx,
const VecElem& val) override;
const VecPredRegContainer& readVecPredRegFlat(RegIndex idx) const override;
VecPredRegContainer& getWritableVecPredRegFlat(RegIndex idx) override;
void setVecPredRegFlat(RegIndex idx,
const VecPredRegContainer& val) override;
RegVal readCCRegFlat(RegIndex idx) const override;
void setCCRegFlat(RegIndex idx, RegVal val) override;
};
#endif
|