summaryrefslogtreecommitdiff
path: root/src/cpu/pred/multiperspective_perceptron.cc
blob: d081b493c872981e196b13613e58043ed1324aaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
/*
 * Copyright 2019 Texas A&M University
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *  HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *  Author: Daniel A. Jiménez
 *  Adapted to gem5 by: Javier Bueno Hedo
 *
 */

 /*
  * Multiperspective Perceptron Predictor (by Daniel A. Jiménez)
  */

#include "cpu/pred/multiperspective_perceptron.hh"

#include "base/random.hh"
#include "debug/Branch.hh"

int
MultiperspectivePerceptron::xlat[] =
    {1,3,4,5,7,8,9,11,12,14,15,17,19,21,23,25,27,29,32,34,37,41,45,49,53,58,63,
     69,76,85,94,106,};
int
MultiperspectivePerceptron::xlat4[] =
    {0,4,5,7,9,11,12,14,16,17,19,22,28,33,39,45,};

MultiperspectivePerceptron::ThreadData::ThreadData(int num_filters,
        int n_local_histories, int local_history_length, int assoc,
        const std::vector<std::vector<int>> &blurrypath_bits, int path_length,
        int ghist_length, int block_size,
        const std::vector<std::vector<std::vector<bool>>> &acyclic_bits,
        const std::vector<int> &modhist_indices,
        const std::vector<int> &modhist_lengths,
        const std::vector<int> &modpath_indices,
        const std::vector<int> &modpath_lengths,
        const std::vector<int> &table_sizes, int n_sign_bits)
      : filterTable(num_filters), acyclic_histories(acyclic_bits.size()),
        acyclic2_histories(acyclic_bits.size()),
        blurrypath_histories(blurrypath_bits.size()),
        ghist_words(ghist_length/block_size+1, 0),
        path_history(path_length, 0), imli_counter(4,0),
        localHistories(n_local_histories, local_history_length),
        recency_stack(assoc), last_ghist_bit(false), occupancy(0)
{
    for (int i = 0; i < blurrypath_bits.size(); i+= 1) {
        blurrypath_histories[i].resize(blurrypath_bits[i].size());
    }

    for (int i = 0; i < acyclic_bits.size(); i += 1) {
        acyclic_histories[i].resize(acyclic_bits[i].size());
        acyclic2_histories[i].resize(acyclic_bits[i].size());
    }

    int max_modhist_idx = -1;
    for (auto &elem : modhist_indices) {
        max_modhist_idx = (max_modhist_idx < elem) ? elem : max_modhist_idx;
    }
    if (max_modhist_idx >= 0) {
        mod_histories.resize(max_modhist_idx + 1);
    }
    for (int i = 0; i < modhist_lengths.size(); i+= 1) {
        mod_histories[modhist_indices[i]].resize(modhist_lengths[i]);
    }

    int max_modpath_idx = -1;
    for (auto &elem : modpath_indices) {
        max_modpath_idx = (max_modpath_idx < elem) ? elem : max_modpath_idx;
    }
    if (max_modpath_idx >= 0) {
        modpath_histories.resize(max_modpath_idx + 1);
    }
    for (int i = 0; i < modpath_lengths.size(); i+= 1) {
        modpath_histories[modpath_indices[i]].resize(modpath_lengths[i]);
    }

    for (int i = 0; i < table_sizes.size(); i += 1) {
        mpreds.push_back(0);
        tables.push_back(std::vector<short int>(table_sizes[i]));
        sign_bits.push_back(std::vector<std::array<bool, 2>>(table_sizes[i]));
        for (int j = 0; j < table_sizes[i]; j += 1) {
            for (int k = 0; k < n_sign_bits; k += 1) {
                sign_bits[i][j][k] = (i & 1) | (k & 1);
            }
        }
    }
}

MultiperspectivePerceptron::MultiperspectivePerceptron(
    const MultiperspectivePerceptronParams *p) : BPredUnit(p),
    blockSize(p->block_size), pcshift(p->pcshift), threshold(p->threshold),
    bias0(p->bias0), bias1(p->bias1), biasmostly0(p->biasmostly0),
    biasmostly1(p->biasmostly1), nbest(p->nbest), tunebits(p->tunebits),
    hshift(p->hshift), imli_mask1(p->imli_mask1), imli_mask4(p->imli_mask4),
    recencypos_mask(p->recencypos_mask), fudge(p->fudge),
    n_sign_bits(p->n_sign_bits), pcbit(p->pcbit), decay(p->decay),
    record_mask(p->record_mask), hash_taken(p->hash_taken),
    tuneonly(p->tuneonly), extra_rounds(p->extra_rounds), speed(p->speed),
    budgetbits(p->budgetbits), speculative_update(p->speculative_update),
    threadData(p->numThreads, nullptr), doing_local(false),
    doing_recency(false), assoc(0), ghist_length(p->initial_ghist_length),
    modghist_length(1), path_length(1), thresholdCounter(0),
    theta(p->initial_theta), extrabits(0), imli_counter_bits(4),
    modhist_indices(), modhist_lengths(), modpath_indices(), modpath_lengths()
{
    fatal_if(speculative_update, "Speculative update not implemented");
}

void
MultiperspectivePerceptron::setExtraBits(int bits)
{
    extrabits = bits;
}

void
MultiperspectivePerceptron::init()
{
    createSpecs();

    for (auto &spec : specs) {
        // initial assignation of values
        table_sizes.push_back(spec->size);
    }

    // Update bit requirements and runtime values
    for (auto &spec : specs) {
        spec->setBitRequirements();
    }
    const MultiperspectivePerceptronParams *p =
        static_cast<const MultiperspectivePerceptronParams *>(params());

    computeBits(p->num_filter_entries, p->num_local_histories,
                p->local_history_length, p->ignore_path_size);

    for (int i = 0; i < threadData.size(); i += 1) {
        threadData[i] = new ThreadData(p->num_filter_entries,
                                       p->num_local_histories,
                                       p->local_history_length, assoc,
                                       blurrypath_bits, path_length,
                                       ghist_length, blockSize, acyclic_bits,
                                       modhist_indices, modhist_lengths,
                                       modpath_indices, modpath_lengths,
                                       table_sizes, n_sign_bits);
    }
}

void
MultiperspectivePerceptron::computeBits(int num_filter_entries,
        int nlocal_histories, int local_history_length, bool ignore_path_size)
{
    int totalbits = extrabits;
    for (auto &imli_bits : imli_counter_bits) {
        totalbits += imli_bits;
    }
    totalbits += ghist_length;
    if (!ignore_path_size) {
        totalbits += path_length * 16;
    }
    totalbits += (threshold >= 0) ? (tunebits * specs.size()) : 0;
    for (auto &len : modhist_lengths) {
        totalbits += len;
    }
    if (!ignore_path_size) {
        for (auto &len : modpath_lengths) {
            totalbits += 16 * len;
        }
    }
    totalbits += doing_local ? (nlocal_histories * local_history_length) : 0;
    totalbits += doing_recency ? (assoc * 16) : 0;

    for (auto &bv : blurrypath_bits) {
        for (auto &bve : bv) {
            totalbits += bve;
        }
    }
    totalbits += num_filter_entries * 2;

    for (auto &abi : acyclic_bits) {
        for (auto &abj : abi) {
            for (auto abk : abj) {
                totalbits += abk;
            }
        }
    }

    int remaining = budgetbits - totalbits;

    // count the tables that have already been assigned sizes
    int num_sized = 0;
    for (int i = 0; i < specs.size(); i +=1) {
        if (table_sizes[i] != 0) {
            int sz = table_sizes[i] * (specs[i]->width + (n_sign_bits - 1));
            totalbits += sz;
            remaining -= sz;
            num_sized += 1;
        }
    }

    // whatever is left, we divide among the rest of the tables
    int table_size_bits = (remaining / (specs.size()-num_sized));
    for (int i = 0; i < specs.size(); i += 1) {
        // if a table doesn't have a size yet, give it one and count those bits
        if (!table_sizes[i]) {
            int my_table_size = table_size_bits /
                (specs[i]->width + (n_sign_bits - 1)); // extra sign bits
            table_sizes[i] = my_table_size;
            totalbits += my_table_size * (specs[i]->width + (n_sign_bits - 1));
        }
    }

    DPRINTF(Branch, "%d bits of metadata so far, %d left out of "
            "%d total budget\n", totalbits, remaining, budgetbits);
    DPRINTF(Branch, "table size is %d bits, %d entries for 5 bit, %d entries "
            "for 6 bit\n", table_size_bits,
            table_size_bits / (5 + (n_sign_bits - 1)),
            table_size_bits / (6 + (n_sign_bits - 1)));
    DPRINTF(Branch, "%d total bits (%0.2fKB)\n", totalbits,
            totalbits / 8192.0);
}

void
MultiperspectivePerceptron::findBest(ThreadID tid,
                                     std::vector<int> &best_preds) const
{
    if (threshold < 0) {
        return;
    }
    struct BestPair {
        int index;
        int mpreds;
        bool operator<(BestPair const &bp) const
        {
            return mpreds < bp.mpreds;
        }
    };
    std::vector<BestPair> pairs(best_preds.size());
    for (int i = 0; i < best_preds.size(); i += 1) {
        pairs[i].index = i;
        pairs[i].mpreds = threadData[tid]->mpreds[i];
    }
    std::sort(pairs.begin(), pairs.end());
    for (int i = 0; i < (std::min(nbest, (int) best_preds.size())); i += 1) {
        best_preds[i] = pairs[i].index;
    }
}

unsigned int
MultiperspectivePerceptron::getIndex(ThreadID tid, const MPPBranchInfo &bi,
                                     const HistorySpec &spec, int index) const
{
    unsigned int g = spec.getHash(tid, bi.getPC(), bi.getPC2(), index);
    unsigned long long int h = g;
     // shift the hash from the feature to xor with the hashed PC
    if (hshift < 0) {
        h <<= -hshift;
        h ^= bi.getPC2();
    } else {
        h <<= hshift;
        h ^= bi.getHPC();
    }
    // xor in the imli counter(s) and/or recency position based on the masks
    if ((1ull<<index) & imli_mask1) {
        h ^= threadData[tid]->imli_counter[0];
    }
    if ((1ull<<index) & imli_mask4) {
        h ^= threadData[tid]->imli_counter[3];
    }
    if (doing_recency) {
        if ((1ull<<index) & recencypos_mask) {
            h ^= RECENCYPOS::hash(threadData[tid]->recency_stack, table_sizes,
                    bi.getPC2(), 31, index);
        }
    }
    h %= table_sizes[index];
    return h;
}

int
MultiperspectivePerceptron::computeOutput(ThreadID tid, MPPBranchInfo &bi)
{
    // list of best predictors
    std::vector<int> best_preds(specs.size(), -1);

    // initialize sum
    bi.yout = 0;

    // bias the prediction by whether the local history is
    // one of four distinctive patterns
    int lhist = threadData[tid]->localHistories[bi.getPC()];
    int history_len = threadData[tid]->localHistories.getLocalHistoryLength();
    if (lhist == 0) {
        bi.yout = bias0;
    } else if (lhist == ((1<<history_len)-1)) {
        bi.yout = bias1;
    } else if (lhist == (1<<(history_len-1))) {
        bi.yout = biasmostly0;
    } else if (lhist == ((1<<(history_len-1))-1)) {
        bi.yout = biasmostly1;
    }
    // find the best subset of features to use in case of a low-confidence
    // branch
    findBest(tid, best_preds);

    // begin computation of the sum for low-confidence branch
    int bestval = 0;

    for (int i = 0; i < specs.size(); i += 1) {
        HistorySpec const &spec = *specs[i];
        // get the hash to index the table
        unsigned int hashed_idx = getIndex(tid, bi, spec, i);
        // add the weight; first get the weight's magnitude
        int counter = threadData[tid]->tables[i][hashed_idx];
        // get the sign
        bool sign =
          threadData[tid]->sign_bits[i][hashed_idx][bi.getHPC() % n_sign_bits];
        // apply the transfer function and multiply by a coefficient
        int weight = spec.coeff * ((spec.width == 5) ?
                                   xlat4[counter] : xlat[counter]);
        // apply the sign
        int val = sign ? -weight : weight;
        // add the value
        bi.yout += val;
        // if this is one of those good features, add the value to bestval
        if (threshold >= 0) {
            for (int j = 0;
                 j < std::min(nbest, (int) best_preds.size());
                 j += 1)
            {
                if (best_preds[j] == i) {
                    bestval += val;
                    break;
                }
            }
        }
    }
    // apply a fudge factor to affect when training is triggered
    bi.yout *= fudge;
    return bestval;
}

void
MultiperspectivePerceptron::satIncDec(bool taken, bool &sign, int &counter,
                                      int max_weight) const
{
    if (taken) {
        // increment sign/magnitude
        if (sign) {
            // go toward 0 away from negative max weight
            if (counter == 0) {
                sign = false; // moved to positive 0
            } else {
                counter -= 1;
            }
        } else {
            // go toward max weight away from 0
            if (counter < max_weight) {
                counter += 1;
            }
        }
    } else {
        // decrement sign/magnitude
        if (sign) {
            // go toward negative max weight down from 0
            if (counter < max_weight) {
                counter += 1;
            }
        } else {
            // go toward 0 away from max weight
            if (counter == 0) {
                sign = true; // negative 0
            } else {
                counter -= 1;
            }
        }
    }
}

void
MultiperspectivePerceptron::train(ThreadID tid, MPPBranchInfo &bi, bool taken)
{
    std::vector<std::vector<short int>> &tables = threadData[tid]->tables;
    std::vector<std::vector<std::array<bool, 2>>> &sign_bits =
            threadData[tid]->sign_bits;
    std::vector<int> &mpreds = threadData[tid]->mpreds;
    // was the prediction correct?
    bool correct = (bi.yout >= 1) == taken;
    // what is the magnitude of yout?
    int abs_yout = abs(bi.yout);
    // keep track of mispredictions per table
    if (threshold >= 0) if (!tuneonly || (abs_yout <= threshold)) {
        bool halve = false;

        // for each table, figure out if there was a misprediction
        for (int i = 0; i < specs.size(); i += 1) {
            HistorySpec const &spec = *specs[i];
            // get the hash to index the table
            unsigned int hashed_idx = getIndex(tid, bi, spec, i);
            bool sign = sign_bits[i][hashed_idx][bi.getHPC() % n_sign_bits];
            int counter = tables[i][hashed_idx];
            int weight = spec.coeff * ((spec.width == 5) ?
                                       xlat4[counter] : xlat[counter]);
            if (sign) weight = -weight;
            bool pred = weight >= 1;
            if (pred != taken) {
                mpreds[i] += 1;
                if (mpreds[i] == (1 << tunebits) - 1) {
                    halve = true;
                }
            }
        }
        // if we reach the maximum counter value, halve all the counters
        if (halve) {
            for (int i = 0; i < specs.size(); i += 1) {
                mpreds[i] /= 2;
            }
        }
    }
    // if the branch was predicted incorrectly or the correct
    // prediction was weak, update the weights
    bool do_train = !correct || (abs_yout <= theta);
    if (!do_train) return;

    // adaptive theta training, adapted from O-GEHL
    if (!correct) {
        thresholdCounter += 1;
        if (thresholdCounter >= speed) {
            theta += 1;
            thresholdCounter = 0;
        }
    }
    if (correct && abs_yout < theta) {
        thresholdCounter -= 1;
        if (thresholdCounter <= -speed) {
            theta -= 1;
            thresholdCounter = 0;
        }
    }

    // train the weights, computing what the value of yout
    // would have been if these updates had been applied before
    int newyout = 0;
    for (int i = 0; i < specs.size(); i += 1) {
        HistorySpec const &spec = *specs[i];
        // get the magnitude
        unsigned int hashed_idx = getIndex(tid, bi, spec, i);
        int counter = tables[i][hashed_idx];
        // get the sign
        bool sign = sign_bits[i][hashed_idx][bi.getHPC() % n_sign_bits];
        // increment/decrement if taken/not taken
        satIncDec(taken, sign, counter, (1 << (spec.width - 1)) - 1);
        // update the magnitude and sign
        tables[i][hashed_idx] = counter;
        sign_bits[i][hashed_idx][bi.getHPC() % n_sign_bits] = sign;
        int weight = ((spec.width == 5) ? xlat4[counter] : xlat[counter]);
        // update the new version of yout
        if (sign) {
            newyout -= weight;
        } else {
            newyout += weight;
        }
    }

    // if the prediction still would have been incorrect even
    // with the updated weights, update some more weights to
    // try to fix the problem
    if ((newyout >= 1) != taken) {
        if (extra_rounds != -1) {
            int round_counter = 0;
            bool found;
            do {
                // udpate a random weight
                int besti = -1;
                int nrand = random_mt.random<int>() % specs.size();
                int pout;
                found = false;
                for (int j = 0; j < specs.size(); j += 1) {
                    int i = (nrand + j) % specs.size();
                    HistorySpec const &spec = *specs[i];
                    unsigned int hashed_idx = getIndex(tid, bi, spec, i);
                    int counter = tables[i][hashed_idx];
                    bool sign =
                        sign_bits[i][hashed_idx][bi.getHPC() % n_sign_bits];
                    int weight = ((spec.width == 5) ?
                            xlat4[counter] : xlat[counter]);
                    int signed_weight = sign ? -weight : weight;
                    pout = newyout - signed_weight;
                    if ((pout >= 1) == taken) {
                        // we have found a weight that if we blow
                        // it away will help!
                        besti = i;
                        break;
                    }
                }
                if (besti != -1) {
                    int i = besti;
                    HistorySpec const &spec = *specs[i];
                    unsigned int hashed_idx = getIndex(tid, bi, spec, i);
                    int counter = tables[i][hashed_idx];
                    bool sign =
                        sign_bits[i][hashed_idx][bi.getHPC() % n_sign_bits];
                    if (counter > 1) {
                        counter--;
                        tables[i][hashed_idx] = counter;
                    }
                    int weight = ((spec.width == 5) ?
                            xlat4[counter] : xlat[counter]);
                    int signed_weight = sign ? -weight : weight;
                    int out = pout + signed_weight;
                    round_counter += 1;
                    if ((out >= 1) != taken) {
                        found = true;
                    }
                }
            } while (found && round_counter < extra_rounds);
        }
    }
}

void
MultiperspectivePerceptron::uncondBranch(ThreadID tid, Addr pc,
                                         void * &bp_history)
{
    MPPBranchInfo *bi = new MPPBranchInfo(pc, pcshift, false);
    std::vector<unsigned int> &ghist_words = threadData[tid]->ghist_words;

    bp_history = (void *)bi;
    unsigned short int pc2 = pc >> 2;
    bool ab = !(pc & (1<<pcbit));
    for (int i = 0; i < ghist_length / blockSize + 1; i += 1) {
        bool ab_new = (ghist_words[i] >> (blockSize - 1)) & 1;
        ghist_words[i] <<= 1;
        ghist_words[i] |= ab;
        ghist_words[i] &= (1 << blockSize) - 1;
        ab = ab_new;
    }
    memmove(&threadData[tid]->path_history[1],
            &threadData[tid]->path_history[0],
            sizeof(unsigned short int) * (path_length - 1));
    threadData[tid]->path_history[0] = pc2;
}

bool
MultiperspectivePerceptron::lookup(ThreadID tid, Addr instPC,
                                   void * &bp_history)
{
    MPPBranchInfo *bi = new MPPBranchInfo(instPC, pcshift, true);
    bp_history = (void *)bi;

    bool use_static = false;

    if (!threadData[tid]->filterTable.empty()) {
        unsigned int findex =
            bi->getHashFilter(threadData[tid]->last_ghist_bit) %
            threadData[tid]->filterTable.size();
        FilterEntry &f = threadData[tid]->filterTable[findex];
        if (f.alwaysNotTakenSoFar()) {
            bi->filtered = true;
            bi->prediction = false;
            return false;
        } else if (f.alwaysTakenSoFar()) {
            bi->filtered = true;
            bi->prediction = true;
            return true;
        }
        if (f.neverSeen()) {
            use_static = true;
        }
    }

    int bestval = computeOutput(tid, *bi);
    if (use_static) {
        bi->prediction = false;
    } else {
        if (abs(bi->yout) <= threshold) {
            bi->prediction = (bestval >= 1);
        } else {
            bi->prediction = (bi->yout >= 1);
        }
    }

    return bi->prediction;
}

void
MultiperspectivePerceptron::update(ThreadID tid, Addr instPC, bool taken,
                                   void *bp_history, bool squashed,
                                   const StaticInstPtr & inst,
                                   Addr corrTarget)
{
    assert(bp_history);
    MPPBranchInfo *bi = static_cast<MPPBranchInfo*>(bp_history);
    assert(corrTarget != MaxAddr);
    if (squashed) {
        //delete bi;
        return;
    }

    if (bi->isUnconditional()) {
        delete bi;
        return;
    }

    bool do_train = true;

    if (!threadData[tid]->filterTable.empty()) {
        int findex = bi->getHashFilter(threadData[tid]->last_ghist_bit) %
                                       threadData[tid]->filterTable.size();
        FilterEntry &f = threadData[tid]->filterTable[findex];

        // compute this first, so we don't not train on the
        // first time a branch is seen.
        bool transition = false;
        if (f.alwaysNotTakenSoFar() || f.alwaysTakenSoFar()) {
            do_train = false;
        }
        if (taken) {
            if (f.alwaysNotTakenSoFar()) {
                transition = true;
            }
            f.seenTaken = true;
        } else {
            if (f.alwaysTakenSoFar()) {
                transition = true;
            }
            f.seenUntaken = true;
        }
        // is this the first time time the branch has gone both ways?
        if (transition) {
            threadData[tid]->occupancy += 1;
        }
        // for every new dynamic branch, when there ar
        // more than 'decay' number of branches in the
        // filter, blow a random filter entry away
        if (decay && transition &&
            ((threadData[tid]->occupancy > decay) || (decay == 1))) {
            int rnd = random_mt.random<int>() %
                      threadData[tid]->filterTable.size();
            FilterEntry &frand = threadData[tid]->filterTable[rnd];
            if (frand.seenTaken && frand.seenUntaken) {
                threadData[tid]->occupancy -= 1;
            }
            frand.seenTaken = false;
            frand.seenUntaken = false;
        }
    }

    if (do_train) {
        train(tid, *bi, taken);
    }

#define RECORD_FILTERED_IMLI      1
#define RECORD_FILTERED_GHIST     2
#define RECORD_FILTERED_PATH      4
#define RECORD_FILTERED_ACYCLIC   8
#define RECORD_FILTERED_MOD      16
#define RECORD_FILTERED_BLURRY   32
// should never record a filtered local branch - duh!
#define RECORD_FILTERED_LOCAL    64
#define RECORD_FILTERED_RECENCY 128

    // four different styles of IMLI
    if (!bi->filtered || (record_mask & RECORD_FILTERED_IMLI)) {
        unsigned int target = corrTarget;
        if (target < bi->getPC()) {
            if (taken) {
                threadData[tid]->imli_counter[0] += 1;
            } else {
                threadData[tid]->imli_counter[0] = 0;
            }
            if (!taken) {
                threadData[tid]->imli_counter[1] += 1;
            } else {
                threadData[tid]->imli_counter[1] = 0;
            }
        } else {
            if (taken) {
                threadData[tid]->imli_counter[2] += 1;
            } else {
                threadData[tid]->imli_counter[2] = 0;
            }
            if (!taken) {
                threadData[tid]->imli_counter[3] += 1;
            } else {
                threadData[tid]->imli_counter[3] = 0;
            }
        }
    }

    bool hashed_taken = hash_taken ? (taken ^ !!(bi->getPC() & (1<<pcbit)))
                                   : taken;
    // record into ghist
    if (!bi->filtered || (record_mask & RECORD_FILTERED_GHIST)) {
        bool ab = hashed_taken;
        assert(threadData[tid]->ghist_words.size() > 0);
        for (int i = 0; i < ghist_length / blockSize + 1; i += 1) {
            unsigned int a = threadData[tid]->ghist_words[i];
            bool ab_new = (a >> (blockSize - 1)) & 1;
            a <<= 1;
            a |= ab;
            ab = ab_new;
            a &= (1 << blockSize) - 1;
            threadData[tid]->ghist_words[i] = a;
        }
    }

    // record into path history
    if (!bi->filtered || (record_mask & RECORD_FILTERED_PATH)) {
        assert(threadData[tid]->path_history.size() > 0);
        memmove(&threadData[tid]->path_history[1],
                &threadData[tid]->path_history[0],
                sizeof(unsigned short int) * (path_length - 1));
        threadData[tid]->path_history[0] = bi->getPC2();
    }

    // record into acyclic history
    if (!bi->filtered || (record_mask & RECORD_FILTERED_ACYCLIC)) {
        threadData[tid]->updateAcyclic(hashed_taken, bi->getHPC());
    }

    // record into modulo path history
    if (!bi->filtered || (record_mask & RECORD_FILTERED_MOD)) {
        for (int ii = 0; ii < modpath_indices.size(); ii += 1) {
            int i = modpath_indices[ii];
            if (bi->getHPC() % (i + 2) == 0) {
                memmove(&threadData[tid]->modpath_histories[i][1],
                        &threadData[tid]->modpath_histories[i][0],
                        sizeof(unsigned short int) * (modpath_lengths[ii]-1));
                threadData[tid]->modpath_histories[i][0] = bi->getPC2();
            }
        }
    }

    // update blurry history
    if (!bi->filtered || (record_mask & RECORD_FILTERED_BLURRY)) {
        std::vector<std::vector<unsigned int>> &blurrypath_histories =
             threadData[tid]->blurrypath_histories;

        for (int i = 0; i < blurrypath_histories.size(); i += 1)
        {
            if (blurrypath_histories[i].size() > 0) {
                unsigned int z = bi->getPC() >> i;
                if (blurrypath_histories[i][0] != z) {
                    memmove(&blurrypath_histories[i][1],
                            &blurrypath_histories[i][0],
                            sizeof(unsigned int) *
                            (blurrypath_histories[i].size() - 1));
                    blurrypath_histories[i][0] = z;
                }
            }
        }
    }

    // record into modulo pattern history
    if (!bi->filtered || (record_mask & RECORD_FILTERED_MOD)) {
        for (int ii = 0; ii < modhist_indices.size(); ii += 1) {
            int i = modhist_indices[ii];
            if (bi->getHPC() % (i + 2) == 0) {
                for (int j = modhist_lengths[ii] - 1; j > 0; j -= 1) {
                    threadData[tid]->mod_histories[i][j] =
                        threadData[tid]->mod_histories[i][j-1];
                }
                threadData[tid]->mod_histories[i][0] = hashed_taken;
            }
        }
    }

    // insert this PC into the recency stack
    if (doing_recency) {
        if (!bi->filtered || (record_mask & RECORD_FILTERED_RECENCY)) {
            threadData[tid]->insertRecency(bi->getPC2(), assoc);
        }
    }

    // record into a local history
    if (!bi->filtered || (record_mask & RECORD_FILTERED_LOCAL)) {
        threadData[tid]->localHistories.update(bi->getPC(), hashed_taken);
    }

    // update last ghist bit, used to index filter
    threadData[tid]->last_ghist_bit = taken;

    delete bi;
}

void
MultiperspectivePerceptron::btbUpdate(ThreadID tid, Addr branch_pc,
                                      void* &bp_history)
{
}

void
MultiperspectivePerceptron::squash(ThreadID tid, void *bp_history)
{
    assert(bp_history);
    MPPBranchInfo *bi = static_cast<MPPBranchInfo*>(bp_history);
    delete bi;
}