1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Dave Greene
* Nathan Binkert
*/
#ifndef __CPU_SIMPLE_BASE_HH__
#define __CPU_SIMPLE_BASE_HH__
#include "arch/predecoder.hh"
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/simple_thread.hh"
#include "cpu/pc_event.hh"
#include "cpu/static_inst.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
#include "mem/request.hh"
#include "sim/eventq.hh"
// forward declarations
#if FULL_SYSTEM
class Processor;
namespace TheISA
{
class ITB;
class DTB;
}
class MemObject;
#else
class Process;
#endif // FULL_SYSTEM
class RemoteGDB;
class GDBListener;
namespace TheISA
{
class Predecoder;
}
class ThreadContext;
class Checkpoint;
namespace Trace {
class InstRecord;
}
class BaseSimpleCPU : public BaseCPU
{
protected:
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
protected:
Trace::InstRecord *traceData;
public:
void post_interrupt(int int_num, int index);
void zero_fill_64(Addr addr) {
static int warned = 0;
if (!warned) {
warn ("WH64 is not implemented");
warned = 1;
}
};
public:
struct Params : public BaseCPU::Params
{
#if FULL_SYSTEM
TheISA::ITB *itb;
TheISA::DTB *dtb;
#else
Process *process;
#endif
};
BaseSimpleCPU(Params *params);
virtual ~BaseSimpleCPU();
public:
/** SimpleThread object, provides all the architectural state. */
SimpleThread *thread;
/** ThreadContext object, provides an interface for external
* objects to modify this thread's state.
*/
ThreadContext *tc;
#if FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
bool interval_stats;
#endif
// current instruction
TheISA::MachInst inst;
// The predecoder
TheISA::Predecoder predecoder;
StaticInstPtr curStaticInst;
StaticInstPtr curMacroStaticInst;
//This is the offset from the current pc that fetch should be performed at
Addr fetchOffset;
//This flag says to stay at the current pc. This is useful for
//instructions which go beyond MachInst boundaries.
bool stayAtPC;
void checkForInterrupts();
Fault setupFetchRequest(Request *req);
void preExecute();
void postExecute();
void advancePC(Fault fault);
virtual void deallocateContext(int thread_num);
virtual void haltContext(int thread_num);
// statistics
virtual void regStats();
virtual void resetStats();
// number of simulated instructions
Counter numInst;
Counter startNumInst;
Stats::Scalar<> numInsts;
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
// Mask to align PCs to MachInst sized boundaries
static const Addr PCMask = ~((Addr)sizeof(TheISA::MachInst) - 1);
// number of simulated memory references
Stats::Scalar<> numMemRefs;
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
// number of idle cycles
Stats::Average<> notIdleFraction;
Stats::Formula idleFraction;
// number of cycles stalled for I-cache responses
Stats::Scalar<> icacheStallCycles;
Counter lastIcacheStall;
// number of cycles stalled for I-cache retries
Stats::Scalar<> icacheRetryCycles;
Counter lastIcacheRetry;
// number of cycles stalled for D-cache responses
Stats::Scalar<> dcacheStallCycles;
Counter lastDcacheStall;
// number of cycles stalled for D-cache retries
Stats::Scalar<> dcacheRetryCycles;
Counter lastDcacheRetry;
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string §ion);
// These functions are only used in CPU models that split
// effective address computation from the actual memory access.
void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
Addr getEA() { panic("BaseSimpleCPU::getEA() not implemented\n");
M5_DUMMY_RETURN}
void prefetch(Addr addr, unsigned flags)
{
// need to do this...
}
void writeHint(Addr addr, int size, unsigned flags)
{
// need to do this...
}
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
uint64_t readIntRegOperand(const StaticInst *si, int idx)
{
return thread->readIntReg(si->srcRegIdx(idx));
}
FloatReg readFloatRegOperand(const StaticInst *si, int idx, int width)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return thread->readFloatReg(reg_idx, width);
}
FloatReg readFloatRegOperand(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return thread->readFloatReg(reg_idx);
}
FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx,
int width)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return thread->readFloatRegBits(reg_idx, width);
}
FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return thread->readFloatRegBits(reg_idx);
}
void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
{
thread->setIntReg(si->destRegIdx(idx), val);
}
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
int width)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
thread->setFloatReg(reg_idx, val, width);
}
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
thread->setFloatReg(reg_idx, val);
}
void setFloatRegOperandBits(const StaticInst *si, int idx,
FloatRegBits val, int width)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
thread->setFloatRegBits(reg_idx, val, width);
}
void setFloatRegOperandBits(const StaticInst *si, int idx,
FloatRegBits val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
thread->setFloatRegBits(reg_idx, val);
}
uint64_t readPC() { return thread->readPC(); }
uint64_t readMicroPC() { return thread->readMicroPC(); }
uint64_t readNextPC() { return thread->readNextPC(); }
uint64_t readNextMicroPC() { return thread->readNextMicroPC(); }
uint64_t readNextNPC() { return thread->readNextNPC(); }
void setPC(uint64_t val) { thread->setPC(val); }
void setMicroPC(uint64_t val) { thread->setMicroPC(val); }
void setNextPC(uint64_t val) { thread->setNextPC(val); }
void setNextMicroPC(uint64_t val) { thread->setNextMicroPC(val); }
void setNextNPC(uint64_t val) { thread->setNextNPC(val); }
MiscReg readMiscRegNoEffect(int misc_reg)
{
return thread->readMiscRegNoEffect(misc_reg);
}
MiscReg readMiscReg(int misc_reg)
{
return thread->readMiscReg(misc_reg);
}
void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
{
return thread->setMiscRegNoEffect(misc_reg, val);
}
void setMiscReg(int misc_reg, const MiscReg &val)
{
return thread->setMiscReg(misc_reg, val);
}
MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
return thread->readMiscRegNoEffect(reg_idx);
}
MiscReg readMiscRegOperand(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
return thread->readMiscReg(reg_idx);
}
void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
return thread->setMiscRegNoEffect(reg_idx, val);
}
void setMiscRegOperand(
const StaticInst *si, int idx, const MiscReg &val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::Ctrl_Base_DepTag;
return thread->setMiscReg(reg_idx, val);
}
unsigned readStCondFailures() {
return thread->readStCondFailures();
}
void setStCondFailures(unsigned sc_failures) {
thread->setStCondFailures(sc_failures);
}
MiscReg readRegOtherThread(int regIdx, int tid = -1)
{
panic("Simple CPU models do not support multithreaded "
"register access.\n");
}
void setRegOtherThread(int regIdx, const MiscReg &val, int tid = -1)
{
panic("Simple CPU models do not support multithreaded "
"register access.\n");
}
#if FULL_SYSTEM
Fault hwrei() { return thread->hwrei(); }
void ev5_trap(Fault fault) { fault->invoke(tc); }
bool simPalCheck(int palFunc) { return thread->simPalCheck(palFunc); }
#else
void syscall(int64_t callnum) { thread->syscall(callnum); }
#endif
bool misspeculating() { return thread->misspeculating(); }
ThreadContext *tcBase() { return tc; }
};
#endif // __CPU_SIMPLE_BASE_HH__
|