1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
/*
* Copyright (c) 2001-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
*/
#ifndef __CPU_SIMPLE_THREAD_HH__
#define __CPU_SIMPLE_THREAD_HH__
#include "arch/isa.hh"
#include "arch/isa_traits.hh"
#include "arch/registers.hh"
#include "arch/tlb.hh"
#include "arch/types.hh"
#include "base/types.hh"
#include "config/full_system.hh"
#include "cpu/thread_context.hh"
#include "cpu/thread_state.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/eventq.hh"
#include "sim/serialize.hh"
class BaseCPU;
#if FULL_SYSTEM
#include "sim/system.hh"
class FunctionProfile;
class ProfileNode;
class FunctionalPort;
class PhysicalPort;
namespace TheISA {
namespace Kernel {
class Statistics;
};
};
#else // !FULL_SYSTEM
#include "sim/process.hh"
#include "mem/page_table.hh"
class TranslatingPort;
#endif // FULL_SYSTEM
/**
* The SimpleThread object provides a combination of the ThreadState
* object and the ThreadContext interface. It implements the
* ThreadContext interface so that a ProxyThreadContext class can be
* made using SimpleThread as the template parameter (see
* thread_context.hh). It adds to the ThreadState object by adding all
* the objects needed for simple functional execution, including a
* simple architectural register file, and pointers to the ITB and DTB
* in full system mode. For CPU models that do not need more advanced
* ways to hold state (i.e. a separate physical register file, or
* separate fetch and commit PC's), this SimpleThread class provides
* all the necessary state for full architecture-level functional
* simulation. See the AtomicSimpleCPU or TimingSimpleCPU for
* examples.
*/
class SimpleThread : public ThreadState
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
public:
typedef ThreadContext::Status Status;
protected:
union {
FloatReg f[TheISA::NumFloatRegs];
FloatRegBits i[TheISA::NumFloatRegs];
} floatRegs;
TheISA::IntReg intRegs[TheISA::NumIntRegs];
TheISA::ISA isa; // one "instance" of the current ISA.
/** The current microcode pc for the currently executing macro
* operation.
*/
MicroPC microPC;
/** The next microcode pc for the currently executing macro
* operation.
*/
MicroPC nextMicroPC;
/** The current pc.
*/
Addr PC;
/** The next pc.
*/
Addr nextPC;
/** The next next pc.
*/
Addr nextNPC;
public:
// pointer to CPU associated with this SimpleThread
BaseCPU *cpu;
ProxyThreadContext<SimpleThread> *tc;
System *system;
TheISA::TLB *itb;
TheISA::TLB *dtb;
// constructor: initialize SimpleThread from given process structure
#if FULL_SYSTEM
SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
TheISA::TLB *_itb, TheISA::TLB *_dtb,
bool use_kernel_stats = true);
#else
SimpleThread(BaseCPU *_cpu, int _thread_num, Process *_process,
TheISA::TLB *_itb, TheISA::TLB *_dtb);
#endif
SimpleThread();
virtual ~SimpleThread();
virtual void takeOverFrom(ThreadContext *oldContext);
void regStats(const std::string &name);
void copyTC(ThreadContext *context);
void copyState(ThreadContext *oldContext);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string §ion);
/***************************************************************
* SimpleThread functions to provide CPU with access to various
* state.
**************************************************************/
/** Returns the pointer to this SimpleThread's ThreadContext. Used
* when a ThreadContext must be passed to objects outside of the
* CPU.
*/
ThreadContext *getTC() { return tc; }
void demapPage(Addr vaddr, uint64_t asn)
{
itb->demapPage(vaddr, asn);
dtb->demapPage(vaddr, asn);
}
void demapInstPage(Addr vaddr, uint64_t asn)
{
itb->demapPage(vaddr, asn);
}
void demapDataPage(Addr vaddr, uint64_t asn)
{
dtb->demapPage(vaddr, asn);
}
#if FULL_SYSTEM
void dumpFuncProfile();
Fault hwrei();
bool simPalCheck(int palFunc);
#endif
/*******************************************
* ThreadContext interface functions.
******************************************/
BaseCPU *getCpuPtr() { return cpu; }
TheISA::TLB *getITBPtr() { return itb; }
TheISA::TLB *getDTBPtr() { return dtb; }
System *getSystemPtr() { return system; }
#if FULL_SYSTEM
FunctionalPort *getPhysPort() { return physPort; }
/** Return a virtual port. This port cannot be cached locally in an object.
* After a CPU switch it may point to the wrong memory object which could
* mean stale data.
*/
VirtualPort *getVirtPort() { return virtPort; }
#endif
Status status() const { return _status; }
void setStatus(Status newStatus) { _status = newStatus; }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1);
/// Set the status to Suspended.
void suspend();
/// Set the status to Halted.
void halt();
virtual bool misspeculating();
Fault instRead(RequestPtr &req)
{
panic("instRead not implemented");
// return funcPhysMem->read(req, inst);
return NoFault;
}
void copyArchRegs(ThreadContext *tc);
void clearArchRegs()
{
microPC = 0;
nextMicroPC = 1;
PC = nextPC = nextNPC = 0;
memset(intRegs, 0, sizeof(intRegs));
memset(floatRegs.i, 0, sizeof(floatRegs.i));
}
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{
int flatIndex = isa.flattenIntIndex(reg_idx);
assert(flatIndex < TheISA::NumIntRegs);
return intRegs[flatIndex];
}
FloatReg readFloatReg(int reg_idx)
{
int flatIndex = isa.flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
return floatRegs.f[flatIndex];
}
FloatRegBits readFloatRegBits(int reg_idx)
{
int flatIndex = isa.flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
return floatRegs.i[flatIndex];
}
void setIntReg(int reg_idx, uint64_t val)
{
int flatIndex = isa.flattenIntIndex(reg_idx);
assert(flatIndex < TheISA::NumIntRegs);
intRegs[flatIndex] = val;
}
void setFloatReg(int reg_idx, FloatReg val)
{
int flatIndex = isa.flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
floatRegs.f[flatIndex] = val;
}
void setFloatRegBits(int reg_idx, FloatRegBits val)
{
int flatIndex = isa.flattenFloatIndex(reg_idx);
assert(flatIndex < TheISA::NumFloatRegs);
floatRegs.i[flatIndex] = val;
}
uint64_t readPC()
{
return PC;
}
void setPC(uint64_t val)
{
PC = val;
}
uint64_t readMicroPC()
{
return microPC;
}
void setMicroPC(uint64_t val)
{
microPC = val;
}
uint64_t readNextPC()
{
return nextPC;
}
void setNextPC(uint64_t val)
{
nextPC = val;
}
uint64_t readNextMicroPC()
{
return nextMicroPC;
}
void setNextMicroPC(uint64_t val)
{
nextMicroPC = val;
}
uint64_t readNextNPC()
{
#if ISA_HAS_DELAY_SLOT
return nextNPC;
#else
return nextPC + sizeof(TheISA::MachInst);
#endif
}
void setNextNPC(uint64_t val)
{
#if ISA_HAS_DELAY_SLOT
nextNPC = val;
#endif
}
MiscReg
readMiscRegNoEffect(int misc_reg, ThreadID tid = 0)
{
return isa.readMiscRegNoEffect(misc_reg);
}
MiscReg
readMiscReg(int misc_reg, ThreadID tid = 0)
{
return isa.readMiscReg(misc_reg, tc);
}
void
setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
{
return isa.setMiscRegNoEffect(misc_reg, val);
}
void
setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
{
return isa.setMiscReg(misc_reg, val, tc);
}
int
flattenIntIndex(int reg)
{
return isa.flattenIntIndex(reg);
}
int
flattenFloatIndex(int reg)
{
return isa.flattenFloatIndex(reg);
}
unsigned readStCondFailures() { return storeCondFailures; }
void setStCondFailures(unsigned sc_failures)
{ storeCondFailures = sc_failures; }
#if !FULL_SYSTEM
void syscall(int64_t callnum)
{
process->syscall(callnum, tc);
}
#endif
};
// for non-speculative execution context, spec_mode is always false
inline bool
SimpleThread::misspeculating()
{
return false;
}
#endif // __CPU_CPU_EXEC_CONTEXT_HH__
|