summaryrefslogtreecommitdiff
path: root/src/cpu/simple_thread.hh
blob: 3c64082b8a944f0fbb32067bdd76e7068e1fbe06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
/*
 * Copyright (c) 2011-2012, 2016 ARM Limited
 * Copyright (c) 2013 Advanced Micro Devices, Inc.
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2001-2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Steve Reinhardt
 *          Nathan Binkert
 */

#ifndef __CPU_SIMPLE_THREAD_HH__
#define __CPU_SIMPLE_THREAD_HH__

#include "arch/decoder.hh"
#include "arch/generic/tlb.hh"
#include "arch/isa.hh"
#include "arch/isa_traits.hh"
#include "arch/registers.hh"
#include "arch/types.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "cpu/thread_context.hh"
#include "cpu/thread_state.hh"
#include "debug/CCRegs.hh"
#include "debug/FloatRegs.hh"
#include "debug/IntRegs.hh"
#include "debug/VecRegs.hh"
#include "mem/page_table.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/eventq.hh"
#include "sim/process.hh"
#include "sim/serialize.hh"
#include "sim/system.hh"

class BaseCPU;
class CheckerCPU;

class FunctionProfile;
class ProfileNode;

namespace TheISA {
    namespace Kernel {
        class Statistics;
    }
}

/**
 * The SimpleThread object provides a combination of the ThreadState
 * object and the ThreadContext interface. It implements the
 * ThreadContext interface so that a ProxyThreadContext class can be
 * made using SimpleThread as the template parameter (see
 * thread_context.hh). It adds to the ThreadState object by adding all
 * the objects needed for simple functional execution, including a
 * simple architectural register file, and pointers to the ITB and DTB
 * in full system mode. For CPU models that do not need more advanced
 * ways to hold state (i.e. a separate physical register file, or
 * separate fetch and commit PC's), this SimpleThread class provides
 * all the necessary state for full architecture-level functional
 * simulation.  See the AtomicSimpleCPU or TimingSimpleCPU for
 * examples.
 */

class SimpleThread : public ThreadState
{
  protected:
    typedef TheISA::MachInst MachInst;
    typedef TheISA::MiscReg MiscReg;
    typedef TheISA::FloatReg FloatReg;
    typedef TheISA::FloatRegBits FloatRegBits;
    typedef TheISA::CCReg CCReg;
    using VecRegContainer = TheISA::VecRegContainer;
    using VecElem = TheISA::VecElem;
  public:
    typedef ThreadContext::Status Status;

  protected:
    union {
        FloatReg f[TheISA::NumFloatRegs];
        FloatRegBits i[TheISA::NumFloatRegs];
    } floatRegs;
    TheISA::IntReg intRegs[TheISA::NumIntRegs];
    VecRegContainer vecRegs[TheISA::NumVecRegs];
#ifdef ISA_HAS_CC_REGS
    TheISA::CCReg ccRegs[TheISA::NumCCRegs];
#endif
    TheISA::ISA *const isa;    // one "instance" of the current ISA.

    TheISA::PCState _pcState;

    /** Did this instruction execute or is it predicated false */
    bool predicate;

  public:
    std::string name() const
    {
        return csprintf("%s.[tid:%i]", baseCpu->name(), tc->threadId());
    }

    ProxyThreadContext<SimpleThread> *tc;

    System *system;

    BaseTLB *itb;
    BaseTLB *dtb;

    TheISA::Decoder decoder;

    // constructor: initialize SimpleThread from given process structure
    // FS
    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
                 BaseTLB *_itb, BaseTLB *_dtb, TheISA::ISA *_isa,
                 bool use_kernel_stats = true);
    // SE
    SimpleThread(BaseCPU *_cpu, int _thread_num, System *_system,
                 Process *_process, BaseTLB *_itb, BaseTLB *_dtb,
                 TheISA::ISA *_isa);

    virtual ~SimpleThread();

    virtual void takeOverFrom(ThreadContext *oldContext);

    void regStats(const std::string &name);

    void copyState(ThreadContext *oldContext);

    void serialize(CheckpointOut &cp) const override;
    void unserialize(CheckpointIn &cp) override;
    void startup();

    /***************************************************************
     *  SimpleThread functions to provide CPU with access to various
     *  state.
     **************************************************************/

    /** Returns the pointer to this SimpleThread's ThreadContext. Used
     *  when a ThreadContext must be passed to objects outside of the
     *  CPU.
     */
    ThreadContext *getTC() { return tc; }

    void demapPage(Addr vaddr, uint64_t asn)
    {
        itb->demapPage(vaddr, asn);
        dtb->demapPage(vaddr, asn);
    }

    void demapInstPage(Addr vaddr, uint64_t asn)
    {
        itb->demapPage(vaddr, asn);
    }

    void demapDataPage(Addr vaddr, uint64_t asn)
    {
        dtb->demapPage(vaddr, asn);
    }

    void dumpFuncProfile();

    Fault hwrei();

    bool simPalCheck(int palFunc);

    /*******************************************
     * ThreadContext interface functions.
     ******************************************/

    BaseCPU *getCpuPtr() { return baseCpu; }

    BaseTLB *getITBPtr() { return itb; }

    BaseTLB *getDTBPtr() { return dtb; }

    CheckerCPU *getCheckerCpuPtr() { return NULL; }

    TheISA::Decoder *getDecoderPtr() { return &decoder; }

    System *getSystemPtr() { return system; }

    Status status() const { return _status; }

    void setStatus(Status newStatus) { _status = newStatus; }

    /// Set the status to Active.
    void activate();

    /// Set the status to Suspended.
    void suspend();

    /// Set the status to Halted.
    void halt();

    void copyArchRegs(ThreadContext *tc);

    void clearArchRegs()
    {
        _pcState = 0;
        memset(intRegs, 0, sizeof(intRegs));
        memset(floatRegs.i, 0, sizeof(floatRegs.i));
        for (int i = 0; i < TheISA::NumVecRegs; i++) {
            vecRegs[i].zero();
        }
#ifdef ISA_HAS_CC_REGS
        memset(ccRegs, 0, sizeof(ccRegs));
#endif
        isa->clear();
    }

    //
    // New accessors for new decoder.
    //
    uint64_t readIntReg(int reg_idx)
    {
        int flatIndex = isa->flattenIntIndex(reg_idx);
        assert(flatIndex < TheISA::NumIntRegs);
        uint64_t regVal(readIntRegFlat(flatIndex));
        DPRINTF(IntRegs, "Reading int reg %d (%d) as %#x.\n",
                reg_idx, flatIndex, regVal);
        return regVal;
    }

    FloatReg readFloatReg(int reg_idx)
    {
        int flatIndex = isa->flattenFloatIndex(reg_idx);
        assert(flatIndex < TheISA::NumFloatRegs);
        FloatReg regVal(readFloatRegFlat(flatIndex));
        DPRINTF(FloatRegs, "Reading float reg %d (%d) as %f, %#x.\n",
                reg_idx, flatIndex, regVal, floatRegs.i[flatIndex]);
        return regVal;
    }

    FloatRegBits readFloatRegBits(int reg_idx)
    {
        int flatIndex = isa->flattenFloatIndex(reg_idx);
        assert(flatIndex < TheISA::NumFloatRegs);
        FloatRegBits regVal(readFloatRegBitsFlat(flatIndex));
        DPRINTF(FloatRegs, "Reading float reg %d (%d) bits as %#x, %f.\n",
                reg_idx, flatIndex, regVal, floatRegs.f[flatIndex]);
        return regVal;
    }

    const VecRegContainer&
    readVecReg(const RegId& reg) const
    {
        int flatIndex = isa->flattenVecIndex(reg.index());
        assert(flatIndex < TheISA::NumVecRegs);
        const VecRegContainer& regVal = readVecRegFlat(flatIndex);
        DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s.\n",
                reg.index(), flatIndex, regVal.as<TheISA::VecElem>().print());
        return regVal;
    }

    VecRegContainer&
    getWritableVecReg(const RegId& reg)
    {
        int flatIndex = isa->flattenVecIndex(reg.index());
        assert(flatIndex < TheISA::NumVecRegs);
        VecRegContainer& regVal = getWritableVecRegFlat(flatIndex);
        DPRINTF(VecRegs, "Reading vector reg %d (%d) as %s for modify.\n",
                reg.index(), flatIndex, regVal.as<TheISA::VecElem>().print());
        return regVal;
    }

    /** Vector Register Lane Interfaces. */
    /** @{ */
    /** Reads source vector <T> operand. */
    template <typename T>
    VecLaneT<T, true>
    readVecLane(const RegId& reg) const
    {
        int flatIndex = isa->flattenVecIndex(reg.index());
        assert(flatIndex < TheISA::NumVecRegs);
        auto regVal = readVecLaneFlat<T>(flatIndex, reg.elemIndex());
        DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] as %lx.\n",
                reg.index(), flatIndex, reg.elemIndex(), regVal);
        return regVal;
    }

    /** Reads source vector 8bit operand. */
    virtual ConstVecLane8
    readVec8BitLaneReg(const RegId& reg) const
    { return readVecLane<uint8_t>(reg); }

    /** Reads source vector 16bit operand. */
    virtual ConstVecLane16
    readVec16BitLaneReg(const RegId& reg) const
    { return readVecLane<uint16_t>(reg); }

    /** Reads source vector 32bit operand. */
    virtual ConstVecLane32
    readVec32BitLaneReg(const RegId& reg) const
    { return readVecLane<uint32_t>(reg); }

    /** Reads source vector 64bit operand. */
    virtual ConstVecLane64
    readVec64BitLaneReg(const RegId& reg) const
    { return readVecLane<uint64_t>(reg); }

    /** Write a lane of the destination vector register. */
    template <typename LD>
    void setVecLaneT(const RegId& reg, const LD& val)
    {
        int flatIndex = isa->flattenVecIndex(reg.index());
        assert(flatIndex < TheISA::NumVecRegs);
        setVecLaneFlat(flatIndex, reg.elemIndex(), val);
        DPRINTF(VecRegs, "Reading vector lane %d (%d)[%d] to %lx.\n",
                reg.index(), flatIndex, reg.elemIndex(), val);
    }
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::Byte>& val)
    { return setVecLaneT(reg, val); }
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::TwoByte>& val)
    { return setVecLaneT(reg, val); }
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::FourByte>& val)
    { return setVecLaneT(reg, val); }
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::EightByte>& val)
    { return setVecLaneT(reg, val); }
    /** @} */

    const VecElem& readVecElem(const RegId& reg) const
    {
        int flatIndex = isa->flattenVecElemIndex(reg.index());
        assert(flatIndex < TheISA::NumVecRegs);
        const VecElem& regVal = readVecElemFlat(flatIndex, reg.elemIndex());
        DPRINTF(VecRegs, "Reading element %d of vector reg %d (%d) as"
                " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, regVal);
        return regVal;
    }


    CCReg readCCReg(int reg_idx)
    {
#ifdef ISA_HAS_CC_REGS
        int flatIndex = isa->flattenCCIndex(reg_idx);
        assert(0 <= flatIndex);
        assert(flatIndex < TheISA::NumCCRegs);
        uint64_t regVal(readCCRegFlat(flatIndex));
        DPRINTF(CCRegs, "Reading CC reg %d (%d) as %#x.\n",
                reg_idx, flatIndex, regVal);
        return regVal;
#else
        panic("Tried to read a CC register.");
        return 0;
#endif
    }

    void setIntReg(int reg_idx, uint64_t val)
    {
        int flatIndex = isa->flattenIntIndex(reg_idx);
        assert(flatIndex < TheISA::NumIntRegs);
        DPRINTF(IntRegs, "Setting int reg %d (%d) to %#x.\n",
                reg_idx, flatIndex, val);
        setIntRegFlat(flatIndex, val);
    }

    void setFloatReg(int reg_idx, FloatReg val)
    {
        int flatIndex = isa->flattenFloatIndex(reg_idx);
        assert(flatIndex < TheISA::NumFloatRegs);
        setFloatRegFlat(flatIndex, val);
        DPRINTF(FloatRegs, "Setting float reg %d (%d) to %f, %#x.\n",
                reg_idx, flatIndex, val, floatRegs.i[flatIndex]);
    }

    void setFloatRegBits(int reg_idx, FloatRegBits val)
    {
        int flatIndex = isa->flattenFloatIndex(reg_idx);
        assert(flatIndex < TheISA::NumFloatRegs);
        // XXX: Fix array out of bounds compiler error for gem5.fast
        // when checkercpu enabled
        if (flatIndex < TheISA::NumFloatRegs)
            setFloatRegBitsFlat(flatIndex, val);
        DPRINTF(FloatRegs, "Setting float reg %d (%d) bits to %#x, %#f.\n",
                reg_idx, flatIndex, val, floatRegs.f[flatIndex]);
    }

    void setVecReg(const RegId& reg, const VecRegContainer& val)
    {
        int flatIndex = isa->flattenVecIndex(reg.index());
        assert(flatIndex < TheISA::NumVecRegs);
        setVecRegFlat(flatIndex, val);
        DPRINTF(VecRegs, "Setting vector reg %d (%d) to %s.\n",
                reg.index(), flatIndex, val.print());
    }

    void setVecElem(const RegId& reg, const VecElem& val)
    {
        int flatIndex = isa->flattenVecElemIndex(reg.index());
        assert(flatIndex < TheISA::NumVecRegs);
        setVecElemFlat(flatIndex, reg.elemIndex(), val);
        DPRINTF(VecRegs, "Setting element %d of vector reg %d (%d) to"
                " %#x.\n", reg.elemIndex(), reg.index(), flatIndex, val);
    }

    void setCCReg(int reg_idx, CCReg val)
    {
#ifdef ISA_HAS_CC_REGS
        int flatIndex = isa->flattenCCIndex(reg_idx);
        assert(flatIndex < TheISA::NumCCRegs);
        DPRINTF(CCRegs, "Setting CC reg %d (%d) to %#x.\n",
                reg_idx, flatIndex, val);
        setCCRegFlat(flatIndex, val);
#else
        panic("Tried to set a CC register.");
#endif
    }

    TheISA::PCState
    pcState()
    {
        return _pcState;
    }

    void
    pcState(const TheISA::PCState &val)
    {
        _pcState = val;
    }

    void
    pcStateNoRecord(const TheISA::PCState &val)
    {
        _pcState = val;
    }

    Addr
    instAddr()
    {
        return _pcState.instAddr();
    }

    Addr
    nextInstAddr()
    {
        return _pcState.nextInstAddr();
    }

    void
    setNPC(Addr val)
    {
        _pcState.setNPC(val);
    }

    MicroPC
    microPC()
    {
        return _pcState.microPC();
    }

    bool readPredicate()
    {
        return predicate;
    }

    void setPredicate(bool val)
    {
        predicate = val;
    }

    MiscReg
    readMiscRegNoEffect(int misc_reg, ThreadID tid = 0) const
    {
        return isa->readMiscRegNoEffect(misc_reg);
    }

    MiscReg
    readMiscReg(int misc_reg, ThreadID tid = 0)
    {
        return isa->readMiscReg(misc_reg, tc);
    }

    void
    setMiscRegNoEffect(int misc_reg, const MiscReg &val, ThreadID tid = 0)
    {
        return isa->setMiscRegNoEffect(misc_reg, val);
    }

    void
    setMiscReg(int misc_reg, const MiscReg &val, ThreadID tid = 0)
    {
        return isa->setMiscReg(misc_reg, val, tc);
    }

    RegId
    flattenRegId(const RegId& regId) const
    {
        return isa->flattenRegId(regId);
    }

    unsigned readStCondFailures() { return storeCondFailures; }

    void setStCondFailures(unsigned sc_failures)
    { storeCondFailures = sc_failures; }

    void syscall(int64_t callnum, Fault *fault)
    {
        process->syscall(callnum, tc, fault);
    }

    uint64_t readIntRegFlat(int idx) { return intRegs[idx]; }
    void setIntRegFlat(int idx, uint64_t val) { intRegs[idx] = val; }

    FloatReg readFloatRegFlat(int idx) { return floatRegs.f[idx]; }
    void setFloatRegFlat(int idx, FloatReg val) { floatRegs.f[idx] = val; }

    FloatRegBits readFloatRegBitsFlat(int idx) { return floatRegs.i[idx]; }
    void setFloatRegBitsFlat(int idx, FloatRegBits val) {
        floatRegs.i[idx] = val;
    }

    const VecRegContainer& readVecRegFlat(const RegIndex& reg) const
    {
        return vecRegs[reg];
    }

    VecRegContainer& getWritableVecRegFlat(const RegIndex& reg)
    {
        return vecRegs[reg];
    }

    void setVecRegFlat(const RegIndex& reg, const VecRegContainer& val)
    {
        vecRegs[reg] = val;
    }

    template <typename T>
    VecLaneT<T, true> readVecLaneFlat(const RegIndex& reg, int lId) const
    {
        return vecRegs[reg].laneView<T>(lId);
    }

    template <typename LD>
    void setVecLaneFlat(const RegIndex& reg, int lId, const LD& val)
    {
        vecRegs[reg].laneView<typename LD::UnderlyingType>(lId) = val;
    }

    const VecElem& readVecElemFlat(const RegIndex& reg,
                                   const ElemIndex& elemIndex) const
    {
        return vecRegs[reg].as<TheISA::VecElem>()[elemIndex];
    }

    void setVecElemFlat(const RegIndex& reg, const ElemIndex& elemIndex,
                        const VecElem val)
    {
        vecRegs[reg].as<TheISA::VecElem>()[elemIndex] = val;
    }

#ifdef ISA_HAS_CC_REGS
    CCReg readCCRegFlat(int idx) { return ccRegs[idx]; }
    void setCCRegFlat(int idx, CCReg val) { ccRegs[idx] = val; }
#else
    CCReg readCCRegFlat(int idx)
    { panic("readCCRegFlat w/no CC regs!\n"); }

    void setCCRegFlat(int idx, CCReg val)
    { panic("setCCRegFlat w/no CC regs!\n"); }
#endif
};


#endif // __CPU_CPU_EXEC_CONTEXT_HH__