1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#ifndef __CPU_STATIC_INST_HH__
#define __CPU_STATIC_INST_HH__
#include <bitset>
#include <string>
#include "arch/isa_traits.hh"
#include "arch/utility.hh"
#include "sim/faults.hh"
#include "base/bitfield.hh"
#include "base/hashmap.hh"
#include "base/misc.hh"
#include "base/refcnt.hh"
#include "cpu/op_class.hh"
#include "cpu/o3/dyn_inst.hh"
#include "sim/faults.hh"
#include "sim/host.hh"
// forward declarations
struct AlphaSimpleImpl;
struct OzoneImpl;
struct SimpleImpl;
class ThreadContext;
class DynInst;
class Packet;
template <class Impl>
class OzoneDynInst;
class CheckerCPU;
class FastCPU;
class AtomicSimpleCPU;
class TimingSimpleCPU;
class InorderCPU;
class SymbolTable;
class AddrDecodePage;
namespace Trace {
class InstRecord;
}
typedef uint32_t MicroPC;
/**
* Base, ISA-independent static instruction class.
*
* The main component of this class is the vector of flags and the
* associated methods for reading them. Any object that can rely
* solely on these flags can process instructions without being
* recompiled for multiple ISAs.
*/
class StaticInstBase : public RefCounted
{
protected:
/// Set of boolean static instruction properties.
///
/// Notes:
/// - The IsInteger and IsFloating flags are based on the class of
/// registers accessed by the instruction. Although most
/// instructions will have exactly one of these two flags set, it
/// is possible for an instruction to have neither (e.g., direct
/// unconditional branches, memory barriers) or both (e.g., an
/// FP/int conversion).
/// - If IsMemRef is set, then exactly one of IsLoad or IsStore
/// will be set.
/// - If IsControl is set, then exactly one of IsDirectControl or
/// IsIndirect Control will be set, and exactly one of
/// IsCondControl or IsUncondControl will be set.
/// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
/// implemented as flags since in the current model there's no
/// other way for instructions to inject behavior into the
/// pipeline outside of fetch. Once we go to an exec-in-exec CPU
/// model we should be able to get rid of these flags and
/// implement this behavior via the execute() methods.
///
enum Flags {
IsNop, ///< Is a no-op (no effect at all).
IsInteger, ///< References integer regs.
IsFloating, ///< References FP regs.
IsMemRef, ///< References memory (load, store, or prefetch).
IsLoad, ///< Reads from memory (load or prefetch).
IsStore, ///< Writes to memory.
IsStoreConditional, ///< Store conditional instruction.
IsInstPrefetch, ///< Instruction-cache prefetch.
IsDataPrefetch, ///< Data-cache prefetch.
IsCopy, ///< Fast Cache block copy
IsControl, ///< Control transfer instruction.
IsDirectControl, ///< PC relative control transfer.
IsIndirectControl, ///< Register indirect control transfer.
IsCondControl, ///< Conditional control transfer.
IsUncondControl, ///< Unconditional control transfer.
IsCall, ///< Subroutine call.
IsReturn, ///< Subroutine return.
IsCondDelaySlot,///< Conditional Delay-Slot Instruction
IsThreadSync, ///< Thread synchronization operation.
IsSerializing, ///< Serializes pipeline: won't execute until all
/// older instructions have committed.
IsSerializeBefore,
IsSerializeAfter,
IsMemBarrier, ///< Is a memory barrier
IsWriteBarrier, ///< Is a write barrier
IsNonSpeculative, ///< Should not be executed speculatively
IsQuiesce, ///< Is a quiesce instruction
IsIprAccess, ///< Accesses IPRs
IsUnverifiable, ///< Can't be verified by a checker
//Flags for microcode
IsMacroop, ///< Is a macroop containing microops
IsMicroop, ///< Is a microop
IsDelayedCommit, ///< This microop doesn't commit right away
IsLastMicroop, ///< This microop ends a microop sequence
IsFirstMicroop, ///< This microop begins a microop sequence
//This flag doesn't do anything yet
IsMicroBranch, ///< This microop branches within the microcode for a macroop
NumFlags
};
/// Flag values for this instruction.
std::bitset<NumFlags> flags;
/// See opClass().
OpClass _opClass;
/// See numSrcRegs().
int8_t _numSrcRegs;
/// See numDestRegs().
int8_t _numDestRegs;
/// The following are used to track physical register usage
/// for machines with separate int & FP reg files.
//@{
int8_t _numFPDestRegs;
int8_t _numIntDestRegs;
//@}
/// Constructor.
/// It's important to initialize everything here to a sane
/// default, since the decoder generally only overrides
/// the fields that are meaningful for the particular
/// instruction.
StaticInstBase(OpClass __opClass)
: _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
_numFPDestRegs(0), _numIntDestRegs(0)
{
}
public:
/// @name Register information.
/// The sum of numFPDestRegs() and numIntDestRegs() equals
/// numDestRegs(). The former two functions are used to track
/// physical register usage for machines with separate int & FP
/// reg files.
//@{
/// Number of source registers.
int8_t numSrcRegs() const { return _numSrcRegs; }
/// Number of destination registers.
int8_t numDestRegs() const { return _numDestRegs; }
/// Number of floating-point destination regs.
int8_t numFPDestRegs() const { return _numFPDestRegs; }
/// Number of integer destination regs.
int8_t numIntDestRegs() const { return _numIntDestRegs; }
//@}
/// @name Flag accessors.
/// These functions are used to access the values of the various
/// instruction property flags. See StaticInstBase::Flags for descriptions
/// of the individual flags.
//@{
bool isNop() const { return flags[IsNop]; }
bool isMemRef() const { return flags[IsMemRef]; }
bool isLoad() const { return flags[IsLoad]; }
bool isStore() const { return flags[IsStore]; }
bool isStoreConditional() const { return flags[IsStoreConditional]; }
bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
bool isCopy() const { return flags[IsCopy];}
bool isInteger() const { return flags[IsInteger]; }
bool isFloating() const { return flags[IsFloating]; }
bool isControl() const { return flags[IsControl]; }
bool isCall() const { return flags[IsCall]; }
bool isReturn() const { return flags[IsReturn]; }
bool isDirectCtrl() const { return flags[IsDirectControl]; }
bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
bool isCondCtrl() const { return flags[IsCondControl]; }
bool isUncondCtrl() const { return flags[IsUncondControl]; }
bool isCondDelaySlot() const { return flags[IsCondDelaySlot]; }
bool isThreadSync() const { return flags[IsThreadSync]; }
bool isSerializing() const { return flags[IsSerializing] ||
flags[IsSerializeBefore] ||
flags[IsSerializeAfter]; }
bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
bool isMemBarrier() const { return flags[IsMemBarrier]; }
bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
bool isQuiesce() const { return flags[IsQuiesce]; }
bool isIprAccess() const { return flags[IsIprAccess]; }
bool isUnverifiable() const { return flags[IsUnverifiable]; }
bool isMacroop() const { return flags[IsMacroop]; }
bool isMicroop() const { return flags[IsMicroop]; }
bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
bool isLastMicroop() const { return flags[IsLastMicroop]; }
bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
//This flag doesn't do anything yet
bool isMicroBranch() const { return flags[IsMicroBranch]; }
//@}
/// Operation class. Used to select appropriate function unit in issue.
OpClass opClass() const { return _opClass; }
};
// forward declaration
class StaticInstPtr;
/**
* Generic yet ISA-dependent static instruction class.
*
* This class builds on StaticInstBase, defining fields and interfaces
* that are generic across all ISAs but that differ in details
* according to the specific ISA being used.
*/
class StaticInst : public StaticInstBase
{
public:
/// Binary machine instruction type.
typedef TheISA::MachInst MachInst;
/// Binary extended machine instruction type.
typedef TheISA::ExtMachInst ExtMachInst;
/// Logical register index type.
typedef TheISA::RegIndex RegIndex;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
};
/// Return logical index (architectural reg num) of i'th destination reg.
/// Only the entries from 0 through numDestRegs()-1 are valid.
RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
/// Return logical index (architectural reg num) of i'th source reg.
/// Only the entries from 0 through numSrcRegs()-1 are valid.
RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
/// Pointer to a statically allocated "null" instruction object.
/// Used to give eaCompInst() and memAccInst() something to return
/// when called on non-memory instructions.
static StaticInstPtr nullStaticInstPtr;
/**
* Memory references only: returns "fake" instruction representing
* the effective address part of the memory operation. Used to
* obtain the dependence info (numSrcRegs and srcRegIdx[]) for
* just the EA computation.
*/
virtual const
StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
/**
* Memory references only: returns "fake" instruction representing
* the memory access part of the memory operation. Used to
* obtain the dependence info (numSrcRegs and srcRegIdx[]) for
* just the memory access (not the EA computation).
*/
virtual const
StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
/// The binary machine instruction.
const ExtMachInst machInst;
protected:
/// See destRegIdx().
RegIndex _destRegIdx[MaxInstDestRegs];
/// See srcRegIdx().
RegIndex _srcRegIdx[MaxInstSrcRegs];
/**
* Base mnemonic (e.g., "add"). Used by generateDisassembly()
* methods. Also useful to readily identify instructions from
* within the debugger when #cachedDisassembly has not been
* initialized.
*/
const char *mnemonic;
/**
* String representation of disassembly (lazily evaluated via
* disassemble()).
*/
mutable std::string *cachedDisassembly;
/**
* Internal function to generate disassembly string.
*/
virtual std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
/// Constructor.
StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
: StaticInstBase(__opClass),
machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
{
memset(&recentDecodes, 0, 2 * sizeof(cacheElement));
}
public:
virtual ~StaticInst()
{
if (cachedDisassembly)
delete cachedDisassembly;
}
/**
* The execute() signatures are auto-generated by scons based on the
* set of CPU models we are compiling in today.
*/
#include "cpu/static_inst_exec_sigs.hh"
/**
* Return the microop that goes with a particular micropc. This should
* only be defined/used in macroops which will contain microops
*/
virtual StaticInstPtr fetchMicroop(MicroPC micropc);
/**
* Return the target address for a PC-relative branch.
* Invalid if not a PC-relative branch (i.e. isDirectCtrl()
* should be true).
*/
virtual Addr branchTarget(Addr branchPC) const
{
panic("StaticInst::branchTarget() called on instruction "
"that is not a PC-relative branch.");
M5_DUMMY_RETURN
}
/**
* Return the target address for an indirect branch (jump). The
* register value is read from the supplied thread context, so
* the result is valid only if the thread context is about to
* execute the branch in question. Invalid if not an indirect
* branch (i.e. isIndirectCtrl() should be true).
*/
virtual Addr branchTarget(ThreadContext *tc) const
{
panic("StaticInst::branchTarget() called on instruction "
"that is not an indirect branch.");
}
M5_DUMMY_RETURN
/**
* Return true if the instruction is a control transfer, and if so,
* return the target address as well.
*/
bool hasBranchTarget(Addr pc, ThreadContext *tc, Addr &tgt) const;
/**
* Return string representation of disassembled instruction.
* The default version of this function will call the internal
* virtual generateDisassembly() function to get the string,
* then cache it in #cachedDisassembly. If the disassembly
* should not be cached, this function should be overridden directly.
*/
virtual const std::string &disassemble(Addr pc,
const SymbolTable *symtab = 0) const
{
if (!cachedDisassembly)
cachedDisassembly =
new std::string(generateDisassembly(pc, symtab));
return *cachedDisassembly;
}
/// Decoded instruction cache type.
/// For now we're using a generic hash_map; this seems to work
/// pretty well.
typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
/// A cache of decoded instruction objects.
static DecodeCache decodeCache;
/**
* Dump some basic stats on the decode cache hash map.
* Only gets called if DECODE_CACHE_HASH_STATS is defined.
*/
static void dumpDecodeCacheStats();
/// Decode a machine instruction.
/// @param mach_inst The binary instruction to decode.
/// @retval A pointer to the corresponding StaticInst object.
//This is defined as inlined below.
static StaticInstPtr decode(ExtMachInst mach_inst, Addr addr);
/// Return name of machine instruction
std::string getName() { return mnemonic; }
/// Decoded instruction cache type, for address decoding.
/// A generic hash_map is used.
typedef m5::hash_map<Addr, AddrDecodePage *> AddrDecodeCache;
/// A cache of decoded instruction objects from addresses.
static AddrDecodeCache addrDecodeCache;
struct cacheElement {
Addr page_addr;
AddrDecodePage *decodePage;
} ;
/// An array of recently decoded instructions.
// might not use an array if there is only two elements
static struct cacheElement recentDecodes[2];
/// Updates the recently decoded instructions entries
/// @param page_addr The page address recently used.
/// @param decodePage Pointer to decoding page containing the decoded
/// instruction.
static inline void
updateCache(Addr page_addr, AddrDecodePage *decodePage)
{
recentDecodes[1].page_addr = recentDecodes[0].page_addr;
recentDecodes[1].decodePage = recentDecodes[0].decodePage;
recentDecodes[0].page_addr = page_addr;
recentDecodes[0].decodePage = decodePage;
}
/// Searches the decoded instruction cache for instruction decoding.
/// If it is not found, then we decode the instruction.
/// Otherwise, we get the instruction from the cache and move it into
/// the address-to-instruction decoding page.
/// @param mach_inst The binary instruction to decode.
/// @param addr The address that contained the binary instruction.
/// @param decodePage Pointer to decoding page containing the instruction.
/// @retval A pointer to the corresponding StaticInst object.
//This is defined as inlined below.
static StaticInstPtr searchCache(ExtMachInst mach_inst, Addr addr,
AddrDecodePage * decodePage);
};
typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
/// Reference-counted pointer to a StaticInst object.
/// This type should be used instead of "StaticInst *" so that
/// StaticInst objects can be properly reference-counted.
class StaticInstPtr : public RefCountingPtr<StaticInst>
{
public:
/// Constructor.
StaticInstPtr()
: RefCountingPtr<StaticInst>()
{
}
/// Conversion from "StaticInst *".
StaticInstPtr(StaticInst *p)
: RefCountingPtr<StaticInst>(p)
{
}
/// Copy constructor.
StaticInstPtr(const StaticInstPtr &r)
: RefCountingPtr<StaticInst>(r)
{
}
/// Construct directly from machine instruction.
/// Calls StaticInst::decode().
explicit StaticInstPtr(TheISA::ExtMachInst mach_inst, Addr addr)
: RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst, addr))
{
}
/// Convert to pointer to StaticInstBase class.
operator const StaticInstBasePtr()
{
return this->get();
}
};
/// A page of a list of decoded instructions from an address.
class AddrDecodePage
{
typedef TheISA::ExtMachInst ExtMachInst;
protected:
StaticInstPtr instructions[TheISA::PageBytes];
bool valid[TheISA::PageBytes];
Addr lowerMask;
public:
/// Constructor
AddrDecodePage() {
lowerMask = TheISA::PageBytes - 1;
memset(valid, 0, TheISA::PageBytes);
}
/// Checks if the instruction is already decoded and the machine
/// instruction in the cache matches the current machine instruction
/// related to the address
/// @param mach_inst The binary instruction to check
/// @param addr The address containing the instruction
inline bool decoded(ExtMachInst mach_inst, Addr addr)
{
return (valid[addr & lowerMask] &&
(instructions[addr & lowerMask]->machInst == mach_inst));
}
/// Returns the instruction object. decoded should be called first
/// to check if the instruction is valid.
/// @param addr The address of the instruction.
/// @retval A pointer to the corresponding StaticInst object.
inline StaticInstPtr getInst(Addr addr)
{ return instructions[addr & lowerMask]; }
/// Inserts a pointer to a StaticInst object into the list of decoded
/// instructions on the page.
/// @param addr The address of the instruction.
/// @param si A pointer to the corresponding StaticInst object.
inline void insert(Addr addr, StaticInstPtr &si)
{
instructions[addr & lowerMask] = si;
valid[addr & lowerMask] = true;
}
};
inline StaticInstPtr
StaticInst::decode(StaticInst::ExtMachInst mach_inst, Addr addr)
{
#ifdef DECODE_CACHE_HASH_STATS
// Simple stats on decode hash_map. Turns out the default
// hash function is as good as anything I could come up with.
const int dump_every_n = 10000000;
static int decodes_til_dump = dump_every_n;
if (--decodes_til_dump == 0) {
dumpDecodeCacheStats();
decodes_til_dump = dump_every_n;
}
#endif
Addr page_addr = addr & ~(TheISA::PageBytes - 1);
// checks recently decoded addresses
if (recentDecodes[0].decodePage &&
page_addr == recentDecodes[0].page_addr) {
if (recentDecodes[0].decodePage->decoded(mach_inst, addr))
return recentDecodes[0].decodePage->getInst(addr);
return searchCache(mach_inst, addr, recentDecodes[0].decodePage);
}
if (recentDecodes[1].decodePage &&
page_addr == recentDecodes[1].page_addr) {
if (recentDecodes[1].decodePage->decoded(mach_inst, addr))
return recentDecodes[1].decodePage->getInst(addr);
return searchCache(mach_inst, addr, recentDecodes[1].decodePage);
}
// searches the page containing the address to decode
AddrDecodeCache::iterator iter = addrDecodeCache.find(page_addr);
if (iter != addrDecodeCache.end()) {
updateCache(page_addr, iter->second);
if (iter->second->decoded(mach_inst, addr))
return iter->second->getInst(addr);
return searchCache(mach_inst, addr, iter->second);
}
// creates a new object for a page of decoded instructions
AddrDecodePage * decodePage = new AddrDecodePage;
addrDecodeCache[page_addr] = decodePage;
updateCache(page_addr, decodePage);
return searchCache(mach_inst, addr, decodePage);
}
inline StaticInstPtr
StaticInst::searchCache(ExtMachInst mach_inst, Addr addr,
AddrDecodePage * decodePage)
{
DecodeCache::iterator iter = decodeCache.find(mach_inst);
if (iter != decodeCache.end()) {
decodePage->insert(addr, iter->second);
return iter->second;
}
StaticInstPtr si = TheISA::decodeInst(mach_inst);
decodePage->insert(addr, si);
decodeCache[mach_inst] = si;
return si;
}
#endif // __CPU_STATIC_INST_HH__
|