summaryrefslogtreecommitdiff
path: root/src/cpu/thread_context.hh
blob: 1e30649560a1b08b12f3070301432f8fb3874bfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/*
 * Copyright (c) 2011-2012, 2016 ARM Limited
 * Copyright (c) 2013 Advanced Micro Devices, Inc.
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Kevin Lim
 */

#ifndef __CPU_THREAD_CONTEXT_HH__
#define __CPU_THREAD_CONTEXT_HH__

#include <iostream>
#include <string>

#include "arch/registers.hh"
#include "arch/types.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "cpu/reg_class.hh"

// @todo: Figure out a more architecture independent way to obtain the ITB and
// DTB pointers.
namespace TheISA
{
    class Decoder;
}
class BaseCPU;
class BaseTLB;
class CheckerCPU;
class Checkpoint;
class EndQuiesceEvent;
class SETranslatingPortProxy;
class FSTranslatingPortProxy;
class PortProxy;
class Process;
class System;
namespace TheISA {
    namespace Kernel {
        class Statistics;
    }
}

/**
 * ThreadContext is the external interface to all thread state for
 * anything outside of the CPU. It provides all accessor methods to
 * state that might be needed by external objects, ranging from
 * register values to things such as kernel stats. It is an abstract
 * base class; the CPU can create its own ThreadContext by either
 * deriving from it, or using the templated ProxyThreadContext.
 *
 * The ThreadContext is slightly different than the ExecContext.  The
 * ThreadContext provides access to an individual thread's state; an
 * ExecContext provides ISA access to the CPU (meaning it is
 * implicitly multithreaded on SMT systems).  Additionally the
 * ThreadState is an abstract class that exactly defines the
 * interface; the ExecContext is a more implicit interface that must
 * be implemented so that the ISA can access whatever state it needs.
 */
class ThreadContext
{
  protected:
    typedef TheISA::MachInst MachInst;
    typedef TheISA::IntReg IntReg;
    typedef TheISA::FloatReg FloatReg;
    typedef TheISA::FloatRegBits FloatRegBits;
    typedef TheISA::CCReg CCReg;
    typedef TheISA::MiscReg MiscReg;
    using VecRegContainer = TheISA::VecRegContainer;
    using VecElem = TheISA::VecElem;
  public:

    enum Status
    {
        /// Running.  Instructions should be executed only when
        /// the context is in this state.
        Active,

        /// Temporarily inactive.  Entered while waiting for
        /// synchronization, etc.
        Suspended,

        /// Permanently shut down.  Entered when target executes
        /// m5exit pseudo-instruction.  When all contexts enter
        /// this state, the simulation will terminate.
        Halted
    };

    virtual ~ThreadContext() { };

    virtual BaseCPU *getCpuPtr() = 0;

    virtual int cpuId() const = 0;

    virtual uint32_t socketId() const = 0;

    virtual int threadId() const = 0;

    virtual void setThreadId(int id) = 0;

    virtual int contextId() const = 0;

    virtual void setContextId(int id) = 0;

    virtual BaseTLB *getITBPtr() = 0;

    virtual BaseTLB *getDTBPtr() = 0;

    virtual CheckerCPU *getCheckerCpuPtr() = 0;

    virtual TheISA::Decoder *getDecoderPtr() = 0;

    virtual System *getSystemPtr() = 0;

    virtual TheISA::Kernel::Statistics *getKernelStats() = 0;

    virtual PortProxy &getPhysProxy() = 0;

    virtual FSTranslatingPortProxy &getVirtProxy() = 0;

    /**
     * Initialise the physical and virtual port proxies and tie them to
     * the data port of the CPU.
     *
     * tc ThreadContext for the virtual-to-physical translation
     */
    virtual void initMemProxies(ThreadContext *tc) = 0;

    virtual SETranslatingPortProxy &getMemProxy() = 0;

    virtual Process *getProcessPtr() = 0;

    virtual void setProcessPtr(Process *p) = 0;

    virtual Status status() const = 0;

    virtual void setStatus(Status new_status) = 0;

    /// Set the status to Active.
    virtual void activate() = 0;

    /// Set the status to Suspended.
    virtual void suspend() = 0;

    /// Set the status to Halted.
    virtual void halt() = 0;

    /// Quiesce thread context
    void quiesce();

    /// Quiesce, suspend, and schedule activate at resume
    void quiesceTick(Tick resume);

    virtual void dumpFuncProfile() = 0;

    virtual void takeOverFrom(ThreadContext *old_context) = 0;

    virtual void regStats(const std::string &name) = 0;

    virtual EndQuiesceEvent *getQuiesceEvent() = 0;

    // Not necessarily the best location for these...
    // Having an extra function just to read these is obnoxious
    virtual Tick readLastActivate() = 0;
    virtual Tick readLastSuspend() = 0;

    virtual void profileClear() = 0;
    virtual void profileSample() = 0;

    virtual void copyArchRegs(ThreadContext *tc) = 0;

    virtual void clearArchRegs() = 0;

    //
    // New accessors for new decoder.
    //
    virtual uint64_t readIntReg(int reg_idx) = 0;

    virtual FloatReg readFloatReg(int reg_idx) = 0;

    virtual FloatRegBits readFloatRegBits(int reg_idx) = 0;

    virtual const VecRegContainer& readVecReg(const RegId& reg) const = 0;
    virtual VecRegContainer& getWritableVecReg(const RegId& reg) = 0;

    /** Vector Register Lane Interfaces. */
    /** @{ */
    /** Reads source vector 8bit operand. */
    virtual ConstVecLane8
    readVec8BitLaneReg(const RegId& reg) const = 0;

    /** Reads source vector 16bit operand. */
    virtual ConstVecLane16
    readVec16BitLaneReg(const RegId& reg) const = 0;

    /** Reads source vector 32bit operand. */
    virtual ConstVecLane32
    readVec32BitLaneReg(const RegId& reg) const = 0;

    /** Reads source vector 64bit operand. */
    virtual ConstVecLane64
    readVec64BitLaneReg(const RegId& reg) const = 0;

    /** Write a lane of the destination vector register. */
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::Byte>& val) = 0;
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::TwoByte>& val) = 0;
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::FourByte>& val) = 0;
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::EightByte>& val) = 0;
    /** @} */

    virtual const VecElem& readVecElem(const RegId& reg) const = 0;

    virtual CCReg readCCReg(int reg_idx) = 0;

    virtual void setIntReg(int reg_idx, uint64_t val) = 0;

    virtual void setFloatReg(int reg_idx, FloatReg val) = 0;

    virtual void setFloatRegBits(int reg_idx, FloatRegBits val) = 0;

    virtual void setVecReg(const RegId& reg, const VecRegContainer& val) = 0;

    virtual void setVecElem(const RegId& reg, const VecElem& val) = 0;

    virtual void setCCReg(int reg_idx, CCReg val) = 0;

    virtual TheISA::PCState pcState() = 0;

    virtual void pcState(const TheISA::PCState &val) = 0;

    void
    setNPC(Addr val)
    {
        TheISA::PCState pc_state = pcState();
        pc_state.setNPC(val);
        pcState(pc_state);
    }

    virtual void pcStateNoRecord(const TheISA::PCState &val) = 0;

    virtual Addr instAddr() = 0;

    virtual Addr nextInstAddr() = 0;

    virtual MicroPC microPC() = 0;

    virtual MiscReg readMiscRegNoEffect(int misc_reg) const = 0;

    virtual MiscReg readMiscReg(int misc_reg) = 0;

    virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val) = 0;

    virtual void setMiscReg(int misc_reg, const MiscReg &val) = 0;

    virtual RegId flattenRegId(const RegId& regId) const = 0;

    virtual uint64_t
    readRegOtherThread(const RegId& misc_reg, ThreadID tid)
    {
        return 0;
    }

    virtual void
    setRegOtherThread(const RegId& misc_reg, const MiscReg &val, ThreadID tid)
    {
    }

    // Also not necessarily the best location for these two.  Hopefully will go
    // away once we decide upon where st cond failures goes.
    virtual unsigned readStCondFailures() = 0;

    virtual void setStCondFailures(unsigned sc_failures) = 0;

    // Same with st cond failures.
    virtual Counter readFuncExeInst() = 0;

    virtual void syscall(int64_t callnum, Fault *fault) = 0;

    // This function exits the thread context in the CPU and returns
    // 1 if the CPU has no more active threads (meaning it's OK to exit);
    // Used in syscall-emulation mode when a  thread calls the exit syscall.
    virtual int exit() { return 1; };

    /** function to compare two thread contexts (for debugging) */
    static void compare(ThreadContext *one, ThreadContext *two);

    /** @{ */
    /**
     * Flat register interfaces
     *
     * Some architectures have different registers visible in
     * different modes. Such architectures "flatten" a register (see
     * flattenRegId()) to map it into the
     * gem5 register file. This interface provides a flat interface to
     * the underlying register file, which allows for example
     * serialization code to access all registers.
     */

    virtual uint64_t readIntRegFlat(int idx) = 0;
    virtual void setIntRegFlat(int idx, uint64_t val) = 0;

    virtual FloatReg readFloatRegFlat(int idx) = 0;
    virtual void setFloatRegFlat(int idx, FloatReg val) = 0;

    virtual FloatRegBits readFloatRegBitsFlat(int idx) = 0;
    virtual void setFloatRegBitsFlat(int idx, FloatRegBits val) = 0;

    virtual const VecRegContainer& readVecRegFlat(int idx) const = 0;
    virtual VecRegContainer& getWritableVecRegFlat(int idx) = 0;
    virtual void setVecRegFlat(int idx, const VecRegContainer& val) = 0;

    virtual const VecElem& readVecElemFlat(const RegIndex& idx,
                                           const ElemIndex& elemIdx) const = 0;
    virtual void setVecElemFlat(const RegIndex& idx, const ElemIndex& elemIdx,
                                const VecElem& val) = 0;

    virtual CCReg readCCRegFlat(int idx) = 0;
    virtual void setCCRegFlat(int idx, CCReg val) = 0;
    /** @} */

};

/**
 * ProxyThreadContext class that provides a way to implement a
 * ThreadContext without having to derive from it. ThreadContext is an
 * abstract class, so anything that derives from it and uses its
 * interface will pay the overhead of virtual function calls.  This
 * class is created to enable a user-defined Thread object to be used
 * wherever ThreadContexts are used, without paying the overhead of
 * virtual function calls when it is used by itself.  See
 * simple_thread.hh for an example of this.
 */
template <class TC>
class ProxyThreadContext : public ThreadContext
{
  public:
    ProxyThreadContext(TC *actual_tc)
    { actualTC = actual_tc; }

  private:
    TC *actualTC;

  public:

    BaseCPU *getCpuPtr() { return actualTC->getCpuPtr(); }

    int cpuId() const { return actualTC->cpuId(); }

    uint32_t socketId() const { return actualTC->socketId(); }

    int threadId() const { return actualTC->threadId(); }

    void setThreadId(int id) { actualTC->setThreadId(id); }

    int contextId() const { return actualTC->contextId(); }

    void setContextId(int id) { actualTC->setContextId(id); }

    BaseTLB *getITBPtr() { return actualTC->getITBPtr(); }

    BaseTLB *getDTBPtr() { return actualTC->getDTBPtr(); }

    CheckerCPU *getCheckerCpuPtr() { return actualTC->getCheckerCpuPtr(); }

    TheISA::Decoder *getDecoderPtr() { return actualTC->getDecoderPtr(); }

    System *getSystemPtr() { return actualTC->getSystemPtr(); }

    TheISA::Kernel::Statistics *getKernelStats()
    { return actualTC->getKernelStats(); }

    PortProxy &getPhysProxy() { return actualTC->getPhysProxy(); }

    FSTranslatingPortProxy &getVirtProxy() { return actualTC->getVirtProxy(); }

    void initMemProxies(ThreadContext *tc) { actualTC->initMemProxies(tc); }

    SETranslatingPortProxy &getMemProxy() { return actualTC->getMemProxy(); }

    Process *getProcessPtr() { return actualTC->getProcessPtr(); }

    void setProcessPtr(Process *p) { actualTC->setProcessPtr(p); }

    Status status() const { return actualTC->status(); }

    void setStatus(Status new_status) { actualTC->setStatus(new_status); }

    /// Set the status to Active.
    void activate() { actualTC->activate(); }

    /// Set the status to Suspended.
    void suspend() { actualTC->suspend(); }

    /// Set the status to Halted.
    void halt() { actualTC->halt(); }

    /// Quiesce thread context
    void quiesce() { actualTC->quiesce(); }

    /// Quiesce, suspend, and schedule activate at resume
    void quiesceTick(Tick resume) { actualTC->quiesceTick(resume); }

    void dumpFuncProfile() { actualTC->dumpFuncProfile(); }

    void takeOverFrom(ThreadContext *oldContext)
    { actualTC->takeOverFrom(oldContext); }

    void regStats(const std::string &name) { actualTC->regStats(name); }

    EndQuiesceEvent *getQuiesceEvent() { return actualTC->getQuiesceEvent(); }

    Tick readLastActivate() { return actualTC->readLastActivate(); }
    Tick readLastSuspend() { return actualTC->readLastSuspend(); }

    void profileClear() { return actualTC->profileClear(); }
    void profileSample() { return actualTC->profileSample(); }

    // @todo: Do I need this?
    void copyArchRegs(ThreadContext *tc) { actualTC->copyArchRegs(tc); }

    void clearArchRegs() { actualTC->clearArchRegs(); }

    //
    // New accessors for new decoder.
    //
    uint64_t readIntReg(int reg_idx)
    { return actualTC->readIntReg(reg_idx); }

    FloatReg readFloatReg(int reg_idx)
    { return actualTC->readFloatReg(reg_idx); }

    FloatRegBits readFloatRegBits(int reg_idx)
    { return actualTC->readFloatRegBits(reg_idx); }

    const VecRegContainer& readVecReg(const RegId& reg) const
    { return actualTC->readVecReg(reg); }

    VecRegContainer& getWritableVecReg(const RegId& reg)
    { return actualTC->getWritableVecReg(reg); }

    /** Vector Register Lane Interfaces. */
    /** @{ */
    /** Reads source vector 8bit operand. */
    ConstVecLane8
    readVec8BitLaneReg(const RegId& reg) const
    { return actualTC->readVec8BitLaneReg(reg); }

    /** Reads source vector 16bit operand. */
    ConstVecLane16
    readVec16BitLaneReg(const RegId& reg) const
    { return actualTC->readVec16BitLaneReg(reg); }

    /** Reads source vector 32bit operand. */
    ConstVecLane32
    readVec32BitLaneReg(const RegId& reg) const
    { return actualTC->readVec32BitLaneReg(reg); }

    /** Reads source vector 64bit operand. */
    ConstVecLane64
    readVec64BitLaneReg(const RegId& reg) const
    { return actualTC->readVec64BitLaneReg(reg); }

    /** Write a lane of the destination vector register. */
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::Byte>& val)
    { return actualTC->setVecLane(reg, val); }
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::TwoByte>& val)
    { return actualTC->setVecLane(reg, val); }
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::FourByte>& val)
    { return actualTC->setVecLane(reg, val); }
    virtual void setVecLane(const RegId& reg,
            const LaneData<LaneSize::EightByte>& val)
    { return actualTC->setVecLane(reg, val); }
    /** @} */

    const VecElem& readVecElem(const RegId& reg) const
    { return actualTC->readVecElem(reg); }

    CCReg readCCReg(int reg_idx)
    { return actualTC->readCCReg(reg_idx); }

    void setIntReg(int reg_idx, uint64_t val)
    { actualTC->setIntReg(reg_idx, val); }

    void setFloatReg(int reg_idx, FloatReg val)
    { actualTC->setFloatReg(reg_idx, val); }

    void setFloatRegBits(int reg_idx, FloatRegBits val)
    { actualTC->setFloatRegBits(reg_idx, val); }

    void setVecReg(const RegId& reg, const VecRegContainer& val)
    { actualTC->setVecReg(reg, val); }

    void setVecElem(const RegId& reg, const VecElem& val)
    { actualTC->setVecElem(reg, val); }

    void setCCReg(int reg_idx, CCReg val)
    { actualTC->setCCReg(reg_idx, val); }

    TheISA::PCState pcState() { return actualTC->pcState(); }

    void pcState(const TheISA::PCState &val) { actualTC->pcState(val); }

    void pcStateNoRecord(const TheISA::PCState &val) { actualTC->pcState(val); }

    Addr instAddr() { return actualTC->instAddr(); }
    Addr nextInstAddr() { return actualTC->nextInstAddr(); }
    MicroPC microPC() { return actualTC->microPC(); }

    bool readPredicate() { return actualTC->readPredicate(); }

    void setPredicate(bool val)
    { actualTC->setPredicate(val); }

    MiscReg readMiscRegNoEffect(int misc_reg) const
    { return actualTC->readMiscRegNoEffect(misc_reg); }

    MiscReg readMiscReg(int misc_reg)
    { return actualTC->readMiscReg(misc_reg); }

    void setMiscRegNoEffect(int misc_reg, const MiscReg &val)
    { return actualTC->setMiscRegNoEffect(misc_reg, val); }

    void setMiscReg(int misc_reg, const MiscReg &val)
    { return actualTC->setMiscReg(misc_reg, val); }

    RegId flattenRegId(const RegId& regId) const
    { return actualTC->flattenRegId(regId); }

    unsigned readStCondFailures()
    { return actualTC->readStCondFailures(); }

    void setStCondFailures(unsigned sc_failures)
    { actualTC->setStCondFailures(sc_failures); }

    void syscall(int64_t callnum, Fault *fault)
    { actualTC->syscall(callnum, fault); }

    Counter readFuncExeInst() { return actualTC->readFuncExeInst(); }

    uint64_t readIntRegFlat(int idx)
    { return actualTC->readIntRegFlat(idx); }

    void setIntRegFlat(int idx, uint64_t val)
    { actualTC->setIntRegFlat(idx, val); }

    FloatReg readFloatRegFlat(int idx)
    { return actualTC->readFloatRegFlat(idx); }

    void setFloatRegFlat(int idx, FloatReg val)
    { actualTC->setFloatRegFlat(idx, val); }

    FloatRegBits readFloatRegBitsFlat(int idx)
    { return actualTC->readFloatRegBitsFlat(idx); }

    void setFloatRegBitsFlat(int idx, FloatRegBits val)
    { actualTC->setFloatRegBitsFlat(idx, val); }

    const VecRegContainer& readVecRegFlat(int id) const
    { return actualTC->readVecRegFlat(id); }

    VecRegContainer& getWritableVecRegFlat(int id)
    { return actualTC->getWritableVecRegFlat(id); }

    void setVecRegFlat(int idx, const VecRegContainer& val)
    { actualTC->setVecRegFlat(idx, val); }

    const VecElem& readVecElemFlat(const RegIndex& id,
                                   const ElemIndex& elemIndex) const
    { return actualTC->readVecElemFlat(id, elemIndex); }

    void setVecElemFlat(const RegIndex& id, const ElemIndex& elemIndex,
                        const VecElem& val)
    { actualTC->setVecElemFlat(id, elemIndex, val); }

    CCReg readCCRegFlat(int idx)
    { return actualTC->readCCRegFlat(idx); }

    void setCCRegFlat(int idx, CCReg val)
    { actualTC->setCCRegFlat(idx, val); }
};

/** @{ */
/**
 * Thread context serialization helpers
 *
 * These helper functions provide a way to the data in a
 * ThreadContext. They are provided as separate helper function since
 * implementing them as members of the ThreadContext interface would
 * be confusing when the ThreadContext is exported via a proxy.
 */

void serialize(ThreadContext &tc, CheckpointOut &cp);
void unserialize(ThreadContext &tc, CheckpointIn &cp);

/** @} */


/**
 * Copy state between thread contexts in preparation for CPU handover.
 *
 * @note This method modifies the old thread contexts as well as the
 * new thread context. The old thread context will have its quiesce
 * event descheduled if it is scheduled and its status set to halted.
 *
 * @param new_tc Destination ThreadContext.
 * @param old_tc Source ThreadContext.
 */
void takeOverFrom(ThreadContext &new_tc, ThreadContext &old_tc);

#endif