summaryrefslogtreecommitdiff
path: root/src/dev/arm/generic_timer.cc
blob: 396926f409e434b5c90acbf448b42649b1746e1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/*
 * Copyright (c) 2013, 2015, 2017-2018 ARM Limited
 * All rights reserved.
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Giacomo Gabrielli
 *          Andreas Sandberg
 */

#include "dev/arm/generic_timer.hh"

#include "arch/arm/system.hh"
#include "debug/Timer.hh"
#include "dev/arm/base_gic.hh"
#include "mem/packet_access.hh"
#include "params/GenericTimer.hh"
#include "params/GenericTimerMem.hh"

SystemCounter::SystemCounter()
    : _freq(0), _period(0), _resetTick(0), _regCntkctl(0)
{
    setFreq(0x01800000);
}

void
SystemCounter::setFreq(uint32_t freq)
{
    if (_freq != 0) {
        // Altering the frequency after boot shouldn't be done in practice.
        warn_once("The frequency of the system counter has already been set");
    }
    _freq = freq;
    _period = (1.0 / freq) * SimClock::Frequency;
    _resetTick = curTick();
}

void
SystemCounter::serialize(CheckpointOut &cp) const
{
    SERIALIZE_SCALAR(_regCntkctl);
    SERIALIZE_SCALAR(_regCnthctl);
    SERIALIZE_SCALAR(_freq);
    SERIALIZE_SCALAR(_period);
    SERIALIZE_SCALAR(_resetTick);
}

void
SystemCounter::unserialize(CheckpointIn &cp)
{
    // We didn't handle CNTKCTL in this class before, assume it's zero
    // if it isn't present.
    if (!UNSERIALIZE_OPT_SCALAR(_regCntkctl))
        _regCntkctl = 0;
    if (!UNSERIALIZE_OPT_SCALAR(_regCnthctl))
        _regCnthctl = 0;
    UNSERIALIZE_SCALAR(_freq);
    UNSERIALIZE_SCALAR(_period);
    UNSERIALIZE_SCALAR(_resetTick);
}



ArchTimer::ArchTimer(const std::string &name,
                     SimObject &parent,
                     SystemCounter &sysctr,
                     ArmInterruptPin *interrupt)
    : _name(name), _parent(parent), _systemCounter(sysctr),
      _interrupt(interrupt),
      _control(0), _counterLimit(0), _offset(0),
      _counterLimitReachedEvent([this]{ counterLimitReached(); }, name)
{
}

void
ArchTimer::counterLimitReached()
{
    _control.istatus = 1;

    if (!_control.enable)
        return;

    DPRINTF(Timer, "Counter limit reached\n");
    if (!_control.imask) {
        if (scheduleEvents()) {
            DPRINTF(Timer, "Causing interrupt\n");
            _interrupt->raise();
        } else {
            DPRINTF(Timer, "Kvm mode; skipping simulated interrupt\n");
        }
    }
}

void
ArchTimer::updateCounter()
{
    if (_counterLimitReachedEvent.scheduled())
        _parent.deschedule(_counterLimitReachedEvent);
    if (value() >= _counterLimit) {
        counterLimitReached();
    } else {
        _control.istatus = 0;
        if (scheduleEvents()) {
            const auto period(_systemCounter.period());
            _parent.schedule(_counterLimitReachedEvent,
                 curTick() + (_counterLimit - value()) * period);
        }
    }
}

void
ArchTimer::setCompareValue(uint64_t val)
{
    _counterLimit = val;
    updateCounter();
}

void
ArchTimer::setTimerValue(uint32_t val)
{
    setCompareValue(value() + sext<32>(val));
}

void
ArchTimer::setControl(uint32_t val)
{
    ArchTimerCtrl new_ctl = val;
    if ((new_ctl.enable && !new_ctl.imask) &&
        !(_control.enable && !_control.imask)) {
        // Re-evalute the timer condition
        if (_counterLimit >= value()) {
            _control.istatus = 1;

            DPRINTF(Timer, "Causing interrupt in control\n");
            //_interrupt.send();
        }
    }
    _control.enable = new_ctl.enable;
    _control.imask = new_ctl.imask;
}

void
ArchTimer::setOffset(uint64_t val)
{
    _offset = val;
    updateCounter();
}

uint64_t
ArchTimer::value() const
{
    return _systemCounter.value() - _offset;
}

void
ArchTimer::serialize(CheckpointOut &cp) const
{
    paramOut(cp, "control_serial", _control);
    SERIALIZE_SCALAR(_counterLimit);
    SERIALIZE_SCALAR(_offset);
}

void
ArchTimer::unserialize(CheckpointIn &cp)
{
    paramIn(cp, "control_serial", _control);
    // We didn't serialize an offset before we added support for the
    // virtual timer. Consider it optional to maintain backwards
    // compatibility.
    if (!UNSERIALIZE_OPT_SCALAR(_offset))
        _offset = 0;

    // We no longer schedule an event here because we may enter KVM
    // emulation.  The event creation is delayed until drainResume().
}

DrainState
ArchTimer::drain()
{
    if (_counterLimitReachedEvent.scheduled())
        _parent.deschedule(_counterLimitReachedEvent);

    return DrainState::Drained;
}

void
ArchTimer::drainResume()
{
    updateCounter();
}

GenericTimer::GenericTimer(GenericTimerParams *p)
    : ClockedObject(p),
      system(*p->system)
{
    fatal_if(!p->system, "No system specified, can't instantiate timer.\n");
    system.setGenericTimer(this);
}

const GenericTimerParams *
GenericTimer::params() const
{
    return dynamic_cast<const GenericTimerParams *>(_params);
}

void
GenericTimer::serialize(CheckpointOut &cp) const
{
    paramOut(cp, "cpu_count", timers.size());

    systemCounter.serializeSection(cp, "sys_counter");

    for (int i = 0; i < timers.size(); ++i) {
        const CoreTimers &core(*timers[i]);

        // This should really be phys_timerN, but we are stuck with
        // arch_timer for backwards compatibility.
        core.physNS.serializeSection(cp, csprintf("arch_timer%d", i));
        core.physS.serializeSection(cp, csprintf("phys_s_timer%d", i));
        core.virt.serializeSection(cp, csprintf("virt_timer%d", i));
        core.hyp.serializeSection(cp, csprintf("hyp_timer%d", i));
    }
}

void
GenericTimer::unserialize(CheckpointIn &cp)
{
    systemCounter.unserializeSection(cp, "sys_counter");

    // Try to unserialize the CPU count. Old versions of the timer
    // model assumed a 8 CPUs, so we fall back to that if the field
    // isn't present.
    static const unsigned OLD_CPU_MAX = 8;
    unsigned cpu_count;
    if (!UNSERIALIZE_OPT_SCALAR(cpu_count)) {
        warn("Checkpoint does not contain CPU count, assuming %i CPUs\n",
             OLD_CPU_MAX);
        cpu_count = OLD_CPU_MAX;
    }

    for (int i = 0; i < cpu_count; ++i) {
        CoreTimers &core(getTimers(i));
        // This should really be phys_timerN, but we are stuck with
        // arch_timer for backwards compatibility.
        core.physNS.unserializeSection(cp, csprintf("arch_timer%d", i));
        core.physS.unserializeSection(cp, csprintf("phys_s_timer%d", i));
        core.virt.unserializeSection(cp, csprintf("virt_timer%d", i));
        core.hyp.unserializeSection(cp, csprintf("hyp_timer%d", i));
    }
}


GenericTimer::CoreTimers &
GenericTimer::getTimers(int cpu_id)
{
    if (cpu_id >= timers.size())
        createTimers(cpu_id + 1);

    return *timers[cpu_id];
}

void
GenericTimer::createTimers(unsigned cpus)
{
    assert(timers.size() < cpus);
    auto p = static_cast<const GenericTimerParams *>(_params);

    const unsigned old_cpu_count(timers.size());
    timers.resize(cpus);
    for (unsigned i = old_cpu_count; i < cpus; ++i) {

        ThreadContext *tc = system.getThreadContext(i);

        timers[i].reset(
            new CoreTimers(*this, system, i,
                           p->int_phys_s->get(tc),
                           p->int_phys_ns->get(tc),
                           p->int_virt->get(tc),
                           p->int_hyp->get(tc)));
    }
}


void
GenericTimer::setMiscReg(int reg, unsigned cpu, RegVal val)
{
    CoreTimers &core(getTimers(cpu));

    switch (reg) {
      case MISCREG_CNTFRQ:
      case MISCREG_CNTFRQ_EL0:
        systemCounter.setFreq(val);
        return;

      case MISCREG_CNTKCTL:
      case MISCREG_CNTKCTL_EL1:
        systemCounter.setKernelControl(val);
        return;

      case MISCREG_CNTHCTL:
      case MISCREG_CNTHCTL_EL2:
        systemCounter.setHypControl(val);
        return;

      // Physical timer (NS)
      case MISCREG_CNTP_CVAL_NS:
      case MISCREG_CNTP_CVAL_EL0:
        core.physNS.setCompareValue(val);
        return;

      case MISCREG_CNTP_TVAL_NS:
      case MISCREG_CNTP_TVAL_EL0:
        core.physNS.setTimerValue(val);
        return;

      case MISCREG_CNTP_CTL_NS:
      case MISCREG_CNTP_CTL_EL0:
        core.physNS.setControl(val);
        return;

      // Count registers
      case MISCREG_CNTPCT:
      case MISCREG_CNTPCT_EL0:
      case MISCREG_CNTVCT:
      case MISCREG_CNTVCT_EL0:
        warn("Ignoring write to read only count register: %s\n",
             miscRegName[reg]);
        return;

      // Virtual timer
      case MISCREG_CNTVOFF:
      case MISCREG_CNTVOFF_EL2:
        core.virt.setOffset(val);
        return;

      case MISCREG_CNTV_CVAL:
      case MISCREG_CNTV_CVAL_EL0:
        core.virt.setCompareValue(val);
        return;

      case MISCREG_CNTV_TVAL:
      case MISCREG_CNTV_TVAL_EL0:
        core.virt.setTimerValue(val);
        return;

      case MISCREG_CNTV_CTL:
      case MISCREG_CNTV_CTL_EL0:
        core.virt.setControl(val);
        return;

      // Physical timer (S)
      case MISCREG_CNTP_CTL_S:
      case MISCREG_CNTPS_CTL_EL1:
        core.physS.setControl(val);
        return;

      case MISCREG_CNTP_CVAL_S:
      case MISCREG_CNTPS_CVAL_EL1:
        core.physS.setCompareValue(val);
        return;

      case MISCREG_CNTP_TVAL_S:
      case MISCREG_CNTPS_TVAL_EL1:
        core.physS.setTimerValue(val);
        return;

      // Hyp phys. timer, non-secure
      case MISCREG_CNTHP_CTL:
      case MISCREG_CNTHP_CTL_EL2:
        core.hyp.setControl(val);
        return;

      case MISCREG_CNTHP_CVAL:
      case MISCREG_CNTHP_CVAL_EL2:
        core.hyp.setCompareValue(val);
        return;

      case MISCREG_CNTHP_TVAL:
      case MISCREG_CNTHP_TVAL_EL2:
        core.hyp.setTimerValue(val);
        return;

      default:
        warn("Writing to unknown register: %s\n", miscRegName[reg]);
        return;
    }
}


RegVal
GenericTimer::readMiscReg(int reg, unsigned cpu)
{
    CoreTimers &core(getTimers(cpu));

    switch (reg) {
      case MISCREG_CNTFRQ:
      case MISCREG_CNTFRQ_EL0:
        return systemCounter.freq();

      case MISCREG_CNTKCTL:
      case MISCREG_CNTKCTL_EL1:
        return systemCounter.getKernelControl();

      case MISCREG_CNTHCTL:
      case MISCREG_CNTHCTL_EL2:
        return systemCounter.getHypControl();

      // Physical timer
      case MISCREG_CNTP_CVAL_NS:
      case MISCREG_CNTP_CVAL_EL0:
        return core.physNS.compareValue();

      case MISCREG_CNTP_TVAL_NS:
      case MISCREG_CNTP_TVAL_EL0:
        return core.physNS.timerValue();

      case MISCREG_CNTP_CTL_EL0:
      case MISCREG_CNTP_CTL_NS:
        return core.physNS.control();

      case MISCREG_CNTPCT:
      case MISCREG_CNTPCT_EL0:
        return core.physNS.value();


      // Virtual timer
      case MISCREG_CNTVCT:
      case MISCREG_CNTVCT_EL0:
        return core.virt.value();

      case MISCREG_CNTVOFF:
      case MISCREG_CNTVOFF_EL2:
        return core.virt.offset();

      case MISCREG_CNTV_CVAL:
      case MISCREG_CNTV_CVAL_EL0:
        return core.virt.compareValue();

      case MISCREG_CNTV_TVAL:
      case MISCREG_CNTV_TVAL_EL0:
        return core.virt.timerValue();

      case MISCREG_CNTV_CTL:
      case MISCREG_CNTV_CTL_EL0:
        return core.virt.control();

      // PL1 phys. timer, secure
      case MISCREG_CNTP_CTL_S:
      case MISCREG_CNTPS_CTL_EL1:
        return core.physS.control();

      case MISCREG_CNTP_CVAL_S:
      case MISCREG_CNTPS_CVAL_EL1:
        return core.physS.compareValue();

      case MISCREG_CNTP_TVAL_S:
      case MISCREG_CNTPS_TVAL_EL1:
        return core.physS.timerValue();

      // HYP phys. timer (NS)
      case MISCREG_CNTHP_CTL:
      case MISCREG_CNTHP_CTL_EL2:
        return core.hyp.control();

      case MISCREG_CNTHP_CVAL:
      case MISCREG_CNTHP_CVAL_EL2:
        return core.hyp.compareValue();

      case MISCREG_CNTHP_TVAL:
      case MISCREG_CNTHP_TVAL_EL2:
        return core.hyp.timerValue();

      default:
        warn("Reading from unknown register: %s\n", miscRegName[reg]);
        return 0;
    }
}


void
GenericTimerISA::setMiscReg(int reg, RegVal val)
{
    DPRINTF(Timer, "Setting %s := 0x%x\n", miscRegName[reg], val);
    parent.setMiscReg(reg, cpu, val);
}

RegVal
GenericTimerISA::readMiscReg(int reg)
{
    RegVal value = parent.readMiscReg(reg, cpu);
    DPRINTF(Timer, "Reading %s as 0x%x\n", miscRegName[reg], value);
    return value;
}

GenericTimerMem::GenericTimerMem(GenericTimerMemParams *p)
    : PioDevice(p),
      ctrlRange(RangeSize(p->base, TheISA::PageBytes)),
      timerRange(RangeSize(p->base + TheISA::PageBytes, TheISA::PageBytes)),
      addrRanges{ctrlRange, timerRange},
      systemCounter(),
      physTimer(csprintf("%s.phys_timer0", name()),
                *this, systemCounter,
                p->int_phys->get()),
      virtTimer(csprintf("%s.virt_timer0", name()),
                *this, systemCounter,
                p->int_virt->get())
{
}

void
GenericTimerMem::serialize(CheckpointOut &cp) const
{
    paramOut(cp, "timer_count", 1);

    systemCounter.serializeSection(cp, "sys_counter");

    physTimer.serializeSection(cp, "phys_timer0");
    virtTimer.serializeSection(cp, "virt_timer0");
}

void
GenericTimerMem::unserialize(CheckpointIn &cp)
{
    systemCounter.unserializeSection(cp, "sys_counter");

    unsigned timer_count;
    UNSERIALIZE_SCALAR(timer_count);
    // The timer count variable is just here for future versions where
    // we support more than one set of timers.
    if (timer_count != 1)
        panic("Incompatible checkpoint: Only one set of timers supported");

    physTimer.unserializeSection(cp, "phys_timer0");
    virtTimer.unserializeSection(cp, "virt_timer0");
}

Tick
GenericTimerMem::read(PacketPtr pkt)
{
    const unsigned size(pkt->getSize());
    const Addr addr(pkt->getAddr());
    uint64_t value;

    pkt->makeResponse();
    if (ctrlRange.contains(addr)) {
        value = ctrlRead(addr - ctrlRange.start(), size);
    } else if (timerRange.contains(addr)) {
        value = timerRead(addr - timerRange.start(), size);
    } else {
        panic("Invalid address: 0x%x\n", addr);
    }

    DPRINTF(Timer, "Read 0x%x <- 0x%x(%i)\n", value, addr, size);

    if (size == 8) {
        pkt->setLE<uint64_t>(value);
    } else if (size == 4) {
        pkt->setLE<uint32_t>(value);
    } else {
        panic("Unexpected access size: %i\n", size);
    }

    return 0;
}

Tick
GenericTimerMem::write(PacketPtr pkt)
{
    const unsigned size(pkt->getSize());
    if (size != 8 && size != 4)
        panic("Unexpected access size\n");

    const Addr addr(pkt->getAddr());
    const uint64_t value(size == 8 ?
                         pkt->getLE<uint64_t>() : pkt->getLE<uint32_t>());

    DPRINTF(Timer, "Write 0x%x -> 0x%x(%i)\n", value, addr, size);
    if (ctrlRange.contains(addr)) {
        ctrlWrite(addr - ctrlRange.start(), size, value);
    } else if (timerRange.contains(addr)) {
        timerWrite(addr - timerRange.start(), size, value);
    } else {
        panic("Invalid address: 0x%x\n", addr);
    }

    pkt->makeResponse();
    return 0;
}

uint64_t
GenericTimerMem::ctrlRead(Addr addr, size_t size) const
{
    if (size == 4) {
        switch (addr) {
          case CTRL_CNTFRQ:
            return systemCounter.freq();

          case CTRL_CNTTIDR:
            return 0x3; // Frame 0 implemented with virtual timers

          case CTRL_CNTNSAR:
          case CTRL_CNTACR_BASE:
            warn("Reading from unimplemented control register (0x%x)\n", addr);
            return 0;

          case CTRL_CNTVOFF_LO_BASE:
            return virtTimer.offset();

          case CTRL_CNTVOFF_HI_BASE:
            return virtTimer.offset() >> 32;

          default:
            warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
            return 0;
        }
    } else if (size == 8) {
        switch (addr) {
          case CTRL_CNTVOFF_LO_BASE:
            return virtTimer.offset();

          default:
            warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
            return 0;
        }
    } else {
        panic("Invalid access size: %i\n", size);
    }
}

void
GenericTimerMem::ctrlWrite(Addr addr, size_t size, uint64_t value)
{
    if (size == 4) {
        switch (addr) {
          case CTRL_CNTFRQ:
          case CTRL_CNTNSAR:
          case CTRL_CNTTIDR:
          case CTRL_CNTACR_BASE:
            warn("Write to unimplemented control register (0x%x)\n", addr);
            return;

          case CTRL_CNTVOFF_LO_BASE:
            virtTimer.setOffset(
                insertBits(virtTimer.offset(), 31, 0, value));
            return;

          case CTRL_CNTVOFF_HI_BASE:
            virtTimer.setOffset(
                insertBits(virtTimer.offset(), 63, 32, value));
            return;

          default:
            warn("Ignoring write to unexpected address (0x%x:%i)\n",
                 addr, size);
            return;
        }
    } else if (size == 8) {
        switch (addr) {
          case CTRL_CNTVOFF_LO_BASE:
            virtTimer.setOffset(value);
            return;

          default:
            warn("Ignoring write to unexpected address (0x%x:%i)\n",
                 addr, size);
            return;
        }
    } else {
        panic("Invalid access size: %i\n", size);
    }
}

uint64_t
GenericTimerMem::timerRead(Addr addr, size_t size) const
{
    if (size == 4) {
        switch (addr) {
          case TIMER_CNTPCT_LO:
            return physTimer.value();

          case TIMER_CNTPCT_HI:
            return physTimer.value() >> 32;

          case TIMER_CNTVCT_LO:
            return virtTimer.value();

          case TIMER_CNTVCT_HI:
            return virtTimer.value() >> 32;

          case TIMER_CNTFRQ:
            return systemCounter.freq();

          case TIMER_CNTEL0ACR:
            warn("Read from unimplemented timer register (0x%x)\n", addr);
            return 0;

          case CTRL_CNTVOFF_LO_BASE:
            return virtTimer.offset();

          case CTRL_CNTVOFF_HI_BASE:
            return virtTimer.offset() >> 32;

          case TIMER_CNTP_CVAL_LO:
            return physTimer.compareValue();

          case TIMER_CNTP_CVAL_HI:
            return physTimer.compareValue() >> 32;

          case TIMER_CNTP_TVAL:
            return physTimer.timerValue();

          case TIMER_CNTP_CTL:
            return physTimer.control();

          case TIMER_CNTV_CVAL_LO:
            return virtTimer.compareValue();

          case TIMER_CNTV_CVAL_HI:
            return virtTimer.compareValue() >> 32;

          case TIMER_CNTV_TVAL:
            return virtTimer.timerValue();

          case TIMER_CNTV_CTL:
            return virtTimer.control();

          default:
            warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
            return 0;
        }
    } else if (size == 8) {
        switch (addr) {
          case TIMER_CNTPCT_LO:
            return physTimer.value();

          case TIMER_CNTVCT_LO:
            return virtTimer.value();

          case CTRL_CNTVOFF_LO_BASE:
            return virtTimer.offset();

          case TIMER_CNTP_CVAL_LO:
            return physTimer.compareValue();

          case TIMER_CNTV_CVAL_LO:
            return virtTimer.compareValue();

          default:
            warn("Unexpected address (0x%x:%i), assuming RAZ\n", addr, size);
            return 0;
        }
    } else {
        panic("Invalid access size: %i\n", size);
    }
}

void
GenericTimerMem::timerWrite(Addr addr, size_t size, uint64_t value)
{
    if (size == 4) {
        switch (addr) {
          case TIMER_CNTEL0ACR:
            warn("Unimplemented timer register (0x%x)\n", addr);
            return;

          case TIMER_CNTP_CVAL_LO:
            physTimer.setCompareValue(
                insertBits(physTimer.compareValue(), 31, 0, value));
            return;

          case TIMER_CNTP_CVAL_HI:
            physTimer.setCompareValue(
                insertBits(physTimer.compareValue(), 63, 32, value));
            return;

          case TIMER_CNTP_TVAL:
            physTimer.setTimerValue(value);
            return;

          case TIMER_CNTP_CTL:
            physTimer.setControl(value);
            return;

          case TIMER_CNTV_CVAL_LO:
            virtTimer.setCompareValue(
                insertBits(virtTimer.compareValue(), 31, 0, value));
            return;

          case TIMER_CNTV_CVAL_HI:
            virtTimer.setCompareValue(
                insertBits(virtTimer.compareValue(), 63, 32, value));
            return;

          case TIMER_CNTV_TVAL:
            virtTimer.setTimerValue(value);
            return;

          case TIMER_CNTV_CTL:
            virtTimer.setControl(value);
            return;

          default:
            warn("Unexpected address (0x%x:%i), ignoring write\n", addr, size);
            return;
        }
    } else if (size == 8) {
        switch (addr) {
          case TIMER_CNTP_CVAL_LO:
            return physTimer.setCompareValue(value);

          case TIMER_CNTV_CVAL_LO:
            return virtTimer.setCompareValue(value);

          default:
            warn("Unexpected address (0x%x:%i), ignoring write\n", addr, size);
            return;
        }
    } else {
        panic("Invalid access size: %i\n", size);
    }
}

GenericTimer *
GenericTimerParams::create()
{
    return new GenericTimer(this);
}

GenericTimerMem *
GenericTimerMemParams::create()
{
    return new GenericTimerMem(this);
}