1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
|
/*
* Copyright (c) 2013-2015 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Rene de Jong
*/
/** @file
* This is a simulation model for a UFS interface
* The UFS interface consists of a host controller and (at least) one device.
* The device can contain multiple logic units.
* To make this interface as usefull as possible for future development, the
* decision has been made to split the UFS functionality from the SCSI
* functionality. The class UFS SCSIDevice can therefor be used as a starting
* point for creating a more generic SCSI device. This has as a consequence
* that the UFSHostDevice class contains functionality from both the host
* controller and the device. The current UFS standard (1.1) allows only one
* device, and up to 8 logic units. the logic units only handle the SCSI part
* of the command, and the device mainly the UFS part. Yet the split between
* the SCSIresume function and the SCSICMDHandle might seem a bit awkward.
* The SCSICMDHandle function is in essence a SCSI reply generator, and it
* distils the essential information from the command. A disktransfer cannot
* be made from this position because the scatter gather list is not included
* in the SCSI command, but in the Transfer Request descriptor. The device
* needs to manage the data transfer. This file is build up as follows: first
* the UFSSCSIDevice functions will be presented; then the UFSHostDevice
* functions. The UFSHostDevice functions are split in three parts: UFS
* transaction flow, data write transfer and data read transfer. The
* functions are then ordered in the order in which a transfer takes place.
*/
/**
* Reference material can be found at the JEDEC website:
* UFS standard
* http://www.jedec.org/standards-documents/results/jesd220
* UFS HCI specification
* http://www.jedec.org/standards-documents/results/jesd223
*/
#include "dev/arm/ufs_device.hh"
/**
* Constructor and destructor functions of UFSHCM device
*/
UFSHostDevice::UFSSCSIDevice::UFSSCSIDevice(const UFSHostDeviceParams* p,
uint32_t lun_id, Callback *transfer_cb,
Callback *read_cb):
SimObject(p),
flashDisk(p->image[lun_id]),
flashDevice(p->internalflash[lun_id]),
blkSize(p->img_blk_size),
lunAvail(p->image.size()),
diskSize(flashDisk->size()),
capacityLower((diskSize - 1) & 0xffffffff),
capacityUpper((diskSize - SectorSize) >> 32),
lunID(lun_id),
transferCompleted(false),
readCompleted(false),
totalRead(0),
totalWrite(0),
amountOfWriteTransfers(0),
amountOfReadTransfers(0)
{
/**
* These callbacks are used to communicate the events that are
* triggered upstream; e.g. from the Memory Device to the UFS SCSI Device
* or from the UFS SCSI device to the UFS host.
*/
signalDone = transfer_cb;
memReadCallback = new MakeCallback<UFSSCSIDevice,
&UFSHostDevice::UFSSCSIDevice::readCallback>(this);
deviceReadCallback = read_cb;
memWriteCallback = new MakeCallback<UFSSCSIDevice,
&UFSHostDevice::UFSSCSIDevice::SSDWriteDone>(this);
/**
* make ascii out of lun_id (and add more characters)
* UFS allows up to 8 logic units, so the numbering should work out
*/
uint32_t temp_id = ((lun_id | 0x30) << 24) | 0x3A4449;
lunInfo.dWord0 = 0x02060000; //data
lunInfo.dWord1 = 0x0200001F;
lunInfo.vendor0 = 0x484D5241; //ARMH (HMRA)
lunInfo.vendor1 = 0x424D4143; //CAMB (BMAC)
lunInfo.product0 = 0x356D6567; //gem5 (5meg)
lunInfo.product1 = 0x4D534655; //UFSM (MSFU)
lunInfo.product2 = 0x4C45444F; //ODEL (LEDO)
lunInfo.product3 = temp_id; // ID:"lun_id" ("lun_id":DI)
lunInfo.productRevision = 0x01000000; //0x01
DPRINTF(UFSHostDevice, "Logic unit %d assumes that %d logic units are"
" present in the system\n", lunID, lunAvail);
DPRINTF(UFSHostDevice,"The disksize of lun: %d should be %d blocks\n",
lunID, diskSize);
flashDevice->initializeMemory(diskSize, SectorSize);
}
/**
* These pages are SCSI specific. For more information refer to:
* Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
* http://www.jedec.org/standards-documents/results/jesd220
*/
const unsigned int UFSHostDevice::UFSSCSIDevice::controlPage[3] =
{0x01400A0A, 0x00000000,
0x0000FFFF};
const unsigned int UFSHostDevice::UFSSCSIDevice::recoveryPage[3] =
{0x03800A01, 0x00000000,
0xFFFF0003};
const unsigned int UFSHostDevice::UFSSCSIDevice::cachingPage[5] =
{0x00011208, 0x00000000,
0x00000000, 0x00000020,
0x00000000};
UFSHostDevice::UFSSCSIDevice::~UFSSCSIDevice() {}
/**
* UFS specific SCSI handling function.
* The following attributes may still be added: SCSI format unit,
* Send diagnostic and UNMAP;
* Synchronize Cache and buffer read/write could not be tested yet
* All parameters can be found in:
* Universal Flash Storage (UFS) JESD220 FEB 2011 (JEDEC)
* http://www.jedec.org/standards-documents/results/jesd220
* (a JEDEC acount may be required {free of charge})
*/
struct UFSHostDevice::SCSIReply
UFSHostDevice::UFSSCSIDevice::SCSICMDHandle(uint32_t* SCSI_msg)
{
struct SCSIReply scsi_out;
scsi_out.reset();
/**
* Create the standard SCSI reponse information
* These values might changes over the course of a transfer
*/
scsi_out.message.header.dWord0 = UPIUHeaderDataIndWord0 |
lunID << 16;
scsi_out.message.header.dWord1 = UPIUHeaderDataIndWord1;
scsi_out.message.header.dWord2 = UPIUHeaderDataIndWord2;
statusCheck(SCSIGood, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.LUN = lunID;
scsi_out.status = SCSIGood;
DPRINTF(UFSHostDevice, "SCSI command:%2x\n", SCSI_msg[4]);
/**Determine what the message is and fill the response packet*/
switch (SCSI_msg[4] & 0xFF) {
case SCSIInquiry: {
/**
* SCSI inquiry: tell about this specific logic unit
*/
scsi_out.msgSize = 36;
scsi_out.message.dataMsg.resize(9);
for (uint8_t count = 0; count < 9; count++)
scsi_out.message.dataMsg[count] =
(reinterpret_cast<uint32_t*> (&lunInfo))[count];
} break;
case SCSIRead6: {
/**
* Read command. Number indicates the length of the command.
*/
scsi_out.expectMore = 0x02;
scsi_out.msgSize = 0;
uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
/**BE and not nicely aligned. Apart from that it only has
* information in five bits of the first byte that is relevant
* for this field.
*/
uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
uint64_t read_offset = betoh(tmp) & 0x1FFFFF;
uint32_t read_size = tempptr[4];
scsi_out.msgSize = read_size * blkSize;
scsi_out.offset = read_offset * blkSize;
if ((read_offset + read_size) > diskSize)
scsi_out.status = SCSIIllegalRequest;
DPRINTF(UFSHostDevice, "Read6 offset: 0x%8x, for %d blocks\n",
read_offset, read_size);
/**
* Renew status check, for the request may have been illegal
*/
statusCheck(scsi_out.status, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
} break;
case SCSIRead10: {
scsi_out.expectMore = 0x02;
scsi_out.msgSize = 0;
uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
/**BE and not nicely aligned.*/
uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
uint64_t read_offset = betoh(tmp);
uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
uint32_t read_size = betoh(tmpsize);
scsi_out.msgSize = read_size * blkSize;
scsi_out.offset = read_offset * blkSize;
if ((read_offset + read_size) > diskSize)
scsi_out.status = SCSIIllegalRequest;
DPRINTF(UFSHostDevice, "Read10 offset: 0x%8x, for %d blocks\n",
read_offset, read_size);
/**
* Renew status check, for the request may have been illegal
*/
statusCheck(scsi_out.status, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
} break;
case SCSIRead16: {
scsi_out.expectMore = 0x02;
scsi_out.msgSize = 0;
uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
/**BE and not nicely aligned.*/
uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
uint64_t read_offset = betoh(tmp);
tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
read_offset = (read_offset << 32) | betoh(tmp);
tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
uint32_t read_size = betoh(tmp);
scsi_out.msgSize = read_size * blkSize;
scsi_out.offset = read_offset * blkSize;
if ((read_offset + read_size) > diskSize)
scsi_out.status = SCSIIllegalRequest;
DPRINTF(UFSHostDevice, "Read16 offset: 0x%8x, for %d blocks\n",
read_offset, read_size);
/**
* Renew status check, for the request may have been illegal
*/
statusCheck(scsi_out.status, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
} break;
case SCSIReadCapacity10: {
/**
* read the capacity of the device
*/
scsi_out.msgSize = 8;
scsi_out.message.dataMsg.resize(2);
scsi_out.message.dataMsg[0] =
betoh(capacityLower);//last block
scsi_out.message.dataMsg[1] = betoh(blkSize);//blocksize
} break;
case SCSIReadCapacity16: {
scsi_out.msgSize = 32;
scsi_out.message.dataMsg.resize(8);
scsi_out.message.dataMsg[0] =
betoh(capacityUpper);//last block
scsi_out.message.dataMsg[1] =
betoh(capacityLower);//last block
scsi_out.message.dataMsg[2] = betoh(blkSize);//blocksize
scsi_out.message.dataMsg[3] = 0x00;//
scsi_out.message.dataMsg[4] = 0x00;//reserved
scsi_out.message.dataMsg[5] = 0x00;//reserved
scsi_out.message.dataMsg[6] = 0x00;//reserved
scsi_out.message.dataMsg[7] = 0x00;//reserved
} break;
case SCSIReportLUNs: {
/**
* Find out how many Logic Units this device has.
*/
scsi_out.msgSize = (lunAvail * 8) + 8;//list + overhead
scsi_out.message.dataMsg.resize(2 * lunAvail + 2);
scsi_out.message.dataMsg[0] = (lunAvail * 8) << 24;//LUN listlength
scsi_out.message.dataMsg[1] = 0x00;
for (uint8_t count = 0; count < lunAvail; count++) {
//LUN "count"
scsi_out.message.dataMsg[2 + 2 * count] = (count & 0x7F) << 8;
scsi_out.message.dataMsg[3 + 2 * count] = 0x00;
}
} break;
case SCSIStartStop: {
//Just acknowledge; not deemed relevant ATM
scsi_out.msgSize = 0;
} break;
case SCSITestUnitReady: {
//Just acknowledge; not deemed relevant ATM
scsi_out.msgSize = 0;
} break;
case SCSIVerify10: {
/**
* See if the blocks that the host plans to request are in range of
* the device.
*/
scsi_out.msgSize = 0;
uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
/**BE and not nicely aligned.*/
uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
uint64_t read_offset = betoh(tmp);
uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
uint32_t read_size = betoh(tmpsize);
if ((read_offset + read_size) > diskSize)
scsi_out.status = SCSIIllegalRequest;
/**
* Renew status check, for the request may have been illegal
*/
statusCheck(scsi_out.status, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
} break;
case SCSIWrite6: {
/**
* Write command.
*/
uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
/**BE and not nicely aligned. Apart from that it only has
* information in five bits of the first byte that is relevant
* for this field.
*/
uint32_t tmp = *reinterpret_cast<uint32_t*>(tempptr);
uint64_t write_offset = betoh(tmp) & 0x1FFFFF;
uint32_t write_size = tempptr[4];
scsi_out.msgSize = write_size * blkSize;
scsi_out.offset = write_offset * blkSize;
scsi_out.expectMore = 0x01;
if ((write_offset + write_size) > diskSize)
scsi_out.status = SCSIIllegalRequest;
DPRINTF(UFSHostDevice, "Write6 offset: 0x%8x, for %d blocks\n",
write_offset, write_size);
/**
* Renew status check, for the request may have been illegal
*/
statusCheck(scsi_out.status, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
} break;
case SCSIWrite10: {
uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
/**BE and not nicely aligned.*/
uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
uint64_t write_offset = betoh(tmp);
uint16_t tmpsize = *reinterpret_cast<uint16_t*>(&tempptr[7]);
uint32_t write_size = betoh(tmpsize);
scsi_out.msgSize = write_size * blkSize;
scsi_out.offset = write_offset * blkSize;
scsi_out.expectMore = 0x01;
if ((write_offset + write_size) > diskSize)
scsi_out.status = SCSIIllegalRequest;
DPRINTF(UFSHostDevice, "Write10 offset: 0x%8x, for %d blocks\n",
write_offset, write_size);
/**
* Renew status check, for the request may have been illegal
*/
statusCheck(scsi_out.status, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
} break;
case SCSIWrite16: {
uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
/**BE and not nicely aligned.*/
uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
uint64_t write_offset = betoh(tmp);
tmp = *reinterpret_cast<uint32_t*>(&tempptr[6]);
write_offset = (write_offset << 32) | betoh(tmp);
tmp = *reinterpret_cast<uint32_t*>(&tempptr[10]);
uint32_t write_size = betoh(tmp);
scsi_out.msgSize = write_size * blkSize;
scsi_out.offset = write_offset * blkSize;
scsi_out.expectMore = 0x01;
if ((write_offset + write_size) > diskSize)
scsi_out.status = SCSIIllegalRequest;
DPRINTF(UFSHostDevice, "Write16 offset: 0x%8x, for %d blocks\n",
write_offset, write_size);
/**
* Renew status check, for the request may have been illegal
*/
statusCheck(scsi_out.status, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
} break;
case SCSIFormatUnit: {//not yet verified
scsi_out.msgSize = 0;
scsi_out.expectMore = 0x01;
} break;
case SCSISendDiagnostic: {//not yet verified
scsi_out.msgSize = 0;
} break;
case SCSISynchronizeCache: {
//do we have cache (we don't have cache at this moment)
//TODO: here will synchronization happen when cache is modelled
scsi_out.msgSize = 0;
} break;
//UFS SCSI additional command set for full functionality
case SCSIModeSelect10:
//TODO:
//scsi_out.expectMore = 0x01;//not supported due to modepage support
//code isn't dead, code suggest what is to be done when implemented
break;
case SCSIModeSense6: case SCSIModeSense10: {
/**
* Get more discriptive information about the SCSI functionality
* within this logic unit.
*/
if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x0A) {//control page
scsi_out.message.dataMsg.resize((sizeof(controlPage) >> 2) + 2);
scsi_out.message.dataMsg[0] = 0x00000A00;//control page code
scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
for (uint8_t count = 0; count < 3; count++)
scsi_out.message.dataMsg[2 + count] = controlPage[count];
scsi_out.msgSize = 20;
DPRINTF(UFSHostDevice, "CONTROL page\n");
} else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x01) {//recovery page
scsi_out.message.dataMsg.resize((sizeof(recoveryPage) >> 2)
+ 2);
scsi_out.message.dataMsg[0] = 0x00000100;//recovery page code
scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
for (uint8_t count = 0; count < 3; count++)
scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
scsi_out.msgSize = 20;
DPRINTF(UFSHostDevice, "RECOVERY page\n");
} else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x08) {//caching page
scsi_out.message.dataMsg.resize((sizeof(cachingPage) >> 2) + 2);
scsi_out.message.dataMsg[0] = 0x00001200;//caching page code
scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
for (uint8_t count = 0; count < 5; count++)
scsi_out.message.dataMsg[2 + count] = cachingPage[count];
scsi_out.msgSize = 20;
DPRINTF(UFSHostDevice, "CACHE page\n");
} else if ((SCSI_msg[4] & 0x3F0000) >> 16 == 0x3F) {//ALL the pages!
scsi_out.message.dataMsg.resize(((sizeof(controlPage) +
sizeof(recoveryPage) +
sizeof(cachingPage)) >> 2)
+ 2);
scsi_out.message.dataMsg[0] = 0x00003200;//all page code
scsi_out.message.dataMsg[1] = 0x00000000;//See JEDEC220 ch8
for (uint8_t count = 0; count < 3; count++)
scsi_out.message.dataMsg[2 + count] = recoveryPage[count];
for (uint8_t count = 0; count < 5; count++)
scsi_out.message.dataMsg[5 + count] = cachingPage[count];
for (uint8_t count = 0; count < 3; count++)
scsi_out.message.dataMsg[10 + count] = controlPage[count];
scsi_out.msgSize = 52;
DPRINTF(UFSHostDevice, "Return ALL the pages!!!\n");
} else inform("Wrong mode page requested\n");
scsi_out.message.dataCount = scsi_out.msgSize << 24;
} break;
case SCSIRequestSense: {
scsi_out.msgSize = 0;
} break;
case SCSIUnmap:break;//not yet verified
case SCSIWriteBuffer: {
scsi_out.expectMore = 0x01;
uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
/**BE and not nicely aligned.*/
uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
uint64_t write_offset = betoh(tmp) & 0xFFFFFF;
tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
uint32_t write_size = betoh(tmp) & 0xFFFFFF;
scsi_out.msgSize = write_size;
scsi_out.offset = write_offset;
} break;
case SCSIReadBuffer: {
/**
* less trivial than normal read. Size is in bytes instead
* of blocks, and it is assumed (though not guaranteed) that
* reading is from cache.
*/
scsi_out.expectMore = 0x02;
uint8_t* tempptr = reinterpret_cast<uint8_t*>(&SCSI_msg[4]);
/**BE and not nicely aligned.*/
uint32_t tmp = *reinterpret_cast<uint32_t*>(&tempptr[2]);
uint64_t read_offset = betoh(tmp) & 0xFFFFFF;
tmp = *reinterpret_cast<uint32_t*>(&tempptr[5]);
uint32_t read_size = betoh(tmp) & 0xFFFFFF;
scsi_out.msgSize = read_size;
scsi_out.offset = read_offset;
if ((read_offset + read_size) > capacityLower * blkSize)
scsi_out.status = SCSIIllegalRequest;
DPRINTF(UFSHostDevice, "Read buffer location: 0x%8x\n",
read_offset);
DPRINTF(UFSHostDevice, "Number of bytes: 0x%8x\n", read_size);
statusCheck(scsi_out.status, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
} break;
case SCSIMaintenanceIn: {
/**
* linux sends this command three times from kernel 3.9 onwards,
* UFS does not support it, nor does this model. Linux knows this,
* but tries anyway (useful for some SD card types).
* Lets make clear we don't want it and just ignore it.
*/
DPRINTF(UFSHostDevice, "Ignoring Maintenance In command\n");
statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
scsi_out.msgSize = 0;
} break;
default: {
statusCheck(SCSIIllegalRequest, scsi_out.senseCode);
scsi_out.senseSize = scsi_out.senseCode[0];
scsi_out.status = (scsi_out.status == SCSIGood) ? SCSIGood :
SCSICheckCondition;
scsi_out.msgSize = 0;
inform("Unsupported scsi message type: %2x\n", SCSI_msg[4] & 0xFF);
inform("0x%8x\n", SCSI_msg[0]);
inform("0x%8x\n", SCSI_msg[1]);
inform("0x%8x\n", SCSI_msg[2]);
inform("0x%8x\n", SCSI_msg[3]);
inform("0x%8x\n", SCSI_msg[4]);
} break;
}
return scsi_out;
}
/**
* SCSI status check function. generic device test, creates sense codes
* Future versions may include TODO: device checks, which is why this is
* in a separate function.
*/
void
UFSHostDevice::UFSSCSIDevice::statusCheck(uint8_t status,
uint8_t* sensecodelist)
{
for (uint8_t count = 0; count < 19; count++)
sensecodelist[count] = 0;
sensecodelist[0] = 18; //sense length
sensecodelist[1] = 0x70; //we send a valid frame
sensecodelist[3] = status & 0xF; //mask to be sure + sensecode
sensecodelist[8] = 0x1F; //data length
}
/**
* read from the flashdisk
*/
void
UFSHostDevice::UFSSCSIDevice::readFlash(uint8_t* readaddr, uint64_t offset,
uint32_t size)
{
/** read from image, and get to memory */
for (int count = 0; count < (size / SectorSize); count++)
flashDisk->read(&(readaddr[SectorSize*count]), (offset /
SectorSize) + count);
}
/**
* Write to the flashdisk
*/
void
UFSHostDevice::UFSSCSIDevice::writeFlash(uint8_t* writeaddr, uint64_t offset,
uint32_t size)
{
/** Get from fifo and write to image*/
for (int count = 0; count < (size / SectorSize); count++)
flashDisk->write(&(writeaddr[SectorSize * count]),
(offset / SectorSize) + count);
}
/**
* Constructor for the UFS Host device
*/
UFSHostDevice::UFSHostDevice(const UFSHostDeviceParams* p) :
DmaDevice(p),
pioAddr(p->pio_addr),
pioSize(0x0FFF),
pioDelay(p->pio_latency),
intNum(p->int_num),
gic(p->gic),
lunAvail(p->image.size()),
UFSSlots(p->ufs_slots - 1),
readPendingNum(0),
writePendingNum(0),
activeDoorbells(0),
pendingDoorbells(0),
countInt(0),
transferTrack(0),
taskCommandTrack(0),
idlePhaseStart(0),
SCSIResumeEvent([this]{ SCSIStart(); }, name()),
UTPEvent([this]{ finalUTP(); }, name())
{
DPRINTF(UFSHostDevice, "The hostcontroller hosts %d Logic units\n",
lunAvail);
UFSDevice.resize(lunAvail);
transferDoneCallback = new MakeCallback<UFSHostDevice,
&UFSHostDevice::LUNSignal>(this);
memReadCallback = new MakeCallback<UFSHostDevice,
&UFSHostDevice::readCallback>(this);
for (int count = 0; count < lunAvail; count++) {
UFSDevice[count] = new UFSSCSIDevice(p, count, transferDoneCallback,
memReadCallback);
}
if (UFSSlots > 31)
warn("UFSSlots = %d, this will results in %d command slots",
UFSSlots, (UFSSlots & 0x1F));
if ((UFSSlots & 0x1F) == 0)
fatal("Number of UFS command slots should be between 1 and 32.");
setValues();
}
/**
* Create the parameters of this device
*/
UFSHostDevice*
UFSHostDeviceParams::create()
{
return new UFSHostDevice(this);
}
void
UFSHostDevice::regStats()
{
DmaDevice::regStats();
using namespace Stats;
std::string UFSHost_name = name() + ".UFSDiskHost";
// Register the stats
/** Queue lengths */
stats.currentSCSIQueue
.name(UFSHost_name + ".currentSCSIQueue")
.desc("Most up to date length of the command queue")
.flags(none);
stats.currentReadSSDQueue
.name(UFSHost_name + ".currentReadSSDQueue")
.desc("Most up to date length of the read SSD queue")
.flags(none);
stats.currentWriteSSDQueue
.name(UFSHost_name + ".currentWriteSSDQueue")
.desc("Most up to date length of the write SSD queue")
.flags(none);
/** Amount of data read/written */
stats.totalReadSSD
.name(UFSHost_name + ".totalReadSSD")
.desc("Number of bytes read from SSD")
.flags(none);
stats.totalWrittenSSD
.name(UFSHost_name + ".totalWrittenSSD")
.desc("Number of bytes written to SSD")
.flags(none);
stats.totalReadDiskTransactions
.name(UFSHost_name + ".totalReadDiskTransactions")
.desc("Number of transactions from disk")
.flags(none);
stats.totalWriteDiskTransactions
.name(UFSHost_name + ".totalWriteDiskTransactions")
.desc("Number of transactions to disk")
.flags(none);
stats.totalReadUFSTransactions
.name(UFSHost_name + ".totalReadUFSTransactions")
.desc("Number of transactions from device")
.flags(none);
stats.totalWriteUFSTransactions
.name(UFSHost_name + ".totalWriteUFSTransactions")
.desc("Number of transactions to device")
.flags(none);
/** Average bandwidth for reads and writes */
stats.averageReadSSDBW
.name(UFSHost_name + ".averageReadSSDBandwidth")
.desc("Average read bandwidth (bytes/s)")
.flags(nozero);
stats.averageReadSSDBW = stats.totalReadSSD / simSeconds;
stats.averageWriteSSDBW
.name(UFSHost_name + ".averageWriteSSDBandwidth")
.desc("Average write bandwidth (bytes/s)")
.flags(nozero);
stats.averageWriteSSDBW = stats.totalWrittenSSD / simSeconds;
stats.averageSCSIQueue
.name(UFSHost_name + ".averageSCSIQueueLength")
.desc("Average command queue length")
.flags(nozero);
stats.averageReadSSDQueue
.name(UFSHost_name + ".averageReadSSDQueueLength")
.desc("Average read queue length")
.flags(nozero);
stats.averageWriteSSDQueue
.name(UFSHost_name + ".averageWriteSSDQueueLength")
.desc("Average write queue length")
.flags(nozero);
/** Number of doorbells rung*/
stats.curDoorbell
.name(UFSHost_name + ".curDoorbell")
.desc("Most up to date number of doorbells used")
.flags(none);
stats.curDoorbell = activeDoorbells;
stats.maxDoorbell
.name(UFSHost_name + ".maxDoorbell")
.desc("Maximum number of doorbells utilized")
.flags(none);
stats.averageDoorbell
.name(UFSHost_name + ".averageDoorbell")
.desc("Average number of Doorbells used")
.flags(nozero);
/** Latency*/
stats.transactionLatency
.init(100)
.name(UFSHost_name + ".transactionLatency")
.desc("Histogram of transaction times")
.flags(pdf);
stats.idleTimes
.init(100)
.name(UFSHost_name + ".idlePeriods")
.desc("Histogram of idle times")
.flags(pdf);
}
/**
* Register init
*/
void UFSHostDevice::setValues()
{
/**
* The capability register is built up as follows:
* 31-29 RES; Testmode support; O3 delivery; 64 bit addr;
* 23-19 RES; 18-16 #TM Req slots; 15-5 RES;4-0 # TR slots
*/
UFSHCIMem.HCCAP = 0x06070000 | (UFSSlots & 0x1F);
UFSHCIMem.HCversion = 0x00010000; //version is 1.0
UFSHCIMem.HCHCDDID = 0xAA003C3C;// Arbitrary number
UFSHCIMem.HCHCPMID = 0x41524D48; //ARMH (not an official MIPI number)
UFSHCIMem.TRUTRLDBR = 0x00;
UFSHCIMem.TMUTMRLDBR = 0x00;
UFSHCIMem.CMDUICCMDR = 0x00;
// We can process CMD, TM, TR, device present
UFSHCIMem.ORHostControllerStatus = 0x08;
UFSHCIMem.TRUTRLBA = 0x00;
UFSHCIMem.TRUTRLBAU = 0x00;
UFSHCIMem.TMUTMRLBA = 0x00;
UFSHCIMem.TMUTMRLBAU = 0x00;
}
/**
* Determine address ranges
*/
AddrRangeList
UFSHostDevice::getAddrRanges() const
{
AddrRangeList ranges;
ranges.push_back(RangeSize(pioAddr, pioSize));
return ranges;
}
/**
* UFSHCD read register. This function allows the system to read the
* register entries
*/
Tick
UFSHostDevice::read(PacketPtr pkt)
{
uint32_t data = 0;
switch (pkt->getAddr() & 0xFF)
{
case regControllerCapabilities:
data = UFSHCIMem.HCCAP;
break;
case regUFSVersion:
data = UFSHCIMem.HCversion;
break;
case regControllerDEVID:
data = UFSHCIMem.HCHCDDID;
break;
case regControllerPRODID:
data = UFSHCIMem.HCHCPMID;
break;
case regInterruptStatus:
data = UFSHCIMem.ORInterruptStatus;
UFSHCIMem.ORInterruptStatus = 0x00;
//TODO: Revise and extend
clearInterrupt();
break;
case regInterruptEnable:
data = UFSHCIMem.ORInterruptEnable;
break;
case regControllerStatus:
data = UFSHCIMem.ORHostControllerStatus;
break;
case regControllerEnable:
data = UFSHCIMem.ORHostControllerEnable;
break;
case regUICErrorCodePHYAdapterLayer:
data = UFSHCIMem.ORUECPA;
break;
case regUICErrorCodeDataLinkLayer:
data = UFSHCIMem.ORUECDL;
break;
case regUICErrorCodeNetworkLayer:
data = UFSHCIMem.ORUECN;
break;
case regUICErrorCodeTransportLayer:
data = UFSHCIMem.ORUECT;
break;
case regUICErrorCodeDME:
data = UFSHCIMem.ORUECDME;
break;
case regUTPTransferREQINTAGGControl:
data = UFSHCIMem.ORUTRIACR;
break;
case regUTPTransferREQListBaseL:
data = UFSHCIMem.TRUTRLBA;
break;
case regUTPTransferREQListBaseH:
data = UFSHCIMem.TRUTRLBAU;
break;
case regUTPTransferREQDoorbell:
data = UFSHCIMem.TRUTRLDBR;
break;
case regUTPTransferREQListClear:
data = UFSHCIMem.TRUTRLCLR;
break;
case regUTPTransferREQListRunStop:
data = UFSHCIMem.TRUTRLRSR;
break;
case regUTPTaskREQListBaseL:
data = UFSHCIMem.TMUTMRLBA;
break;
case regUTPTaskREQListBaseH:
data = UFSHCIMem.TMUTMRLBAU;
break;
case regUTPTaskREQDoorbell:
data = UFSHCIMem.TMUTMRLDBR;
break;
case regUTPTaskREQListClear:
data = UFSHCIMem.TMUTMRLCLR;
break;
case regUTPTaskREQListRunStop:
data = UFSHCIMem.TMUTMRLRSR;
break;
case regUICCommand:
data = UFSHCIMem.CMDUICCMDR;
break;
case regUICCommandArg1:
data = UFSHCIMem.CMDUCMDARG1;
break;
case regUICCommandArg2:
data = UFSHCIMem.CMDUCMDARG2;
break;
case regUICCommandArg3:
data = UFSHCIMem.CMDUCMDARG3;
break;
default:
data = 0x00;
break;
}
pkt->set<uint32_t>(data);
pkt->makeResponse();
return pioDelay;
}
/**
* UFSHCD write function. This function allows access to the writeable
* registers. If any function attempts to write value to an unwriteable
* register entry, then the value will not be written.
*/
Tick
UFSHostDevice::write(PacketPtr pkt)
{
uint32_t data = 0;
switch (pkt->getSize()) {
case 1:
data = pkt->get<uint8_t>();
break;
case 2:
data = pkt->get<uint16_t>();
break;
case 4:
data = pkt->get<uint32_t>();
break;
default:
panic("Undefined UFSHCD controller write size!\n");
break;
}
switch (pkt->getAddr() & 0xFF)
{
case regControllerCapabilities://you shall not write to this
break;
case regUFSVersion://you shall not write to this
break;
case regControllerDEVID://you shall not write to this
break;
case regControllerPRODID://you shall not write to this
break;
case regInterruptStatus://you shall not write to this
break;
case regInterruptEnable:
UFSHCIMem.ORInterruptEnable = data;
break;
case regControllerStatus:
UFSHCIMem.ORHostControllerStatus = data;
break;
case regControllerEnable:
UFSHCIMem.ORHostControllerEnable = data;
break;
case regUICErrorCodePHYAdapterLayer:
UFSHCIMem.ORUECPA = data;
break;
case regUICErrorCodeDataLinkLayer:
UFSHCIMem.ORUECDL = data;
break;
case regUICErrorCodeNetworkLayer:
UFSHCIMem.ORUECN = data;
break;
case regUICErrorCodeTransportLayer:
UFSHCIMem.ORUECT = data;
break;
case regUICErrorCodeDME:
UFSHCIMem.ORUECDME = data;
break;
case regUTPTransferREQINTAGGControl:
UFSHCIMem.ORUTRIACR = data;
break;
case regUTPTransferREQListBaseL:
UFSHCIMem.TRUTRLBA = data;
if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU)!= 0x00))
UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
break;
case regUTPTransferREQListBaseH:
UFSHCIMem.TRUTRLBAU = data;
if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
break;
case regUTPTransferREQDoorbell:
if (!(UFSHCIMem.TRUTRLDBR) && data)
stats.idleTimes.sample(curTick() - idlePhaseStart);
UFSHCIMem.TRUTRLDBR |= data;
requestHandler();
break;
case regUTPTransferREQListClear:
UFSHCIMem.TRUTRLCLR = data;
break;
case regUTPTransferREQListRunStop:
UFSHCIMem.TRUTRLRSR = data;
break;
case regUTPTaskREQListBaseL:
UFSHCIMem.TMUTMRLBA = data;
if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
break;
case regUTPTaskREQListBaseH:
UFSHCIMem.TMUTMRLBAU = data;
if (((UFSHCIMem.TRUTRLBA | UFSHCIMem.TRUTRLBAU) != 0x00) &&
((UFSHCIMem.TMUTMRLBA | UFSHCIMem.TMUTMRLBAU) != 0x00))
UFSHCIMem.ORHostControllerStatus |= UICCommandReady;
break;
case regUTPTaskREQDoorbell:
UFSHCIMem.TMUTMRLDBR |= data;
requestHandler();
break;
case regUTPTaskREQListClear:
UFSHCIMem.TMUTMRLCLR = data;
break;
case regUTPTaskREQListRunStop:
UFSHCIMem.TMUTMRLRSR = data;
break;
case regUICCommand:
UFSHCIMem.CMDUICCMDR = data;
requestHandler();
break;
case regUICCommandArg1:
UFSHCIMem.CMDUCMDARG1 = data;
break;
case regUICCommandArg2:
UFSHCIMem.CMDUCMDARG2 = data;
break;
case regUICCommandArg3:
UFSHCIMem.CMDUCMDARG3 = data;
break;
default:break;//nothing happens, you try to access a register that
//does not exist
}
pkt->makeResponse();
return pioDelay;
}
/**
* Request handler. Determines where the request comes from and initiates the
* appropriate actions accordingly.
*/
void
UFSHostDevice::requestHandler()
{
Addr address = 0x00;
int mask = 0x01;
int size;
int count = 0;
struct taskStart task_info;
struct transferStart transferstart_info;
transferstart_info.done = 0;
/**
* step1 determine what called us
* step2 determine where to get it
* Look for any request of which we where not yet aware
*/
while (((UFSHCIMem.CMDUICCMDR > 0x00) |
((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) |
((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00)) ) {
if (UFSHCIMem.CMDUICCMDR > 0x00) {
/**
* Command; general control of the Host controller.
* no DMA transfer needed
*/
commandHandler();
UFSHCIMem.ORInterruptStatus |= UICCommandCOMPL;
generateInterrupt();
UFSHCIMem.CMDUICCMDR = 0x00;
return; //command, nothing more we can do
} else if ((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack) > 0x00) {
/**
* Task; flow control, meant for the device/Logic unit
* DMA transfer is needed, flash will not be approached
*/
size = sizeof(UTPUPIUTaskReq);
/**Find the position that is not handled yet*/
count = findLsbSet((UFSHCIMem.TMUTMRLDBR ^ taskCommandTrack));
address = UFSHCIMem.TMUTMRLBAU;
//<-64 bit
address = (count * size) + (address << 32) +
UFSHCIMem.TMUTMRLBA;
taskCommandTrack |= mask << count;
inform("UFSmodel received a task from the system; this might"
" lead to untested behaviour.\n");
task_info.mask = mask << count;
task_info.address = address;
task_info.size = size;
task_info.done = UFSHCIMem.TMUTMRLDBR;
taskInfo.push_back(task_info);
taskEventQueue.push_back(
EventFunctionWrapper([this]{ taskStart(); }, name()));
writeDevice(&taskEventQueue.back(), false, address, size,
reinterpret_cast<uint8_t*>
(&taskInfo.back().destination), 0, 0);
} else if ((UFSHCIMem.TRUTRLDBR ^ transferTrack) > 0x00) {
/**
* Transfer; Data transfer from or to the disk. There will be DMA
* transfers, and the flash might be approached. Further
* commands, are needed to specify the exact command.
*/
size = sizeof(UTPTransferReqDesc);
/**Find the position that is not handled yet*/
count = findLsbSet((UFSHCIMem.TRUTRLDBR ^ transferTrack));
address = UFSHCIMem.TRUTRLBAU;
//<-64 bit
address = (count * size) + (address << 32) + UFSHCIMem.TRUTRLBA;
transferTrack |= mask << count;
DPRINTF(UFSHostDevice, "Doorbell register: 0x%8x select #:"
" 0x%8x completion info: 0x%8x\n", UFSHCIMem.TRUTRLDBR,
count, transferstart_info.done);
transferstart_info.done = UFSHCIMem.TRUTRLDBR;
/**stats**/
transactionStart[count] = curTick(); //note the start time
++activeDoorbells;
stats.maxDoorbell = (stats.maxDoorbell.value() < activeDoorbells)
? activeDoorbells : stats.maxDoorbell.value();
stats.averageDoorbell = stats.maxDoorbell.value();
/**
* step3 start transfer
* step4 register information; allowing the host to respond in
* the end
*/
transferstart_info.mask = mask << count;
transferstart_info.address = address;
transferstart_info.size = size;
transferstart_info.done = UFSHCIMem.TRUTRLDBR;
transferStartInfo.push_back(transferstart_info);
/**Deleted in readDone, queued in finalUTP*/
transferStartInfo.back().destination = new struct
UTPTransferReqDesc;
DPRINTF(UFSHostDevice, "Initial transfer start: 0x%8x\n",
transferstart_info.done);
transferEventQueue.push_back(
EventFunctionWrapper([this]{ transferStart(); }, name()));
if (transferEventQueue.size() < 2) {
writeDevice(&transferEventQueue.front(), false,
address, size, reinterpret_cast<uint8_t*>
(transferStartInfo.front().destination),0, 0);
DPRINTF(UFSHostDevice, "Transfer scheduled\n");
}
}
}
}
/**
* Task start event
*/
void
UFSHostDevice::taskStart()
{
DPRINTF(UFSHostDevice, "Task start");
taskHandler(&taskInfo.front().destination, taskInfo.front().mask,
taskInfo.front().address, taskInfo.front().size);
taskInfo.pop_front();
taskEventQueue.pop_front();
}
/**
* Transfer start event
*/
void
UFSHostDevice::transferStart()
{
DPRINTF(UFSHostDevice, "Enter transfer event\n");
transferHandler(transferStartInfo.front().destination,
transferStartInfo.front().mask,
transferStartInfo.front().address,
transferStartInfo.front().size,
transferStartInfo.front().done);
transferStartInfo.pop_front();
DPRINTF(UFSHostDevice, "Transfer queue size at end of event: "
"0x%8x\n", transferEventQueue.size());
}
/**
* Handles the commands that are given. At this point in time, not many
* commands have been implemented in the driver.
*/
void
UFSHostDevice::commandHandler()
{
if (UFSHCIMem.CMDUICCMDR == 0x16) {
UFSHCIMem.ORHostControllerStatus |= 0x0F;//link startup
}
}
/**
* Handles the tasks that are given. At this point in time, not many tasks
* have been implemented in the driver.
*/
void
UFSHostDevice::taskHandler(struct UTPUPIUTaskReq* request_in,
uint32_t req_pos, Addr finaladdress, uint32_t
finalsize)
{
/**
* For now, just unpack and acknowledge the task without doing anything.
* TODO Implement UFS tasks.
*/
inform("taskHandler\n");
inform("%8x\n", request_in->header.dWord0);
inform("%8x\n", request_in->header.dWord1);
inform("%8x\n", request_in->header.dWord2);
request_in->header.dWord2 &= 0xffffff00;
UFSHCIMem.TMUTMRLDBR &= ~(req_pos);
taskCommandTrack &= ~(req_pos);
UFSHCIMem.ORInterruptStatus |= UTPTaskREQCOMPL;
readDevice(true, finaladdress, finalsize, reinterpret_cast<uint8_t*>
(request_in), true, NULL);
}
/**
* Obtains the SCSI command (if any)
* Two possibilities: if it contains a SCSI command, then it is a usable
* message; if it doesnt contain a SCSI message, then it can't be handeld
* by this code.
* This is the second stage of the transfer. We have the information about
* where the next command can be found and what the type of command is. The
* actions that are needed from the device its side are: get the information
* and store the information such that we can reply.
*/
void
UFSHostDevice::transferHandler(struct UTPTransferReqDesc* request_in,
int req_pos, Addr finaladdress, uint32_t
finalsize, uint32_t done)
{
Addr cmd_desc_addr = 0x00;
//acknowledge handling of the message
DPRINTF(UFSHostDevice, "SCSI message detected\n");
request_in->header.dWord2 &= 0xffffff00;
SCSIInfo.RequestIn = request_in;
SCSIInfo.reqPos = req_pos;
SCSIInfo.finalAddress = finaladdress;
SCSIInfo.finalSize = finalsize;
SCSIInfo.destination.resize(request_in->PRDTableOffset * 4
+ request_in->PRDTableLength * sizeof(UFSHCDSGEntry));
SCSIInfo.done = done;
assert(!SCSIResumeEvent.scheduled());
/**
*Get the UTP command that has the SCSI command
*/
cmd_desc_addr = request_in->commandDescBaseAddrHi;
cmd_desc_addr = (cmd_desc_addr << 32) |
(request_in->commandDescBaseAddrLo & 0xffffffff);
writeDevice(&SCSIResumeEvent, false, cmd_desc_addr,
SCSIInfo.destination.size(), &SCSIInfo.destination[0],0, 0);
DPRINTF(UFSHostDevice, "SCSI scheduled\n");
transferEventQueue.pop_front();
}
/**
* Obtain LUN and put it in the right LUN queue. Each LUN has its own queue
* of commands that need to be executed. This is the first instance where it
* can be determined which Logic unit should handle the transfer. Then check
* wether it should wait and queue or if it can continue.
*/
void
UFSHostDevice::SCSIStart()
{
DPRINTF(UFSHostDevice, "SCSI message on hold until ready\n");
uint32_t LUN = SCSIInfo.destination[2];
UFSDevice[LUN]->SCSIInfoQueue.push_back(SCSIInfo);
DPRINTF(UFSHostDevice, "SCSI queue %d has %d elements\n", LUN,
UFSDevice[LUN]->SCSIInfoQueue.size());
/**There are 32 doorbells, so at max there can be 32 transactions*/
if (UFSDevice[LUN]->SCSIInfoQueue.size() < 2) //LUN is available
SCSIResume(LUN);
else if (UFSDevice[LUN]->SCSIInfoQueue.size() > 32)
panic("SCSI queue is getting too big %d\n", UFSDevice[LUN]->
SCSIInfoQueue.size());
/**
* First transfer is done, fetch the next;
* At this point, the device is busy, not the HC
*/
if (!transferEventQueue.empty()) {
/**
* loading next data packet in case Another LUN
* is approached in the mean time
*/
writeDevice(&transferEventQueue.front(), false,
transferStartInfo.front().address,
transferStartInfo.front().size, reinterpret_cast<uint8_t*>
(transferStartInfo.front().destination), 0, 0);
DPRINTF(UFSHostDevice, "Transfer scheduled");
}
}
/**
* Handles the transfer requests that are given.
* There can be three types of transfer. SCSI specific, Reads and writes
* apart from the data transfer, this also generates its own reply (UPIU
* response). Information for this reply is stored in transferInfo and will
* be used in transferDone
*/
void
UFSHostDevice::SCSIResume(uint32_t lun_id)
{
DPRINTF(UFSHostDevice, "SCSIresume\n");
if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
UFSHCIMem.TRUTRLDBR);
/**old info, lets form it such that we can understand it*/
struct UTPTransferReqDesc* request_in = UFSDevice[lun_id]->
SCSIInfoQueue.front().RequestIn;
uint32_t req_pos = UFSDevice[lun_id]->SCSIInfoQueue.front().reqPos;
Addr finaladdress = UFSDevice[lun_id]->SCSIInfoQueue.front().
finalAddress;
uint32_t finalsize = UFSDevice[lun_id]->SCSIInfoQueue.front().finalSize;
uint32_t* transfercommand = reinterpret_cast<uint32_t*>
(&(UFSDevice[lun_id]->SCSIInfoQueue.front().destination[0]));
DPRINTF(UFSHostDevice, "Task tag: 0x%8x\n", transfercommand[0]>>24);
/**call logic unit to handle SCSI command*/
request_out_datain = UFSDevice[(transfercommand[0] & 0xFF0000) >> 16]->
SCSICMDHandle(transfercommand);
DPRINTF(UFSHostDevice, "LUN: %d\n", request_out_datain.LUN);
/**
* build response stating that it was succesful
* command completion, Logic unit number, and Task tag
*/
request_in->header.dWord0 = ((request_in->header.dWord0 >> 24) == 0x21)
? 0x36 : 0x21;
UFSDevice[lun_id]->transferInfo.requestOut.header.dWord0 =
request_in->header.dWord0 | (request_out_datain.LUN << 8)
| (transfercommand[0] & 0xFF000000);
/**SCSI status reply*/
UFSDevice[lun_id]->transferInfo.requestOut.header.dWord1 = 0x00000000 |
(request_out_datain.status << 24);
/**segment size + EHS length (see UFS standard ch7)*/
UFSDevice[lun_id]->transferInfo.requestOut.header.dWord2 = 0x00000000 |
((request_out_datain.senseSize + 2) << 24) | 0x05;
/**amount of data that will follow*/
UFSDevice[lun_id]->transferInfo.requestOut.senseDataLen =
request_out_datain.senseSize;
//data
for (uint8_t count = 0; count<request_out_datain.senseSize; count++) {
UFSDevice[lun_id]->transferInfo.requestOut.senseData[count] =
request_out_datain.senseCode[count + 1];
}
/*
* At position defined by "request_in->PRDTableOffset" (counting 32 bit
* words) in array "transfercommand" we have a scatter gather list, which
* is usefull to us if we interpreted it as a UFSHCDSGEntry structure.
*/
struct UFSHCDSGEntry* sglist = reinterpret_cast<UFSHCDSGEntry*>
(&(transfercommand[(request_in->PRDTableOffset)]));
uint32_t length = request_in->PRDTableLength;
DPRINTF(UFSHostDevice, "# PRDT entries: %d\n", length);
Addr response_addr = request_in->commandDescBaseAddrHi;
response_addr = (response_addr << 32) |
((request_in->commandDescBaseAddrLo +
(request_in->responseUPIULength << 2)) & 0xffffffff);
/**transferdone information packet filling*/
UFSDevice[lun_id]->transferInfo.responseStartAddr = response_addr;
UFSDevice[lun_id]->transferInfo.reqPos = req_pos;
UFSDevice[lun_id]->transferInfo.size = finalsize;
UFSDevice[lun_id]->transferInfo.address = finaladdress;
UFSDevice[lun_id]->transferInfo.destination = reinterpret_cast<uint8_t*>
(UFSDevice[lun_id]->SCSIInfoQueue.front().RequestIn);
UFSDevice[lun_id]->transferInfo.finished = true;
UFSDevice[lun_id]->transferInfo.lunID = request_out_datain.LUN;
/**
* In this part the data that needs to be transfered will be initiated
* and the chain of DMA (and potentially) disk transactions will be
* started.
*/
if (request_out_datain.expectMore == 0x01) {
/**write transfer*/
manageWriteTransfer(request_out_datain.LUN, request_out_datain.offset,
length, sglist);
} else if (request_out_datain.expectMore == 0x02) {
/**read transfer*/
manageReadTransfer(request_out_datain.msgSize, request_out_datain.LUN,
request_out_datain.offset, length, sglist);
} else {
/**not disk related transfer, SCSI maintanance*/
uint32_t count = 0;
uint32_t size_accum = 0;
DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
request_out_datain.msgSize);
/**Transport the SCSI reponse data according to the SG list*/
while ((length > count) && size_accum
< (request_out_datain.msgSize - 1) &&
(request_out_datain.msgSize != 0x00)) {
Addr SCSI_start = sglist[count].upperAddr;
SCSI_start = (SCSI_start << 32) |
(sglist[count].baseAddr & 0xFFFFFFFF);
DPRINTF(UFSHostDevice, "Data DMA start: 0x%8x\n", SCSI_start);
DPRINTF(UFSHostDevice, "Data DMA size: 0x%8x\n",
(sglist[count].size + 1));
/**
* safetynet; it has been shown that sg list may be optimistic in
* the amount of data allocated, which can potentially lead to
* some garbage data being send over. Hence this construction
* that finds the least amount of data that needs to be
* transfered.
*/
uint32_t size_to_send = sglist[count].size + 1;
if (request_out_datain.msgSize < (size_to_send + size_accum))
size_to_send = request_out_datain.msgSize - size_accum;
readDevice(false, SCSI_start, size_to_send,
reinterpret_cast<uint8_t*>
(&(request_out_datain.message.dataMsg[size_accum])),
false, NULL);
size_accum += size_to_send;
DPRINTF(UFSHostDevice, "Total remaining: 0x%8x,accumulated so far"
" : 0x%8x\n", (request_out_datain.msgSize - size_accum),
size_accum);
++count;
DPRINTF(UFSHostDevice, "Transfer #: %d\n", count);
}
/**Go to the next stage of the answering process*/
transferDone(response_addr, req_pos, UFSDevice[lun_id]->
transferInfo.requestOut, finalsize, finaladdress,
reinterpret_cast<uint8_t*>(request_in), true, lun_id);
}
DPRINTF(UFSHostDevice, "SCSI resume done\n");
}
/**
* Find finished transfer. Callback function. One of the LUNs is done with
* the disk transfer and reports back to the controller. This function finds
* out who it was, and calls transferDone.
*/
void
UFSHostDevice::LUNSignal()
{
uint8_t this_lun = 0;
//while we haven't found the right lun, keep searching
while ((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedCommand())
++this_lun;
if (this_lun < lunAvail) {
//Clear signal.
UFSDevice[this_lun]->clearSignal();
//found it; call transferDone
transferDone(UFSDevice[this_lun]->transferInfo.responseStartAddr,
UFSDevice[this_lun]->transferInfo.reqPos,
UFSDevice[this_lun]->transferInfo.requestOut,
UFSDevice[this_lun]->transferInfo.size,
UFSDevice[this_lun]->transferInfo.address,
UFSDevice[this_lun]->transferInfo.destination,
UFSDevice[this_lun]->transferInfo.finished,
UFSDevice[this_lun]->transferInfo.lunID);
}
else
panic("no LUN finished in tick %d\n", curTick());
}
/**
* Transfer done. When the data transfer is done, this function ensures
* that the application is notified.
*/
void
UFSHostDevice::transferDone(Addr responseStartAddr, uint32_t req_pos,
struct UTPUPIURSP request_out, uint32_t size,
Addr address, uint8_t* destination,
bool finished, uint32_t lun_id)
{
/**Test whether SCSI queue hasn't popped prematurely*/
if (UFSDevice[lun_id]->SCSIInfoQueue.empty())
panic("No SCSI message scheduled lun:%d Doorbell: 0x%8x", lun_id,
UFSHCIMem.TRUTRLDBR);
DPRINTF(UFSHostDevice, "DMA start: 0x%8x; DMA size: 0x%8x\n",
responseStartAddr, sizeof(request_out));
struct transferStart lastinfo;
lastinfo.mask = req_pos;
lastinfo.done = finished;
lastinfo.address = address;
lastinfo.size = size;
lastinfo.destination = reinterpret_cast<UTPTransferReqDesc*>
(destination);
lastinfo.lun_id = lun_id;
transferEnd.push_back(lastinfo);
DPRINTF(UFSHostDevice, "Transfer done start\n");
readDevice(false, responseStartAddr, sizeof(request_out),
reinterpret_cast<uint8_t*>
(&(UFSDevice[lun_id]->transferInfo.requestOut)),
true, &UTPEvent);
}
/**
* finalUTP. Second part of the transfer done event.
* this sends the final response: the UTP response. After this transaction
* the doorbell shall be cleared, and the interupt shall be set.
*/
void
UFSHostDevice::finalUTP()
{
uint32_t lun_id = transferEnd.front().lun_id;
UFSDevice[lun_id]->SCSIInfoQueue.pop_front();
DPRINTF(UFSHostDevice, "SCSIInfoQueue size: %d, lun: %d\n",
UFSDevice[lun_id]->SCSIInfoQueue.size(), lun_id);
/**stats**/
if (UFSHCIMem.TRUTRLDBR & transferEnd.front().mask) {
uint8_t count = 0;
while (!(transferEnd.front().mask & (0x1 << count)))
++count;
stats.transactionLatency.sample(curTick() -
transactionStart[count]);
}
/**Last message that will be transfered*/
readDevice(true, transferEnd.front().address,
transferEnd.front().size, reinterpret_cast<uint8_t*>
(transferEnd.front().destination), true, NULL);
/**clean and ensure that the tracker is updated*/
transferTrack &= ~(transferEnd.front().mask);
--activeDoorbells;
++pendingDoorbells;
garbage.push_back(transferEnd.front().destination);
transferEnd.pop_front();
DPRINTF(UFSHostDevice, "UTP handled\n");
/**stats**/
stats.averageDoorbell = stats.maxDoorbell.value();
DPRINTF(UFSHostDevice, "activeDoorbells: %d, pendingDoorbells: %d,"
" garbage: %d, TransferEvent: %d\n", activeDoorbells,
pendingDoorbells, garbage.size(), transferEventQueue.size());
/**This is the moment that the device is available again*/
if (!UFSDevice[lun_id]->SCSIInfoQueue.empty())
SCSIResume(lun_id);
}
/**
* Read done handling function, is only initiated at the end of a transaction
*/
void
UFSHostDevice::readDone()
{
DPRINTF(UFSHostDevice, "Read done start\n");
--readPendingNum;
/**Garbage collection; sort out the allocated UTP descriptor*/
if (garbage.size() > 0) {
delete garbage.front();
garbage.pop_front();
}
/**done, generate interrupt if we havent got one already*/
if (!(UFSHCIMem.ORInterruptStatus & 0x01)) {
UFSHCIMem.ORInterruptStatus |= UTPTransferREQCOMPL;
generateInterrupt();
}
if (!readDoneEvent.empty()) {
readDoneEvent.pop_front();
}
}
/**
* set interrupt and sort out the doorbell register.
*/
void
UFSHostDevice::generateInterrupt()
{
/**just to keep track of the transactions*/
countInt++;
/**step5 clear doorbell*/
UFSHCIMem.TRUTRLDBR &= transferTrack;
pendingDoorbells = 0;
DPRINTF(UFSHostDevice, "Clear doorbell %X\n", UFSHCIMem.TRUTRLDBR);
checkDrain();
/**step6 raise interrupt*/
gic->sendInt(intNum);
DPRINTF(UFSHostDevice, "Send interrupt @ transaction: 0x%8x!\n",
countInt);
}
/**
* Clear interrupt
*/
void
UFSHostDevice::clearInterrupt()
{
gic->clearInt(intNum);
DPRINTF(UFSHostDevice, "Clear interrupt: 0x%8x!\n", countInt);
checkDrain();
if (!(UFSHCIMem.TRUTRLDBR)) {
idlePhaseStart = curTick();
}
/**end of a transaction*/
}
/**
* Important to understand about the transfer flow:
* We have basically three stages, The "system memory" stage, the "device
* buffer" stage and the "disk" stage. In this model we assume an infinite
* buffer, or a buffer that is big enough to store all the data in the
* biggest transaction. Between the three stages are two queues. Those queues
* store the messages to simulate their transaction from one stage to the
* next. The manage{Action} function fills up one of the queues and triggers
* the first event, which causes a chain reaction of events executed once
* they pass through their queues. For a write action the stages are ordered
* "system memory", "device buffer" and "disk", whereas the read transfers
* happen "disk", "device buffer" and "system memory". The dma action in the
* dma device is written from a bus perspective whereas this model is written
* from a device perspective. To avoid confusion, the translation between the
* two has been made in the writeDevice and readDevice funtions.
*/
/**
* Dma transaction function: write device. Note that the dma action is
* from a device perspective, while this function is from an initiator
* perspective
*/
void
UFSHostDevice::writeDevice(Event* additional_action, bool toDisk, Addr
start, int size, uint8_t* destination, uint64_t
SCSIDiskOffset, uint32_t lun_id)
{
DPRINTF(UFSHostDevice, "Write transaction Start: 0x%8x; Size: %d\n",
start, size);
/**check whether transfer is all the way to the flash*/
if (toDisk) {
++writePendingNum;
while (!writeDoneEvent.empty() && (writeDoneEvent.front().when()
< curTick()))
writeDoneEvent.pop_front();
writeDoneEvent.push_back(
EventFunctionWrapper([this]{ writeDone(); },
name()));
assert(!writeDoneEvent.back().scheduled());
/**destination is an offset here since we are writing to a disk*/
struct transferInfo new_transfer;
new_transfer.offset = SCSIDiskOffset;
new_transfer.size = size;
new_transfer.lunID = lun_id;
new_transfer.filePointer = 0;
SSDWriteinfo.push_back(new_transfer);
/**allocate appropriate buffer*/
SSDWriteinfo.back().buffer.resize(size);
/**transaction*/
dmaPort.dmaAction(MemCmd::ReadReq, start, size,
&writeDoneEvent.back(),
&SSDWriteinfo.back().buffer[0], 0);
//yes, a readreq at a write device function is correct.
DPRINTF(UFSHostDevice, "Write to disk scheduled\n");
} else {
assert(!additional_action->scheduled());
dmaPort.dmaAction(MemCmd::ReadReq, start, size,
additional_action, destination, 0);
DPRINTF(UFSHostDevice, "Write scheduled\n");
}
}
/**
* Manage write transfer. Manages correct transfer flow and makes sure that
* the queues are filled on time
*/
void
UFSHostDevice::manageWriteTransfer(uint8_t LUN, uint64_t offset, uint32_t
sg_table_length, struct UFSHCDSGEntry*
sglist)
{
struct writeToDiskBurst next_packet;
next_packet.SCSIDiskOffset = offset;
UFSDevice[LUN]->setTotalWrite(sg_table_length);
/**
* Break-up the transactions into actions defined by the scatter gather
* list.
*/
for (uint32_t count = 0; count < sg_table_length; count++) {
next_packet.start = sglist[count].upperAddr;
next_packet.start = (next_packet.start << 32) |
(sglist[count].baseAddr & 0xFFFFFFFF);
next_packet.LUN = LUN;
DPRINTF(UFSHostDevice, "Write data DMA start: 0x%8x\n",
next_packet.start);
DPRINTF(UFSHostDevice, "Write data DMA size: 0x%8x\n",
(sglist[count].size + 1));
assert(sglist[count].size > 0);
if (count != 0)
next_packet.SCSIDiskOffset = next_packet.SCSIDiskOffset +
(sglist[count - 1].size + 1);
next_packet.size = sglist[count].size + 1;
/**If the queue is empty, the transaction should be initiated*/
if (dmaWriteInfo.empty())
writeDevice(NULL, true, next_packet.start, next_packet.size,
NULL, next_packet.SCSIDiskOffset, next_packet.LUN);
else
DPRINTF(UFSHostDevice, "Write not initiated queue: %d\n",
dmaWriteInfo.size());
dmaWriteInfo.push_back(next_packet);
DPRINTF(UFSHostDevice, "Write Location: 0x%8x\n",
next_packet.SCSIDiskOffset);
DPRINTF(UFSHostDevice, "Write transfer #: 0x%8x\n", count + 1);
/** stats **/
stats.totalWrittenSSD += (sglist[count].size + 1);
}
/**stats**/
++stats.totalWriteUFSTransactions;
}
/**
* Write done handling function. Is only initiated when the flash is directly
* approached
*/
void
UFSHostDevice::writeDone()
{
/**DMA is done, information no longer needed*/
assert(dmaWriteInfo.size() > 0);
dmaWriteInfo.pop_front();
assert(SSDWriteinfo.size() > 0);
uint32_t lun = SSDWriteinfo.front().lunID;
/**If there is nothing on the way, we need to start the events*/
DPRINTF(UFSHostDevice, "Write done entered, queue: %d\n",
UFSDevice[lun]->SSDWriteDoneInfo.size());
/**Write the disk*/
UFSDevice[lun]->writeFlash(&SSDWriteinfo.front().buffer[0],
SSDWriteinfo.front().offset,
SSDWriteinfo.front().size);
/**
* Move to the second queue, enter the logic unit
* This is where the disk is approached and the flash transaction is
* handled SSDWriteDone will take care of the timing
*/
UFSDevice[lun]->SSDWriteDoneInfo.push_back(SSDWriteinfo.front());
SSDWriteinfo.pop_front();
--writePendingNum;
/**so far, only the DMA part has been handled, lets do the disk delay*/
UFSDevice[lun]->SSDWriteStart();
/** stats **/
stats.currentWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
stats.averageWriteSSDQueue = UFSDevice[lun]->SSDWriteDoneInfo.size();
++stats.totalWriteDiskTransactions;
/**initiate the next dma action (if any)*/
if (!dmaWriteInfo.empty())
writeDevice(NULL, true, dmaWriteInfo.front().start,
dmaWriteInfo.front().size, NULL,
dmaWriteInfo.front().SCSIDiskOffset,
dmaWriteInfo.front().LUN);
DPRINTF(UFSHostDevice, "Write done end\n");
}
/**
* SSD write start. Starts the write action in the timing model
*/
void
UFSHostDevice::UFSSCSIDevice::SSDWriteStart()
{
assert(SSDWriteDoneInfo.size() > 0);
flashDevice->writeMemory(
SSDWriteDoneInfo.front().offset,
SSDWriteDoneInfo.front().size, memWriteCallback);
SSDWriteDoneInfo.pop_front();
DPRINTF(UFSHostDevice, "Write is started; left in queue: %d\n",
SSDWriteDoneInfo.size());
}
/**
* SSDisk write done
*/
void
UFSHostDevice::UFSSCSIDevice::SSDWriteDone()
{
DPRINTF(UFSHostDevice, "Write disk, aiming for %d messages, %d so far\n",
totalWrite, amountOfWriteTransfers);
//we have done one extra transfer
++amountOfWriteTransfers;
/**test whether call was correct*/
assert(totalWrite >= amountOfWriteTransfers && totalWrite != 0);
/**are we there yet? (did we do everything)*/
if (totalWrite == amountOfWriteTransfers) {
DPRINTF(UFSHostDevice, "Write transactions finished\n");
totalWrite = 0;
amountOfWriteTransfers = 0;
//Callback UFS Host
setSignal();
signalDone->process();
}
}
/**
* Dma transaction function: read device. Notice that the dma action is from
* a device perspective, while this function is from an initiator perspective
*/
void
UFSHostDevice::readDevice(bool lastTransfer, Addr start, uint32_t size,
uint8_t* destination, bool no_cache, Event*
additional_action)
{
DPRINTF(UFSHostDevice, "Read start: 0x%8x; Size: %d, data[0]: 0x%8x\n",
start, size, (reinterpret_cast<uint32_t *>(destination))[0]);
/** check wether interrupt is needed */
if (lastTransfer) {
++readPendingNum;
readDoneEvent.push_back(
EventFunctionWrapper([this]{ readDone(); },
name()));
assert(!readDoneEvent.back().scheduled());
dmaPort.dmaAction(MemCmd::WriteReq, start, size,
&readDoneEvent.back(), destination, 0);
//yes, a writereq at a read device function is correct.
} else {
if (additional_action != NULL)
assert(!additional_action->scheduled());
dmaPort.dmaAction(MemCmd::WriteReq, start, size,
additional_action, destination, 0);
}
}
/**
* Manage read transfer. Manages correct transfer flow and makes sure that
* the queues are filled on time
*/
void
UFSHostDevice::manageReadTransfer(uint32_t size, uint32_t LUN, uint64_t
offset, uint32_t sg_table_length,
struct UFSHCDSGEntry* sglist)
{
uint32_t size_accum = 0;
DPRINTF(UFSHostDevice, "Data READ size: %d\n", size);
/**
* Break-up the transactions into actions defined by the scatter gather
* list.
*/
for (uint32_t count = 0; count < sg_table_length; count++) {
struct transferInfo new_transfer;
new_transfer.offset = sglist[count].upperAddr;
new_transfer.offset = (new_transfer.offset << 32) |
(sglist[count].baseAddr & 0xFFFFFFFF);
new_transfer.filePointer = offset + size_accum;
new_transfer.size = (sglist[count].size + 1);
new_transfer.lunID = LUN;
DPRINTF(UFSHostDevice, "Data READ start: 0x%8x; size: %d\n",
new_transfer.offset, new_transfer.size);
UFSDevice[LUN]->SSDReadInfo.push_back(new_transfer);
UFSDevice[LUN]->SSDReadInfo.back().buffer.resize(sglist[count].size
+ 1);
/**
* The disk image is read here; but the action is simultated later
* You can see this as the preparation stage, whereas later is the
* simulation phase.
*/
UFSDevice[LUN]->readFlash(&UFSDevice[LUN]->
SSDReadInfo.back().buffer[0],
offset + size_accum,
sglist[count].size + 1);
size_accum += (sglist[count].size + 1);
DPRINTF(UFSHostDevice, "Transfer %d; Remaining: 0x%8x, Accumulated:"
" 0x%8x\n", (count + 1), (size-size_accum), size_accum);
/** stats **/
stats.totalReadSSD += (sglist[count].size + 1);
stats.currentReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
stats.averageReadSSDQueue = UFSDevice[LUN]->SSDReadInfo.size();
}
UFSDevice[LUN]->SSDReadStart(sg_table_length);
/** stats **/
++stats.totalReadUFSTransactions;
}
/**
* SSDisk start read; this function was created to keep the interfaces
* between the layers simpler. Without this function UFSHost would need to
* know about the flashdevice.
*/
void
UFSHostDevice::UFSSCSIDevice::SSDReadStart(uint32_t total_read)
{
totalRead = total_read;
for (uint32_t number_handled = 0; number_handled < SSDReadInfo.size();
number_handled++) {
/**
* Load all the read request to the Memory device.
* It will call back when done.
*/
flashDevice->readMemory(SSDReadInfo.front().filePointer,
SSDReadInfo.front().size, memReadCallback);
}
}
/**
* SSDisk read done
*/
void
UFSHostDevice::UFSSCSIDevice::SSDReadDone()
{
DPRINTF(UFSHostDevice, "SSD read done at lun %d, Aiming for %d messages,"
" %d so far\n", lunID, totalRead, amountOfReadTransfers);
if (totalRead == amountOfReadTransfers) {
totalRead = 0;
amountOfReadTransfers = 0;
/**Callback: transferdone*/
setSignal();
signalDone->process();
}
}
/**
* Read callback, on the way from the disk to the DMA. Called by the flash
* layer. Intermediate step to the host layer
*/
void
UFSHostDevice::UFSSCSIDevice::readCallback()
{
++amountOfReadTransfers;
/**Callback; make sure data is transfered upstream:
* UFSHostDevice::readCallback
*/
setReadSignal();
deviceReadCallback->process();
//Are we done yet?
SSDReadDone();
}
/**
* Read callback, on the way from the disk to the DMA. Called by the UFSSCSI
* layer.
*/
void
UFSHostDevice::readCallback()
{
DPRINTF(UFSHostDevice, "Read Callback\n");
uint8_t this_lun = 0;
//while we haven't found the right lun, keep searching
while ((this_lun < lunAvail) && !UFSDevice[this_lun]->finishedRead())
++this_lun;
DPRINTF(UFSHostDevice, "Found LUN %d messages pending for clean: %d\n",
this_lun, SSDReadPending.size());
if (this_lun < lunAvail) {
//Clear signal.
UFSDevice[this_lun]->clearReadSignal();
SSDReadPending.push_back(UFSDevice[this_lun]->SSDReadInfo.front());
UFSDevice[this_lun]->SSDReadInfo.pop_front();
readGarbageEventQueue.push_back(
EventFunctionWrapper([this]{ readGarbage(); }, name()));
//make sure the queue is popped a the end of the dma transaction
readDevice(false, SSDReadPending.front().offset,
SSDReadPending.front().size,
&SSDReadPending.front().buffer[0], false,
&readGarbageEventQueue.back());
/**stats*/
++stats.totalReadDiskTransactions;
}
else
panic("no read finished in tick %d\n", curTick());
}
/**
* After a disk read DMA transfer, the structure needs to be freed. This is
* done in this function.
*/
void
UFSHostDevice::readGarbage()
{
DPRINTF(UFSHostDevice, "Clean read data, %d\n", SSDReadPending.size());
SSDReadPending.pop_front();
readGarbageEventQueue.pop_front();
}
/**
* Serialize; needed to make checkpoints
*/
void
UFSHostDevice::serialize(CheckpointOut &cp) const
{
DmaDevice::serialize(cp);
const uint8_t* temp_HCI_mem = reinterpret_cast<const uint8_t*>(&UFSHCIMem);
SERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
uint32_t lun_avail = lunAvail;
SERIALIZE_SCALAR(lun_avail);
}
/**
* Unserialize; needed to restore from checkpoints
*/
void
UFSHostDevice::unserialize(CheckpointIn &cp)
{
DmaDevice::unserialize(cp);
uint8_t* temp_HCI_mem = reinterpret_cast<uint8_t*>(&UFSHCIMem);
UNSERIALIZE_ARRAY(temp_HCI_mem, sizeof(HCIMem));
uint32_t lun_avail;
UNSERIALIZE_SCALAR(lun_avail);
assert(lunAvail == lun_avail);
}
/**
* Drain; needed to enable checkpoints
*/
DrainState
UFSHostDevice::drain()
{
if (UFSHCIMem.TRUTRLDBR) {
DPRINTF(UFSHostDevice, "UFSDevice is draining...\n");
return DrainState::Draining;
} else {
DPRINTF(UFSHostDevice, "UFSDevice drained\n");
return DrainState::Drained;
}
}
/**
* Checkdrain; needed to enable checkpoints
*/
void
UFSHostDevice::checkDrain()
{
if (drainState() != DrainState::Draining)
return;
if (UFSHCIMem.TRUTRLDBR) {
DPRINTF(UFSHostDevice, "UFSDevice is still draining; with %d active"
" doorbells\n", activeDoorbells);
} else {
DPRINTF(UFSHostDevice, "UFSDevice is done draining\n");
signalDrainDone();
}
}
|