summaryrefslogtreecommitdiff
path: root/src/dev/i8254xGBe.cc
blob: e54249deecabf0ed9a61d81ded604ef8ac9bf977 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
/*
 * Copyright (c) 2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Ali Saidi
 */

/* @file
 * Device model for Intel's 8254x line of gigabit ethernet controllers.
 * In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
 * fewest workarounds in the driver. It will probably work with most of the
 * other MACs with slight modifications.
 */


/*
 * @todo really there are multiple dma engines.. we should implement them.
 */

#include "base/inet.hh"
#include "base/trace.hh"
#include "dev/i8254xGBe.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "sim/builder.hh"
#include "sim/stats.hh"
#include "sim/system.hh"

#include <algorithm>

using namespace iGbReg;
using namespace Net;

IGbE::IGbE(Params *p)
    : PciDev(p), etherInt(NULL),  drainEvent(NULL), useFlowControl(p->use_flow_control),
      rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
      txTick(false), txFifoTick(false), rdtrEvent(this), radvEvent(this),
      tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
      rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
      txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size), clock(p->clock)
{
    // Initialized internal registers per Intel documentation
    // All registers intialized to 0 by per register constructor
    regs.ctrl.fd(1);
    regs.ctrl.lrst(1);
    regs.ctrl.speed(2);
    regs.ctrl.frcspd(1);
    regs.sts.speed(3); // Say we're 1000Mbps
    regs.sts.fd(1); // full duplex
    regs.sts.lu(1); // link up
    regs.eecd.fwe(1);
    regs.eecd.ee_type(1);
    regs.imr = 0;
    regs.iam = 0;
    regs.rxdctl.gran(1);
    regs.rxdctl.wthresh(1);
    regs.fcrth(1);

    regs.pba.rxa(0x30);
    regs.pba.txa(0x10);

    eeOpBits            = 0;
    eeAddrBits          = 0;
    eeDataBits          = 0;
    eeOpcode            = 0;

    // clear all 64 16 bit words of the eeprom
    memset(&flash, 0, EEPROM_SIZE*2);

    // Set the MAC address
    memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
    for (int x = 0; x < ETH_ADDR_LEN/2; x++)
        flash[x] = htobe(flash[x]);

    uint16_t csum = 0;
    for (int x = 0; x < EEPROM_SIZE; x++)
        csum += htobe(flash[x]);


    // Magic happy checksum value
    flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));

    rxFifo.clear();
    txFifo.clear();
}


Tick
IGbE::writeConfig(PacketPtr pkt)
{
    int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
    if (offset < PCI_DEVICE_SPECIFIC)
        PciDev::writeConfig(pkt);
    else
        panic("Device specific PCI config space not implemented.\n");

    ///
    /// Some work may need to be done here based for the pci COMMAND bits.
    ///

    return pioDelay;
}

Tick
IGbE::read(PacketPtr pkt)
{
    int bar;
    Addr daddr;

    if (!getBAR(pkt->getAddr(), bar, daddr))
        panic("Invalid PCI memory access to unmapped memory.\n");

    // Only Memory register BAR is allowed
    assert(bar == 0);

    // Only 32bit accesses allowed
    assert(pkt->getSize() == 4);

    DPRINTF(Ethernet, "Read device register %#X\n", daddr);

    pkt->allocate();

    ///
    /// Handle read of register here
    ///


    switch (daddr) {
      case REG_CTRL:
        pkt->set<uint32_t>(regs.ctrl());
        break;
      case REG_STATUS:
        pkt->set<uint32_t>(regs.sts());
        break;
      case REG_EECD:
        pkt->set<uint32_t>(regs.eecd());
        break;
      case REG_EERD:
        pkt->set<uint32_t>(regs.eerd());
        break;
      case REG_CTRL_EXT:
        pkt->set<uint32_t>(regs.ctrl_ext());
        break;
      case REG_MDIC:
        pkt->set<uint32_t>(regs.mdic());
        break;
      case REG_ICR:
        DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
                regs.imr, regs.iam, regs.ctrl_ext.iame());
        pkt->set<uint32_t>(regs.icr());
        if (regs.icr.int_assert() || regs.imr == 0) {
            regs.icr = regs.icr() & ~mask(30);
            DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
        }
        if (regs.ctrl_ext.iame() && regs.icr.int_assert())
            regs.imr &= ~regs.iam;
        chkInterrupt();
        break;
      case REG_ITR:
        pkt->set<uint32_t>(regs.itr());
        break;
      case REG_RCTL:
        pkt->set<uint32_t>(regs.rctl());
        break;
      case REG_FCTTV:
        pkt->set<uint32_t>(regs.fcttv());
        break;
      case REG_TCTL:
        pkt->set<uint32_t>(regs.tctl());
        break;
      case REG_PBA:
        pkt->set<uint32_t>(regs.pba());
        break;
      case REG_WUC:
      case REG_LEDCTL:
        pkt->set<uint32_t>(0); // We don't care, so just return 0
        break;
      case REG_FCRTL:
        pkt->set<uint32_t>(regs.fcrtl());
        break;
      case REG_FCRTH:
        pkt->set<uint32_t>(regs.fcrth());
        break;
      case REG_RDBAL:
        pkt->set<uint32_t>(regs.rdba.rdbal());
        break;
      case REG_RDBAH:
        pkt->set<uint32_t>(regs.rdba.rdbah());
        break;
      case REG_RDLEN:
        pkt->set<uint32_t>(regs.rdlen());
        break;
      case REG_RDH:
        pkt->set<uint32_t>(regs.rdh());
        break;
      case REG_RDT:
        pkt->set<uint32_t>(regs.rdt());
        break;
      case REG_RDTR:
        pkt->set<uint32_t>(regs.rdtr());
        if (regs.rdtr.fpd()) {
            rxDescCache.writeback(0);
            DPRINTF(EthernetIntr, "Posting interrupt because of RDTR.FPD write\n");
            postInterrupt(IT_RXT);
            regs.rdtr.fpd(0);
        }
        break;
      case REG_RADV:
        pkt->set<uint32_t>(regs.radv());
        break;
      case REG_TDBAL:
        pkt->set<uint32_t>(regs.tdba.tdbal());
        break;
      case REG_TDBAH:
        pkt->set<uint32_t>(regs.tdba.tdbah());
        break;
      case REG_TDLEN:
        pkt->set<uint32_t>(regs.tdlen());
        break;
      case REG_TDH:
        pkt->set<uint32_t>(regs.tdh());
        break;
      case REG_TDT:
        pkt->set<uint32_t>(regs.tdt());
        break;
      case REG_TIDV:
        pkt->set<uint32_t>(regs.tidv());
        break;
      case REG_TXDCTL:
        pkt->set<uint32_t>(regs.txdctl());
        break;
      case REG_TADV:
        pkt->set<uint32_t>(regs.tadv());
        break;
      case REG_RXCSUM:
        pkt->set<uint32_t>(regs.rxcsum());
        break;
      case REG_MANC:
        pkt->set<uint32_t>(regs.manc());
        break;
      default:
        if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
            !(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
            !(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)) &&
            !(daddr >= REG_CRCERRS && daddr < (REG_CRCERRS + STATS_REGS_SIZE)))
            panic("Read request to unknown register number: %#x\n", daddr);
        else
            pkt->set<uint32_t>(0);
    };

    pkt->result = Packet::Success;
    return pioDelay;
}

Tick
IGbE::write(PacketPtr pkt)
{
    int bar;
    Addr daddr;


    if (!getBAR(pkt->getAddr(), bar, daddr))
        panic("Invalid PCI memory access to unmapped memory.\n");

    // Only Memory register BAR is allowed
    assert(bar == 0);

    // Only 32bit accesses allowed
    assert(pkt->getSize() == sizeof(uint32_t));

    DPRINTF(Ethernet, "Wrote device register %#X value %#X\n", daddr, pkt->get<uint32_t>());

    ///
    /// Handle write of register here
    ///
    uint32_t val = pkt->get<uint32_t>();

    Regs::RCTL oldrctl;
    Regs::TCTL oldtctl;

    switch (daddr) {
      case REG_CTRL:
        regs.ctrl = val;
        if (regs.ctrl.tfce())
            warn("TX Flow control enabled, should implement\n");
        if (regs.ctrl.rfce())
            warn("RX Flow control enabled, should implement\n");
        break;
      case REG_CTRL_EXT:
        regs.ctrl_ext = val;
        break;
      case REG_STATUS:
        regs.sts = val;
        break;
      case REG_EECD:
        int oldClk;
        oldClk = regs.eecd.sk();
        regs.eecd = val;
        // See if this is a eeprom access and emulate accordingly
        if (!oldClk && regs.eecd.sk()) {
            if (eeOpBits < 8) {
                eeOpcode = eeOpcode << 1 | regs.eecd.din();
                eeOpBits++;
            } else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
                eeAddr = eeAddr << 1 | regs.eecd.din();
                eeAddrBits++;
            } else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
                assert(eeAddr>>1 < EEPROM_SIZE);
                DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
                        flash[eeAddr>>1] >> eeDataBits & 0x1, flash[eeAddr>>1]);
                regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
                eeDataBits++;
            } else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
                regs.eecd.dout(0);
                eeDataBits++;
            } else
                panic("What's going on with eeprom interface? opcode:"
                       " %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
                       (uint32_t)eeOpBits, (uint32_t)eeAddr,
                       (uint32_t)eeAddrBits, (uint32_t)eeDataBits);

            // Reset everything for the next command
            if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
               (eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
                eeOpBits = 0;
                eeAddrBits = 0;
                eeDataBits = 0;
               eeOpcode = 0;
                eeAddr = 0;
            }

           DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
                    (uint32_t)eeOpcode, (uint32_t) eeOpBits,
                    (uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
           if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
                                   eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
                panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
                        (uint32_t)eeOpBits);


        }
        // If driver requests eeprom access, immediately give it to it
        regs.eecd.ee_gnt(regs.eecd.ee_req());
        break;
      case REG_EERD:
        regs.eerd = val;
        break;
      case REG_MDIC:
        regs.mdic = val;
        if (regs.mdic.i())
            panic("No support for interrupt on mdic complete\n");
        if (regs.mdic.phyadd() != 1)
            panic("No support for reading anything but phy\n");
        DPRINTF(Ethernet, "%s phy address %x\n", regs.mdic.op() == 1 ? "Writing"
                : "Reading", regs.mdic.regadd());
        switch (regs.mdic.regadd()) {
            case PHY_PSTATUS:
                regs.mdic.data(0x796D); // link up
                break;
            case PHY_PID:
                regs.mdic.data(0x02A8);
                break;
            case PHY_EPID:
                regs.mdic.data(0x0380);
                break;
            case PHY_GSTATUS:
                regs.mdic.data(0x7C00);
                break;
            case PHY_EPSTATUS:
                regs.mdic.data(0x3000);
                break;
            case PHY_AGC:
                regs.mdic.data(0x180); // some random length
                break;
            default:
                regs.mdic.data(0);
        }
        regs.mdic.r(1);
        break;
      case REG_ICR:
        DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
                regs.imr, regs.iam, regs.ctrl_ext.iame());
        if (regs.ctrl_ext.iame())
            regs.imr &= ~regs.iam;
        regs.icr = ~bits(val,30,0) & regs.icr();
        chkInterrupt();
        break;
      case REG_ITR:
        regs.itr = val;
        break;
      case REG_ICS:
        DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
        postInterrupt((IntTypes)val);
        break;
       case REG_IMS:
        regs.imr |= val;
        chkInterrupt();
        break;
      case REG_IMC:
        regs.imr &= ~val;
        chkInterrupt();
        break;
      case REG_IAM:
        regs.iam = val;
        break;
      case REG_RCTL:
        oldrctl = regs.rctl;
        regs.rctl = val;
        if (regs.rctl.rst()) {
            rxDescCache.reset();
            DPRINTF(EthernetSM, "RXS: Got RESET!\n");
            rxFifo.clear();
            regs.rctl.rst(0);
        }
        if (regs.rctl.en())
            rxTick = true;
        restartClock();
        break;
      case REG_FCTTV:
        regs.fcttv = val;
        break;
      case REG_TCTL:
        regs.tctl = val;
        oldtctl = regs.tctl;
        regs.tctl = val;
        if (regs.tctl.en())
           txTick = true;
        restartClock();
        if (regs.tctl.en() && !oldtctl.en()) {
            txDescCache.reset();
        }
         break;
      case REG_PBA:
        regs.pba.rxa(val);
        regs.pba.txa(64 - regs.pba.rxa());
        break;
      case REG_WUC:
      case REG_LEDCTL:
      case REG_FCAL:
      case REG_FCAH:
      case REG_FCT:
      case REG_VET:
      case REG_AIFS:
      case REG_TIPG:
        ; // We don't care, so don't store anything
        break;
      case REG_FCRTL:
        regs.fcrtl = val;
        break;
      case REG_FCRTH:
        regs.fcrth = val;
        break;
      case REG_RDBAL:
        regs.rdba.rdbal( val & ~mask(4));
        rxDescCache.areaChanged();
        break;
      case REG_RDBAH:
        regs.rdba.rdbah(val);
        rxDescCache.areaChanged();
        break;
      case REG_RDLEN:
        regs.rdlen = val & ~mask(7);
        rxDescCache.areaChanged();
        break;
      case REG_RDH:
        regs.rdh = val;
        rxDescCache.areaChanged();
        break;
      case REG_RDT:
        regs.rdt = val;
        rxTick = true;
        restartClock();
        break;
      case REG_RDTR:
        regs.rdtr = val;
        break;
      case REG_RADV:
        regs.radv = val;
        break;
      case REG_TDBAL:
        regs.tdba.tdbal( val & ~mask(4));
        txDescCache.areaChanged();
        break;
      case REG_TDBAH:
        regs.tdba.tdbah(val);
        txDescCache.areaChanged();
        break;
      case REG_TDLEN:
        regs.tdlen = val & ~mask(7);
        txDescCache.areaChanged();
        break;
      case REG_TDH:
        regs.tdh = val;
        txDescCache.areaChanged();
        break;
      case REG_TDT:
        regs.tdt = val;
        txTick = true;
        restartClock();
        break;
      case REG_TIDV:
        regs.tidv = val;
        break;
      case REG_TXDCTL:
        regs.txdctl = val;
        break;
      case REG_TADV:
        regs.tadv = val;
        break;
      case REG_RXCSUM:
        regs.rxcsum = val;
        break;
      case REG_MANC:
        regs.manc = val;
        break;
      default:
       if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
           !(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
           !(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)))
           panic("Write request to unknown register number: %#x\n", daddr);
    };

    pkt->result = Packet::Success;
    return pioDelay;
}

void
IGbE::postInterrupt(IntTypes t, bool now)
{
    assert(t);

    // Interrupt is already pending
    if (t & regs.icr())
        return;

    if (regs.icr() & regs.imr)
    {
        regs.icr = regs.icr() | t;
        if (!interEvent.scheduled())
            interEvent.schedule(curTick + Clock::Int::ns * 256 *
                    regs.itr.interval());
    } else {
        regs.icr = regs.icr() | t;
        if (regs.itr.interval() == 0 || now) {
            if (interEvent.scheduled())
                interEvent.deschedule();
            cpuPostInt();
        } else {
           DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for %d ticks\n",
                    Clock::Int::ns * 256 * regs.itr.interval());
           if (!interEvent.scheduled())
               interEvent.schedule(curTick + Clock::Int::ns * 256 * regs.itr.interval());
        }
    }
}

void
IGbE::cpuPostInt()
{
    if (rdtrEvent.scheduled()) {
        regs.icr.rxt0(1);
        rdtrEvent.deschedule();
    }
    if (radvEvent.scheduled()) {
        regs.icr.rxt0(1);
        radvEvent.deschedule();
    }
    if (tadvEvent.scheduled()) {
        regs.icr.txdw(1);
        tadvEvent.deschedule();
    }
    if (tidvEvent.scheduled()) {
        regs.icr.txdw(1);
        tidvEvent.deschedule();
    }

    regs.icr.int_assert(1);
    DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
            regs.icr());
    intrPost();
}

void
IGbE::cpuClearInt()
{
    if (regs.icr.int_assert()) {
        regs.icr.int_assert(0);
        DPRINTF(EthernetIntr, "EINT: Clearing interrupt to CPU now. Vector %#x\n",
                regs.icr());
        intrClear();
    }
}

void
IGbE::chkInterrupt()
{
    // Check if we need to clear the cpu interrupt
    if (!(regs.icr() & regs.imr)) {
        if (interEvent.scheduled())
           interEvent.deschedule();
        if (regs.icr.int_assert())
            cpuClearInt();
    }

    if (regs.icr() & regs.imr) {
        if (regs.itr.interval() == 0)  {
            cpuPostInt();
        } else {
            if (!interEvent.scheduled())
               interEvent.schedule(curTick + Clock::Int::ns * 256 * regs.itr.interval());
        }
    }


}


IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
    : DescCache<RxDesc>(i, n, s), pktDone(false), pktEvent(this)

{
}

bool
IGbE::RxDescCache::writePacket(EthPacketPtr packet)
{
    // We shouldn't have to deal with any of these yet
    DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
            packet->length, igbe->regs.rctl.descSize());
    assert(packet->length < igbe->regs.rctl.descSize());

    if (!unusedCache.size())
        return false;

    pktPtr = packet;

    igbe->dmaWrite(igbe->platform->pciToDma(unusedCache.front()->buf),
            packet->length, &pktEvent, packet->data);
    return true;
}

void
IGbE::RxDescCache::pktComplete()
{
    assert(unusedCache.size());
    RxDesc *desc;
    desc = unusedCache.front();

    uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
    desc->len = htole((uint16_t)(pktPtr->length + crcfixup));
    DPRINTF(EthernetDesc, "pktPtr->length: %d stripcrc offset: %d value written: %d %d\n",
            pktPtr->length, crcfixup,
            htole((uint16_t)(pktPtr->length + crcfixup)),
            (uint16_t)(pktPtr->length + crcfixup));

    // no support for anything but starting at 0
    assert(igbe->regs.rxcsum.pcss() == 0);

    DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");

    uint8_t status = RXDS_DD | RXDS_EOP;
    uint8_t err = 0;
    IpPtr ip(pktPtr);
    if (ip) {
        if (igbe->regs.rxcsum.ipofld()) {
            DPRINTF(EthernetDesc, "Checking IP checksum\n");
            status |= RXDS_IPCS;
            desc->csum = htole(cksum(ip));
            if (cksum(ip) != 0) {
                err |= RXDE_IPE;
                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
            }
        }
        TcpPtr tcp(ip);
        if (tcp && igbe->regs.rxcsum.tuofld()) {
            DPRINTF(EthernetDesc, "Checking TCP checksum\n");
            status |= RXDS_TCPCS;
            desc->csum = htole(cksum(tcp));
            if (cksum(tcp) != 0) {
                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
                err |= RXDE_TCPE;
            }
        }

        UdpPtr udp(ip);
        if (udp && igbe->regs.rxcsum.tuofld()) {
            DPRINTF(EthernetDesc, "Checking UDP checksum\n");
            status |= RXDS_UDPCS;
            desc->csum = htole(cksum(udp));
            if (cksum(udp) != 0) {
                DPRINTF(EthernetDesc, "Checksum is bad!!\n");
                err |= RXDE_TCPE;
            }
        }
    } // if ip

    desc->status = htole(status);
    desc->errors = htole(err);

    // No vlan support at this point... just set it to 0
    desc->vlan = 0;

    // Deal with the rx timer interrupts
    if (igbe->regs.rdtr.delay()) {
        DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n",
                igbe->regs.rdtr.delay() * igbe->intClock());
        if (igbe->rdtrEvent.scheduled())
            igbe->rdtrEvent.reschedule(curTick + igbe->regs.rdtr.delay() *
                    igbe->intClock());
        else
            igbe->rdtrEvent.schedule(curTick + igbe->regs.rdtr.delay() *
                    igbe->intClock());
    }

    if (igbe->regs.radv.idv() && igbe->regs.rdtr.delay()) {
        DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n",
                igbe->regs.radv.idv() * igbe->intClock());
        if (!igbe->radvEvent.scheduled())
            igbe->radvEvent.schedule(curTick + igbe->regs.radv.idv() *
                    igbe->intClock());
    }

    // if neither radv or rdtr, maybe itr is set...
    if (!igbe->regs.rdtr.delay()) {
        DPRINTF(EthernetSM, "RXS: Receive interrupt delay disabled, posting IT_RXT\n");
        igbe->postInterrupt(IT_RXT);
    }

    // If the packet is small enough, interrupt appropriately
    // I wonder if this is delayed or not?!
    if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
        DPRINTF(EthernetSM, "RXS: Posting IT_SRPD beacuse small packet received\n");
        igbe->postInterrupt(IT_SRPD);
    }

    DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
    unusedCache.pop_front();
    usedCache.push_back(desc);
    pktPtr = NULL;
    enableSm();
    pktDone = true;
    igbe->checkDrain();
}

void
IGbE::RxDescCache::enableSm()
{
    igbe->rxTick = true;
    igbe->restartClock();
}

bool
IGbE::RxDescCache::packetDone()
{
    if (pktDone) {
        pktDone = false;
        return true;
    }
    return false;
}

bool
IGbE::RxDescCache::hasOutstandingEvents()
{
    return pktEvent.scheduled() || wbEvent.scheduled() ||
        fetchEvent.scheduled();
}

void
IGbE::RxDescCache::serialize(std::ostream &os)
{
    DescCache<RxDesc>::serialize(os);
    SERIALIZE_SCALAR(pktDone);
}

void
IGbE::RxDescCache::unserialize(Checkpoint *cp, const std::string &section)
{
    DescCache<RxDesc>::unserialize(cp, section);
    UNSERIALIZE_SCALAR(pktDone);
}


///////////////////////////////////// IGbE::TxDesc /////////////////////////////////

IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
    : DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false), pktWaiting(false),
       pktEvent(this)

{
}

int
IGbE::TxDescCache::getPacketSize()
{
    assert(unusedCache.size());

    TxDesc *desc;

    DPRINTF(EthernetDesc, "Starting processing of descriptor\n");

    while (unusedCache.size() && TxdOp::isContext(unusedCache.front())) {
        DPRINTF(EthernetDesc, "Got context descriptor type... skipping\n");

        // I think we can just ignore these for now?
        desc = unusedCache.front();
        // is this going to be a tcp or udp packet?
        isTcp = TxdOp::tcp(desc) ? true : false;

        // make sure it's ipv4
        assert(TxdOp::ip(desc));

        TxdOp::setDd(desc);
        unusedCache.pop_front();
        usedCache.push_back(desc);
    }

    if (!unusedCache.size())
        return -1;

    DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
            TxdOp::getLen(unusedCache.front()));

    return TxdOp::getLen(unusedCache.front());
}

void
IGbE::TxDescCache::getPacketData(EthPacketPtr p)
{
    assert(unusedCache.size());

    TxDesc *desc;
    desc = unusedCache.front();

    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));

    pktPtr = p;

    pktWaiting = true;

    DPRINTF(EthernetDesc, "Starting DMA of packet\n");
    igbe->dmaRead(igbe->platform->pciToDma(TxdOp::getBuf(desc)),
            TxdOp::getLen(desc), &pktEvent, p->data + p->length);


}

void
IGbE::TxDescCache::pktComplete()
{

    TxDesc *desc;
    assert(unusedCache.size());
    assert(pktPtr);

    DPRINTF(EthernetDesc, "DMA of packet complete\n");


    desc = unusedCache.front();
    assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));

    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);

    if (!TxdOp::eop(desc)) {
        // This only supports two descriptors per tx packet
        assert(pktPtr->length == 0);
        pktPtr->length = TxdOp::getLen(desc);
        unusedCache.pop_front();
        usedCache.push_back(desc);
        pktDone = true;
        pktWaiting = false;
        pktPtr = NULL;

        DPRINTF(EthernetDesc, "Partial Packet Descriptor Done\n");
        return;
    }

    // Set the length of the data in the EtherPacket
    pktPtr->length += TxdOp::getLen(desc);

    // no support for vlans
    assert(!TxdOp::vle(desc));

    // we alway report status
    assert(TxdOp::rs(desc));

    // we only support single packet descriptors at this point
    assert(TxdOp::eop(desc));

    // set that this packet is done
    TxdOp::setDd(desc);

    DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);

    // Checksums are only ofloaded for new descriptor types
    if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
        DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
        IpPtr ip(pktPtr);
        if (TxdOp::ixsm(desc)) {
            ip->sum(0);
            ip->sum(cksum(ip));
            DPRINTF(EthernetDesc, "Calculated IP checksum\n");
        }
       if (TxdOp::txsm(desc)) {
           if (isTcp) {
                TcpPtr tcp(ip);
                assert(tcp);
                tcp->sum(0);
                tcp->sum(cksum(tcp));
                DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
           } else {
                UdpPtr udp(ip);
                assert(udp);
                udp->sum(0);
                udp->sum(cksum(udp));
                DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
           }
        }
    }

    if (TxdOp::ide(desc)) {
        // Deal with the rx timer interrupts
        DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
        if (igbe->regs.tidv.idv()) {
            DPRINTF(EthernetDesc, "setting tidv\n");
            if (igbe->tidvEvent.scheduled())
                igbe->tidvEvent.reschedule(curTick + igbe->regs.tidv.idv() *
                        igbe->intClock());
            else
                igbe->tidvEvent.schedule(curTick + igbe->regs.tidv.idv() *
                        igbe->intClock());
        }

        if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
            DPRINTF(EthernetDesc, "setting tadv\n");
            if (!igbe->tadvEvent.scheduled())
                igbe->tadvEvent.schedule(curTick + igbe->regs.tadv.idv() *
                        igbe->intClock());
        }
    }



    unusedCache.pop_front();
    usedCache.push_back(desc);
    pktDone = true;
    pktWaiting = false;
    pktPtr = NULL;

    DPRINTF(EthernetDesc, "Descriptor Done\n");

    if (igbe->regs.txdctl.wthresh() == 0) {
        DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
        writeback(0);
    } else if (igbe->regs.txdctl.wthresh() >= usedCache.size()) {
        DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
        writeback((igbe->cacheBlockSize()-1)>>4);
    }
    igbe->checkDrain();
}

void
IGbE::TxDescCache::serialize(std::ostream &os)
{
    DescCache<TxDesc>::serialize(os);
    SERIALIZE_SCALAR(pktDone);
    SERIALIZE_SCALAR(isTcp);
    SERIALIZE_SCALAR(pktWaiting);
}

void
IGbE::TxDescCache::unserialize(Checkpoint *cp, const std::string &section)
{
    DescCache<TxDesc>::unserialize(cp, section);
    UNSERIALIZE_SCALAR(pktDone);
    UNSERIALIZE_SCALAR(isTcp);
    UNSERIALIZE_SCALAR(pktWaiting);
}

bool
IGbE::TxDescCache::packetAvailable()
{
    if (pktDone) {
        pktDone = false;
        return true;
    }
    return false;
}

void
IGbE::TxDescCache::enableSm()
{
    igbe->txTick = true;
    igbe->restartClock();
}

bool
IGbE::TxDescCache::hasOutstandingEvents()
{
    return pktEvent.scheduled() || wbEvent.scheduled() ||
        fetchEvent.scheduled();
}


///////////////////////////////////// IGbE /////////////////////////////////

void
IGbE::restartClock()
{
    if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) && getState() ==
            SimObject::Running)
        tickEvent.schedule((curTick/cycles(1)) * cycles(1) + cycles(1));
}

unsigned int
IGbE::drain(Event *de)
{
    unsigned int count;
    count = pioPort->drain(de) + dmaPort->drain(de);
    if (rxDescCache.hasOutstandingEvents() ||
            txDescCache.hasOutstandingEvents()) {
        count++;
        drainEvent = de;
    }

    txFifoTick = false;
    txTick = false;
    rxTick = false;

    if (tickEvent.scheduled())
        tickEvent.deschedule();

    if (count)
        changeState(Draining);
    else
        changeState(Drained);

    return count;
}

void
IGbE::resume()
{
    SimObject::resume();

    txFifoTick = true;
    txTick = true;
    rxTick = true;

    restartClock();
}

void
IGbE::checkDrain()
{
    if (!drainEvent)
        return;

    if (rxDescCache.hasOutstandingEvents() ||
            txDescCache.hasOutstandingEvents()) {
        drainEvent->process();
        drainEvent = NULL;
    }
}

void
IGbE::txStateMachine()
{
    if (!regs.tctl.en()) {
        txTick = false;
        DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
        return;
    }

    // If we have a packet available and it's length is not 0 (meaning it's not
    // a multidescriptor packet) put it in the fifo, otherwise an the next
    // iteration we'll get the rest of the data
    if (txPacket && txDescCache.packetAvailable() && txPacket->length) {
        bool success;
        DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
        success = txFifo.push(txPacket);
        txFifoTick = true;
        assert(success);
        txPacket = NULL;
        txDescCache.writeback((cacheBlockSize()-1)>>4);
        return;
    }

    // Only support descriptor granularity
    assert(regs.txdctl.gran());
    if (regs.txdctl.lwthresh() && txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
        DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
        postInterrupt(IT_TXDLOW);
    }

    if (!txPacket) {
        txPacket = new EthPacketData(16384);
    }

    if (!txDescCache.packetWaiting()) {
        if (txDescCache.descLeft() == 0) {
            DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
                    "writeback stopping ticking and posting TXQE\n");
            txDescCache.writeback(0);
            txTick = false;
            postInterrupt(IT_TXQE, true);
            return;
        }


        if (!(txDescCache.descUnused())) {
            DPRINTF(EthernetSM, "TXS: No descriptors available in cache, fetching and stopping ticking\n");
            txTick = false;
            txDescCache.fetchDescriptors();
            return;
        }

        int size;
        size = txDescCache.getPacketSize();
        if (size > 0 && txFifo.avail() > size) {
            DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and begining "
                    "DMA of next packet\n", size);
            txFifo.reserve(size);
            txDescCache.getPacketData(txPacket);
        } else if (size <= 0) {
            DPRINTF(EthernetSM, "TXS: No packets to get, writing back used descriptors\n");
            txDescCache.writeback(0);
        } else {
            DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
                    "available in FIFO\n");
            txDescCache.writeback((cacheBlockSize()-1)>>4);
            txTick = false;
        }


        return;
    }
}

bool
IGbE::ethRxPkt(EthPacketPtr pkt)
{
    DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
    if (!regs.rctl.en()) {
        DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
        return true;
    }

    // restart the state machines if they are stopped
    rxTick = true;
    if ((rxTick || txTick) && !tickEvent.scheduled()) {
        DPRINTF(EthernetSM, "RXS: received packet into fifo, starting ticking\n");
        restartClock();
    }

    if (!rxFifo.push(pkt)) {
        DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
        postInterrupt(IT_RXO, true);
        return false;
    }
    return true;
}


void
IGbE::rxStateMachine()
{
    if (!regs.rctl.en()) {
        rxTick = false;
        DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
        return;
    }

    // If the packet is done check for interrupts/descriptors/etc
    if (rxDescCache.packetDone()) {
        DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
        int descLeft = rxDescCache.descLeft();
        switch (regs.rctl.rdmts()) {
            case 2: if (descLeft > .125 * regs.rdlen()) break;
            case 1: if (descLeft > .250 * regs.rdlen()) break;
            case 0: if (descLeft > .500 * regs.rdlen())  break;
                DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) because of descriptors left\n");
                postInterrupt(IT_RXDMT);
                break;
        }

        if (descLeft == 0) {
            DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
                    " writeback and stopping ticking\n");
            rxDescCache.writeback(0);
            rxTick = false;
        }

        // only support descriptor granulaties
        assert(regs.rxdctl.gran());

        if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
            DPRINTF(EthernetSM, "RXS: Writing back because WTHRESH >= descUsed\n");
            if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
                rxDescCache.writeback(regs.rxdctl.wthresh()-1);
            else
                rxDescCache.writeback((cacheBlockSize()-1)>>4);
        }

        if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
             ((rxDescCache.descLeft() - rxDescCache.descUnused()) > regs.rxdctl.hthresh())) {
            DPRINTF(EthernetSM, "RXS: Fetching descriptors because descUnused < PTHRESH\n");
            rxDescCache.fetchDescriptors();
        }

        if (rxDescCache.descUnused() == 0) {
            DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
                    "fetching descriptors and stopping ticking\n");
            rxTick = false;
            rxDescCache.fetchDescriptors();
        }
        return;
    }

    if (!rxDescCache.descUnused()) {
        DPRINTF(EthernetSM, "RXS: No descriptors available in cache, stopping ticking\n");
        rxTick = false;
        DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
        rxDescCache.fetchDescriptors();
        return;
    }

    if (rxFifo.empty()) {
        DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
        rxTick = false;
        return;
    }

    EthPacketPtr pkt;
    pkt = rxFifo.front();

    DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
    if (!rxDescCache.writePacket(pkt)) {
        return;
    }

    DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
    rxFifo.pop();
    DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
    rxTick = false;
}

void
IGbE::txWire()
{
    if (txFifo.empty()) {
        txFifoTick = false;
        return;
    }


    if (etherInt->sendPacket(txFifo.front())) {
        DPRINTF(EthernetSM, "TxFIFO: Successful transmit, bytes available in fifo: %d\n",
                txFifo.avail());
        txFifo.pop();
    } else {
        // We'll get woken up when the packet ethTxDone() gets called
        txFifoTick = false;
    }

}

void
IGbE::tick()
{
    DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");

    if (rxTick)
        rxStateMachine();

    if (txTick)
        txStateMachine();

    if (txFifoTick)
        txWire();


    if (rxTick || txTick || txFifoTick)
        tickEvent.schedule(curTick + cycles(1));
}

void
IGbE::ethTxDone()
{
    // restart the tx state machines if they are stopped
    // fifo to send another packet
    // tx sm to put more data into the fifo
    txFifoTick = true;
    txTick = true;

    restartClock();
    DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
}

void
IGbE::serialize(std::ostream &os)
{
    PciDev::serialize(os);

    regs.serialize(os);
    SERIALIZE_SCALAR(eeOpBits);
    SERIALIZE_SCALAR(eeAddrBits);
    SERIALIZE_SCALAR(eeDataBits);
    SERIALIZE_SCALAR(eeOpcode);
    SERIALIZE_SCALAR(eeAddr);
    SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);

    rxFifo.serialize("rxfifo", os);
    txFifo.serialize("txfifo", os);

    bool txPktExists = txPacket;
    SERIALIZE_SCALAR(txPktExists);
    if (txPktExists)
        txPacket->serialize("txpacket", os);

    Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
         inter_time = 0;

    if (rdtrEvent.scheduled())
       rdtr_time = rdtrEvent.when();
    SERIALIZE_SCALAR(rdtr_time);

    if (radvEvent.scheduled())
       radv_time = radvEvent.when();
    SERIALIZE_SCALAR(radv_time);

    if (tidvEvent.scheduled())
       rdtr_time = tidvEvent.when();
    SERIALIZE_SCALAR(tidv_time);

    if (tadvEvent.scheduled())
       rdtr_time = tadvEvent.when();
    SERIALIZE_SCALAR(tadv_time);

    if (interEvent.scheduled())
       rdtr_time = interEvent.when();
    SERIALIZE_SCALAR(inter_time);

    nameOut(os, csprintf("%s.TxDescCache", name()));
    txDescCache.serialize(os);

    nameOut(os, csprintf("%s.RxDescCache", name()));
    rxDescCache.serialize(os);
}

void
IGbE::unserialize(Checkpoint *cp, const std::string &section)
{
    PciDev::unserialize(cp, section);

    regs.unserialize(cp, section);
    UNSERIALIZE_SCALAR(eeOpBits);
    UNSERIALIZE_SCALAR(eeAddrBits);
    UNSERIALIZE_SCALAR(eeDataBits);
    UNSERIALIZE_SCALAR(eeOpcode);
    UNSERIALIZE_SCALAR(eeAddr);
    UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);

    rxFifo.unserialize("rxfifo", cp, section);
    txFifo.unserialize("txfifo", cp, section);

    bool txPktExists;
    UNSERIALIZE_SCALAR(txPktExists);
    if (txPktExists) {
        txPacket = new EthPacketData(16384);
        txPacket->unserialize("txpacket", cp, section);
    }

    rxTick = true;
    txTick = true;
    txFifoTick = true;

    Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
    UNSERIALIZE_SCALAR(rdtr_time);
    UNSERIALIZE_SCALAR(radv_time);
    UNSERIALIZE_SCALAR(tidv_time);
    UNSERIALIZE_SCALAR(tadv_time);
    UNSERIALIZE_SCALAR(inter_time);

    if (rdtr_time)
        rdtrEvent.schedule(rdtr_time);

    if (radv_time)
        radvEvent.schedule(radv_time);

    if (tidv_time)
        tidvEvent.schedule(tidv_time);

    if (tadv_time)
        tadvEvent.schedule(tadv_time);

    if (inter_time)
        interEvent.schedule(inter_time);

    txDescCache.unserialize(cp, csprintf("%s.TxDescCache", section));

    rxDescCache.unserialize(cp, csprintf("%s.RxDescCache", section));
}


BEGIN_DECLARE_SIM_OBJECT_PARAMS(IGbEInt)

    SimObjectParam<EtherInt *> peer;
    SimObjectParam<IGbE *> device;

END_DECLARE_SIM_OBJECT_PARAMS(IGbEInt)

BEGIN_INIT_SIM_OBJECT_PARAMS(IGbEInt)

    INIT_PARAM_DFLT(peer, "peer interface", NULL),
    INIT_PARAM(device, "Ethernet device of this interface")

END_INIT_SIM_OBJECT_PARAMS(IGbEInt)

CREATE_SIM_OBJECT(IGbEInt)
{
    IGbEInt *dev_int = new IGbEInt(getInstanceName(), device);

    EtherInt *p = (EtherInt *)peer;
    if (p) {
        dev_int->setPeer(p);
        p->setPeer(dev_int);
    }

    return dev_int;
}

REGISTER_SIM_OBJECT("IGbEInt", IGbEInt)


BEGIN_DECLARE_SIM_OBJECT_PARAMS(IGbE)

    SimObjectParam<System *> system;
    SimObjectParam<Platform *> platform;
    Param<Tick> min_backoff_delay;
    Param<Tick> max_backoff_delay;
    SimObjectParam<PciConfigData *> configdata;
    Param<uint32_t> pci_bus;
    Param<uint32_t> pci_dev;
    Param<uint32_t> pci_func;
    Param<Tick> pio_latency;
    Param<Tick> config_latency;
    Param<std::string> hardware_address;
    Param<bool> use_flow_control;
    Param<int> rx_fifo_size;
    Param<int> tx_fifo_size;
    Param<int> rx_desc_cache_size;
    Param<int> tx_desc_cache_size;
    Param<Tick> clock;


END_DECLARE_SIM_OBJECT_PARAMS(IGbE)

BEGIN_INIT_SIM_OBJECT_PARAMS(IGbE)

    INIT_PARAM(system, "System pointer"),
    INIT_PARAM(platform, "Platform pointer"),
    INIT_PARAM(min_backoff_delay, "Minimum delay after receving a nack packed"),
    INIT_PARAM(max_backoff_delay, "Maximum delay after receving a nack packed"),
    INIT_PARAM(configdata, "PCI Config data"),
    INIT_PARAM(pci_bus, "PCI bus ID"),
    INIT_PARAM(pci_dev, "PCI device number"),
    INIT_PARAM(pci_func, "PCI function code"),
    INIT_PARAM_DFLT(pio_latency, "Programmed IO latency in bus cycles", 1),
    INIT_PARAM(config_latency, "Number of cycles for a config read or write"),
    INIT_PARAM(hardware_address, "Ethernet Hardware Address"),
    INIT_PARAM(use_flow_control,"Should the device use xon/off packets"),
    INIT_PARAM(rx_fifo_size,"Size of the RX FIFO"),
    INIT_PARAM(tx_fifo_size,"Size of the TX FIFO"),
    INIT_PARAM(rx_desc_cache_size,"Size of the RX descriptor cache"),
    INIT_PARAM(tx_desc_cache_size,"Size of the TX descriptor cache"),
    INIT_PARAM(clock,"Clock rate for the device to tick at")

END_INIT_SIM_OBJECT_PARAMS(IGbE)


CREATE_SIM_OBJECT(IGbE)
{
    IGbE::Params *params = new IGbE::Params;

    params->name = getInstanceName();
    params->platform = platform;
    params->system = system;
    params->min_backoff_delay = min_backoff_delay;
    params->max_backoff_delay = max_backoff_delay;
    params->configData = configdata;
    params->busNum = pci_bus;
    params->deviceNum = pci_dev;
    params->functionNum = pci_func;
    params->pio_delay = pio_latency;
    params->config_delay = config_latency;
    params->hardware_address = hardware_address;
    params->use_flow_control = use_flow_control;
    params->rx_fifo_size = rx_fifo_size;
    params->tx_fifo_size = tx_fifo_size;
    params->rx_desc_cache_size = rx_desc_cache_size;
    params->tx_desc_cache_size = tx_desc_cache_size;
    params->clock = clock;


    return new IGbE(params);
}

REGISTER_SIM_OBJECT("IGbE", IGbE)