1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
|
/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
/* @file
* Register and structure descriptions for Intel's 8254x line of gigabit ethernet controllers.
*/
#include "base/bitfield.hh"
namespace iGbReg {
// Registers used by the Intel GbE NIC
const uint32_t REG_CTRL = 0x00000;
const uint32_t REG_STATUS = 0x00008;
const uint32_t REG_EECD = 0x00010;
const uint32_t REG_EERD = 0x00014;
const uint32_t REG_CTRL_EXT = 0x00018;
const uint32_t REG_MDIC = 0x00020;
const uint32_t REG_FCAL = 0x00028;
const uint32_t REG_FCAH = 0x0002C;
const uint32_t REG_FCT = 0x00030;
const uint32_t REG_VET = 0x00038;
const uint32_t REG_PBA = 0x01000;
const uint32_t REG_ICR = 0x000C0;
const uint32_t REG_ITR = 0x000C4;
const uint32_t REG_ICS = 0x000C8;
const uint32_t REG_IMS = 0x000D0;
const uint32_t REG_IMC = 0x000D8;
const uint32_t REG_IAM = 0x000E0;
const uint32_t REG_RCTL = 0x00100;
const uint32_t REG_FCTTV = 0x00170;
const uint32_t REG_TIPG = 0x00410;
const uint32_t REG_AIFS = 0x00458;
const uint32_t REG_LEDCTL = 0x00e00;
const uint32_t REG_FCRTL = 0x02160;
const uint32_t REG_FCRTH = 0x02168;
const uint32_t REG_RDBAL = 0x02800;
const uint32_t REG_RDBAH = 0x02804;
const uint32_t REG_RDLEN = 0x02808;
const uint32_t REG_RDH = 0x02810;
const uint32_t REG_RDT = 0x02818;
const uint32_t REG_RDTR = 0x02820;
const uint32_t REG_RXDCTL = 0x02828;
const uint32_t REG_RADV = 0x0282C;
const uint32_t REG_TCTL = 0x00400;
const uint32_t REG_TDBAL = 0x03800;
const uint32_t REG_TDBAH = 0x03804;
const uint32_t REG_TDLEN = 0x03808;
const uint32_t REG_TDH = 0x03810;
const uint32_t REG_TDT = 0x03818;
const uint32_t REG_TIDV = 0x03820;
const uint32_t REG_TXDCTL = 0x03828;
const uint32_t REG_TADV = 0x0382C;
const uint32_t REG_CRCERRS = 0x04000;
const uint32_t REG_RXCSUM = 0x05000;
const uint32_t REG_MTA = 0x05200;
const uint32_t REG_RAL = 0x05400;
const uint32_t REG_RAH = 0x05404;
const uint32_t REG_VFTA = 0x05600;
const uint32_t REG_WUC = 0x05800;
const uint32_t REG_MANC = 0x05820;
const uint8_t EEPROM_READ_OPCODE_SPI = 0x03;
const uint8_t EEPROM_RDSR_OPCODE_SPI = 0x05;
const uint8_t EEPROM_SIZE = 64;
const uint16_t EEPROM_CSUM = 0xBABA;
const uint8_t VLAN_FILTER_TABLE_SIZE = 128;
const uint8_t RCV_ADDRESS_TABLE_SIZE = 16;
const uint8_t MULTICAST_TABLE_SIZE = 128;
const uint32_t STATS_REGS_SIZE = 0x124;
// Registers in that are accessed in the PHY
const uint8_t PHY_PSTATUS = 0x1;
const uint8_t PHY_PID = 0x2;
const uint8_t PHY_EPID = 0x3;
const uint8_t PHY_GSTATUS = 10;
const uint8_t PHY_EPSTATUS = 15;
const uint8_t PHY_AGC = 18;
// Receive Descriptor Status Flags
const uint8_t RXDS_PIF = 0x80;
const uint8_t RXDS_IPCS = 0x40;
const uint8_t RXDS_TCPCS = 0x20;
const uint8_t RXDS_UDPCS = 0x10;
const uint8_t RXDS_VP = 0x08;
const uint8_t RXDS_IXSM = 0x04;
const uint8_t RXDS_EOP = 0x02;
const uint8_t RXDS_DD = 0x01;
// Receive Descriptor Error Flags
const uint8_t RXDE_RXE = 0x80;
const uint8_t RXDE_IPE = 0x40;
const uint8_t RXDE_TCPE = 0x20;
const uint8_t RXDE_SEQ = 0x04;
const uint8_t RXDE_SE = 0x02;
const uint8_t RXDE_CE = 0x01;
// Interrupt types
enum IntTypes
{
IT_NONE = 0x00000, //dummy value
IT_TXDW = 0x00001,
IT_TXQE = 0x00002,
IT_LSC = 0x00004,
IT_RXSEQ = 0x00008,
IT_RXDMT = 0x00010,
IT_RXO = 0x00040,
IT_RXT = 0x00080,
IT_MADC = 0x00200,
IT_RXCFG = 0x00400,
IT_GPI0 = 0x02000,
IT_GPI1 = 0x04000,
IT_TXDLOW = 0x08000,
IT_SRPD = 0x10000,
IT_ACK = 0x20000
};
// Receive Descriptor struct
struct RxDesc {
Addr buf;
uint16_t len;
uint16_t csum;
uint8_t status;
uint8_t errors;
uint16_t vlan;
};
struct TxDesc {
uint64_t d1;
uint64_t d2;
};
namespace TxdOp {
const uint8_t TXD_CNXT = 0x0;
const uint8_t TXD_DATA = 0x1;
bool isLegacy(TxDesc *d) { return !bits(d->d2,29,29); }
uint8_t getType(TxDesc *d) { return bits(d->d2, 23,20); }
bool isContext(TxDesc *d) { return !isLegacy(d) && getType(d) == TXD_CNXT; }
bool isData(TxDesc *d) { return !isLegacy(d) && getType(d) == TXD_DATA; }
Addr getBuf(TxDesc *d) { assert(isLegacy(d) || isData(d)); return d->d1; }
Addr getLen(TxDesc *d) { if (isLegacy(d)) return bits(d->d2,15,0); else return bits(d->d2, 19,0); }
void setDd(TxDesc *d)
{
replaceBits(d->d2, 35, 32, ULL(1));
}
bool ide(TxDesc *d) { return bits(d->d2, 31,31); }
bool vle(TxDesc *d) { assert(isLegacy(d) || isData(d)); return bits(d->d2, 30,30); }
bool rs(TxDesc *d) { return bits(d->d2, 27,27); }
bool ic(TxDesc *d) { assert(isLegacy(d) || isData(d)); return isLegacy(d) && bits(d->d2, 26,26); }
bool tse(TxDesc *d) { return (isData(d) || isContext(d)) && bits(d->d2, 26,26); }
bool ifcs(TxDesc *d) { assert(isLegacy(d) || isData(d)); return bits(d->d2, 25,25); }
bool eop(TxDesc *d) { assert(isLegacy(d) || isData(d)); return bits(d->d2, 24,24); }
bool ip(TxDesc *d) { assert(isContext(d)); return bits(d->d2, 25,25); }
bool tcp(TxDesc *d) { assert(isContext(d)); return bits(d->d2, 24,24); }
uint8_t getCso(TxDesc *d) { assert(isLegacy(d)); return bits(d->d2, 23,16); }
uint8_t getCss(TxDesc *d) { assert(isLegacy(d)); return bits(d->d2, 47,40); }
bool ixsm(TxDesc *d) { return isData(d) && bits(d->d2, 40,40); }
bool txsm(TxDesc *d) { return isData(d) && bits(d->d2, 41,41); }
int tucse(TxDesc *d) { assert(isContext(d)); return bits(d->d1,63,48); }
int tucso(TxDesc *d) { assert(isContext(d)); return bits(d->d1,47,40); }
int tucss(TxDesc *d) { assert(isContext(d)); return bits(d->d1,39,32); }
int ipcse(TxDesc *d) { assert(isContext(d)); return bits(d->d1,31,16); }
int ipcso(TxDesc *d) { assert(isContext(d)); return bits(d->d1,15,8); }
int ipcss(TxDesc *d) { assert(isContext(d)); return bits(d->d1,7,0); }
int mss(TxDesc *d) { assert(isContext(d)); return bits(d->d2,63,48); }
int hdrlen(TxDesc *d) { assert(isContext(d)); return bits(d->d2,47,40); }
int utcmd(TxDesc *d) { assert(isContext(d)); return bits(d->d2,24,31); }
} // namespace TxdOp
#define ADD_FIELD32(NAME, OFFSET, BITS) \
inline uint32_t NAME() { return bits(_data, OFFSET+BITS-1, OFFSET); } \
inline void NAME(uint32_t d) { replaceBits(_data, OFFSET+BITS-1, OFFSET,d); }
#define ADD_FIELD64(NAME, OFFSET, BITS) \
inline uint64_t NAME() { return bits(_data, OFFSET+BITS-1, OFFSET); } \
inline void NAME(uint64_t d) { replaceBits(_data, OFFSET+BITS-1, OFFSET,d); }
struct Regs {
template<class T>
struct Reg {
T _data;
T operator()() { return _data; }
const Reg<T> &operator=(T d) { _data = d; return *this;}
bool operator==(T d) { return d == _data; }
void operator()(T d) { _data = d; }
Reg() { _data = 0; }
void serialize(std::ostream &os)
{
SERIALIZE_SCALAR(_data);
}
void unserialize(Checkpoint *cp, const std::string §ion)
{
UNSERIALIZE_SCALAR(_data);
}
};
struct CTRL : public Reg<uint32_t> { // 0x0000 CTRL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(fd,0,1); // full duplex
ADD_FIELD32(bem,1,1); // big endian mode
ADD_FIELD32(pcipr,2,1); // PCI priority
ADD_FIELD32(lrst,3,1); // link reset
ADD_FIELD32(tme,4,1); // test mode enable
ADD_FIELD32(asde,5,1); // Auto-speed detection
ADD_FIELD32(slu,6,1); // Set link up
ADD_FIELD32(ilos,7,1); // invert los-of-signal
ADD_FIELD32(speed,8,2); // speed selection bits
ADD_FIELD32(be32,10,1); // big endian mode 32
ADD_FIELD32(frcspd,11,1); // force speed
ADD_FIELD32(frcdpx,12,1); // force duplex
ADD_FIELD32(duden,13,1); // dock/undock enable
ADD_FIELD32(dudpol,14,1); // dock/undock polarity
ADD_FIELD32(fphyrst,15,1); // force phy reset
ADD_FIELD32(extlen,16,1); // external link status enable
ADD_FIELD32(rsvd,17,1); // reserved
ADD_FIELD32(sdp0d,18,1); // software controlled pin data
ADD_FIELD32(sdp1d,19,1); // software controlled pin data
ADD_FIELD32(sdp2d,20,1); // software controlled pin data
ADD_FIELD32(sdp3d,21,1); // software controlled pin data
ADD_FIELD32(sdp0i,22,1); // software controlled pin dir
ADD_FIELD32(sdp1i,23,1); // software controlled pin dir
ADD_FIELD32(sdp2i,24,1); // software controlled pin dir
ADD_FIELD32(sdp3i,25,1); // software controlled pin dir
ADD_FIELD32(rst,26,1); // reset
ADD_FIELD32(rfce,27,1); // receive flow control enable
ADD_FIELD32(tfce,28,1); // transmit flow control enable
ADD_FIELD32(rte,29,1); // routing tag enable
ADD_FIELD32(vme,30,1); // vlan enable
ADD_FIELD32(phyrst,31,1); // phy reset
};
CTRL ctrl;
struct STATUS : public Reg<uint32_t> { // 0x0008 STATUS Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(fd,0,1); // full duplex
ADD_FIELD32(lu,1,1); // link up
ADD_FIELD32(func,2,2); // function id
ADD_FIELD32(txoff,4,1); // transmission paused
ADD_FIELD32(tbimode,5,1); // tbi mode
ADD_FIELD32(speed,6,2); // link speed
ADD_FIELD32(asdv,8,2); // auto speed detection value
ADD_FIELD32(mtxckok,10,1); // mtx clock running ok
ADD_FIELD32(pci66,11,1); // In 66Mhz pci slot
ADD_FIELD32(bus64,12,1); // in 64 bit slot
ADD_FIELD32(pcix,13,1); // Pci mode
ADD_FIELD32(pcixspd,14,2); // pci x speed
};
STATUS sts;
struct EECD : public Reg<uint32_t> { // 0x0010 EECD Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(sk,0,1); // clack input to the eeprom
ADD_FIELD32(cs,1,1); // chip select to eeprom
ADD_FIELD32(din,2,1); // data input to eeprom
ADD_FIELD32(dout,3,1); // data output bit
ADD_FIELD32(fwe,4,2); // flash write enable
ADD_FIELD32(ee_req,6,1); // request eeprom access
ADD_FIELD32(ee_gnt,7,1); // grant eeprom access
ADD_FIELD32(ee_pres,8,1); // eeprom present
ADD_FIELD32(ee_size,9,1); // eeprom size
ADD_FIELD32(ee_sz1,10,1); // eeprom size
ADD_FIELD32(rsvd,11,2); // reserved
ADD_FIELD32(ee_type,13,1); // type of eeprom
} ;
EECD eecd;
struct EERD : public Reg<uint32_t> { // 0x0014 EERD Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(start,0,1); // start read
ADD_FIELD32(done,4,1); // done read
ADD_FIELD32(addr,8,8); // address
ADD_FIELD32(data,16,16); // data
};
EERD eerd;
struct CTRL_EXT : public Reg<uint32_t> { // 0x0018 CTRL_EXT Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(gpi_en,0,4); // enable interrupts from gpio
ADD_FIELD32(phyint,5,1); // reads the phy internal int status
ADD_FIELD32(sdp2_data,6,1); // data from gpio sdp
ADD_FIELD32(spd3_data,7,1); // data frmo gpio sdp
ADD_FIELD32(spd2_iodir,10,1); // direction of sdp2
ADD_FIELD32(spd3_iodir,11,1); // direction of sdp2
ADD_FIELD32(asdchk,12,1); // initiate auto-speed-detection
ADD_FIELD32(eerst,13,1); // reset the eeprom
ADD_FIELD32(spd_byps,15,1); // bypass speed select
ADD_FIELD32(ro_dis,17,1); // disable relaxed memory ordering
ADD_FIELD32(vreg,21,1); // power down the voltage regulator
ADD_FIELD32(link_mode,22,2); // interface to talk to the link
ADD_FIELD32(iame, 27,1); // interrupt acknowledge auto-mask ??
ADD_FIELD32(drv_loaded, 28,1);// driver is loaded and incharge of device
ADD_FIELD32(timer_clr, 29,1); // clear interrupt timers after IMS clear ??
};
CTRL_EXT ctrl_ext;
struct MDIC : public Reg<uint32_t> { // 0x0020 MDIC Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(data,0,16); // data
ADD_FIELD32(regadd,16,5); // register address
ADD_FIELD32(phyadd,21,5); // phy addresses
ADD_FIELD32(op,26,2); // opcode
ADD_FIELD32(r,28,1); // ready
ADD_FIELD32(i,29,1); // interrupt
ADD_FIELD32(e,30,1); // error
};
MDIC mdic;
struct ICR : public Reg<uint32_t> { // 0x00C0 ICR Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(txdw,0,1) // tx descr witten back
ADD_FIELD32(txqe,1,1) // tx queue empty
ADD_FIELD32(lsc,2,1) // link status change
ADD_FIELD32(rxseq,3,1) // rcv sequence error
ADD_FIELD32(rxdmt0,4,1) // rcv descriptor min thresh
ADD_FIELD32(rsvd1,5,1) // reserved
ADD_FIELD32(rxo,6,1) // receive overrunn
ADD_FIELD32(rxt0,7,1) // receiver timer interrupt
ADD_FIELD32(mdac,9,1) // mdi/o access complete
ADD_FIELD32(rxcfg,10,1) // recv /c/ ordered sets
ADD_FIELD32(phyint,12,1) // phy interrupt
ADD_FIELD32(gpi1,13,1) // gpi int 1
ADD_FIELD32(gpi2,14,1) // gpi int 2
ADD_FIELD32(txdlow,15,1) // transmit desc low thresh
ADD_FIELD32(srpd,16,1) // small receive packet detected
ADD_FIELD32(ack,17,1); // receive ack frame
ADD_FIELD32(int_assert, 31,1); // interrupt caused a system interrupt
};
ICR icr;
uint32_t imr; // register that contains the current interrupt mask
struct ITR : public Reg<uint32_t> { // 0x00C4 ITR Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(interval, 0,16); // minimum inter-interrutp inteval
// specified in 256ns interrupts
};
ITR itr;
// When CTRL_EXT.IAME and the ICR.INT_ASSERT is 1 an ICR read or write
// causes the IAM register contents to be written into the IMC
// automatically clearing all interrupts that have a bit in the IAM set
uint32_t iam;
struct RCTL : public Reg<uint32_t> { // 0x0100 RCTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rst,0,1); // Reset
ADD_FIELD32(en,1,1); // Enable
ADD_FIELD32(sbp,2,1); // Store bad packets
ADD_FIELD32(upe,3,1); // Unicast Promiscuous enabled
ADD_FIELD32(mpe,4,1); // Multicast promiscuous enabled
ADD_FIELD32(lpe,5,1); // long packet reception enabled
ADD_FIELD32(lbm,6,2); //
ADD_FIELD32(rdmts,8,2); //
ADD_FIELD32(mo,12,2); //
ADD_FIELD32(mdr,14,1); //
ADD_FIELD32(bam,15,1); //
ADD_FIELD32(bsize,16,2); //
ADD_FIELD32(vfe,18,1); //
ADD_FIELD32(cfien,19,1); //
ADD_FIELD32(cfi,20,1); //
ADD_FIELD32(dpf,22,1); // discard pause frames
ADD_FIELD32(pmcf,23,1); // pass mac control frames
ADD_FIELD32(bsex,25,1); // buffer size extension
ADD_FIELD32(secrc,26,1); // strip ethernet crc from incoming packet
int descSize()
{
switch(bsize()) {
case 0: return bsex() == 0 ? 2048 : -1;
case 1: return bsex() == 0 ? 1024 : 16384;
case 2: return bsex() == 0 ? 512 : 8192;
case 3: return bsex() == 0 ? 256 : 4096;
default:
return -1;
}
}
};
RCTL rctl;
struct FCTTV : public Reg<uint32_t> { // 0x0170 FCTTV
using Reg<uint32_t>::operator=;
ADD_FIELD32(ttv,0,16); // Transmit Timer Value
};
FCTTV fcttv;
struct TCTL : public Reg<uint32_t> { // 0x0400 TCTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rst,0,1); // Reset
ADD_FIELD32(en,1,1); // Enable
ADD_FIELD32(bce,2,1); // busy check enable
ADD_FIELD32(psp,3,1); // pad short packets
ADD_FIELD32(ct,4,8); // collision threshold
ADD_FIELD32(cold,12,10); // collision distance
ADD_FIELD32(swxoff,22,1); // software xoff transmission
ADD_FIELD32(pbe,23,1); // packet burst enable
ADD_FIELD32(rtlc,24,1); // retransmit late collisions
ADD_FIELD32(nrtu,25,1); // on underrun no TX
ADD_FIELD32(mulr,26,1); // multiple request
};
TCTL tctl;
struct PBA : public Reg<uint32_t> { // 0x1000 PBA Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rxa,0,16);
ADD_FIELD32(txa,16,16);
};
PBA pba;
struct FCRTL : public Reg<uint32_t> { // 0x2160 FCRTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rtl,3,28); // make this bigger than the spec so we can have
// a larger buffer
ADD_FIELD32(xone, 31,1);
};
FCRTL fcrtl;
struct FCRTH : public Reg<uint32_t> { // 0x2168 FCRTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rth,3,13); // make this bigger than the spec so we can have
//a larger buffer
ADD_FIELD32(xfce, 31,1);
};
FCRTH fcrth;
struct RDBA : public Reg<uint64_t> { // 0x2800 RDBA Register
using Reg<uint64_t>::operator=;
ADD_FIELD64(rdbal,0,32); // base address of rx descriptor ring
ADD_FIELD64(rdbah,32,32); // base address of rx descriptor ring
};
RDBA rdba;
struct RDLEN : public Reg<uint32_t> { // 0x2808 RDLEN Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(len,7,13); // number of bytes in the descriptor buffer
};
RDLEN rdlen;
struct RDH : public Reg<uint32_t> { // 0x2810 RDH Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rdh,0,16); // head of the descriptor ring
};
RDH rdh;
struct RDT : public Reg<uint32_t> { // 0x2818 RDT Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(rdt,0,16); // tail of the descriptor ring
};
RDT rdt;
struct RDTR : public Reg<uint32_t> { // 0x2820 RDTR Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(delay,0,16); // receive delay timer
ADD_FIELD32(fpd, 31,1); // flush partial descriptor block ??
};
RDTR rdtr;
struct RXDCTL : public Reg<uint32_t> { // 0x2828 RXDCTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(pthresh,0,6); // prefetch threshold, less that this
// consider prefetch
ADD_FIELD32(hthresh,8,6); // number of descriptors in host mem to
// consider prefetch
ADD_FIELD32(wthresh,16,6); // writeback threshold
ADD_FIELD32(gran,24,1); // granularity 0 = desc, 1 = cacheline
};
RXDCTL rxdctl;
struct RADV : public Reg<uint32_t> { // 0x282C RADV Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(idv,0,16); // absolute interrupt delay
};
RADV radv;
struct RSRPD : public Reg<uint32_t> { // 0x2C00 RSRPD Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(idv,0,12); // size to interrutp on small packets
};
RSRPD rsrpd;
struct TDBA : public Reg<uint64_t> { // 0x3800 TDBAL Register
using Reg<uint64_t>::operator=;
ADD_FIELD64(tdbal,0,32); // base address of transmit descriptor ring
ADD_FIELD64(tdbah,32,32); // base address of transmit descriptor ring
};
TDBA tdba;
struct TDLEN : public Reg<uint32_t> { // 0x3808 TDLEN Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(len,7,13); // number of bytes in the descriptor buffer
};
TDLEN tdlen;
struct TDH : public Reg<uint32_t> { // 0x3810 TDH Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(tdh,0,16); // head of the descriptor ring
};
TDH tdh;
struct TDT : public Reg<uint32_t> { // 0x3818 TDT Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(tdt,0,16); // tail of the descriptor ring
};
TDT tdt;
struct TIDV : public Reg<uint32_t> { // 0x3820 TIDV Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(idv,0,16); // interrupt delay
};
TIDV tidv;
struct TXDCTL : public Reg<uint32_t> { // 0x3828 TXDCTL Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(pthresh, 0,6); // if number of descriptors control has is
// below this number, a prefetch is considered
ADD_FIELD32(hthresh,8,8); // number of valid descriptors is host memory
// before a prefetch is considered
ADD_FIELD32(wthresh,16,6); // number of descriptors to keep until
// writeback is considered
ADD_FIELD32(gran, 24,1); // granulatiry of above values (0 = cacheline,
// 1 == desscriptor)
ADD_FIELD32(lwthresh,25,7); // xmit descriptor low thresh, interrupt
// below this level
};
TXDCTL txdctl;
struct TADV : public Reg<uint32_t> { // 0x382C TADV Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(idv,0,16); // absolute interrupt delay
};
TADV tadv;
struct RXCSUM : public Reg<uint32_t> { // 0x5000 RXCSUM Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(pcss,0,8);
ADD_FIELD32(ipofld,8,1);
ADD_FIELD32(tuofld,9,1);
};
RXCSUM rxcsum;
struct MANC : public Reg<uint32_t> { // 0x5820 MANC Register
using Reg<uint32_t>::operator=;
ADD_FIELD32(smbus,0,1); // SMBus enabled #####
ADD_FIELD32(asf,1,1); // ASF enabled #####
ADD_FIELD32(ronforce,2,1); // reset of force
ADD_FIELD32(rsvd,3,5); // reserved
ADD_FIELD32(rmcp1,8,1); // rcmp1 filtering
ADD_FIELD32(rmcp2,9,1); // rcmp2 filtering
ADD_FIELD32(ipv4,10,1); // enable ipv4
ADD_FIELD32(ipv6,11,1); // enable ipv6
ADD_FIELD32(snap,12,1); // accept snap
ADD_FIELD32(arp,13,1); // filter arp #####
ADD_FIELD32(neighbor,14,1); // neighbor discovery
ADD_FIELD32(arp_resp,15,1); // arp response
ADD_FIELD32(tcorst,16,1); // tco reset happened
ADD_FIELD32(rcvtco,17,1); // receive tco enabled ######
ADD_FIELD32(blkphyrst,18,1);// block phy resets ########
ADD_FIELD32(rcvall,19,1); // receive all
ADD_FIELD32(macaddrfltr,20,1); // mac address filtering ######
ADD_FIELD32(mng2host,21,1); // mng2 host packets #######
ADD_FIELD32(ipaddrfltr,22,1); // ip address filtering
ADD_FIELD32(xsumfilter,23,1); // checksum filtering
ADD_FIELD32(brfilter,24,1); // broadcast filtering
ADD_FIELD32(smbreq,25,1); // smb request
ADD_FIELD32(smbgnt,26,1); // smb grant
ADD_FIELD32(smbclkin,27,1); // smbclkin
ADD_FIELD32(smbdatain,28,1); // smbdatain
ADD_FIELD32(smbdataout,29,1); // smb data out
ADD_FIELD32(smbclkout,30,1); // smb clock out
};
MANC manc;
void serialize(std::ostream &os)
{
paramOut(os, "ctrl", ctrl._data);
paramOut(os, "sts", sts._data);
paramOut(os, "eecd", eecd._data);
paramOut(os, "eerd", eerd._data);
paramOut(os, "ctrl_ext", ctrl_ext._data);
paramOut(os, "mdic", mdic._data);
paramOut(os, "icr", icr._data);
SERIALIZE_SCALAR(imr);
paramOut(os, "itr", itr._data);
SERIALIZE_SCALAR(iam);
paramOut(os, "rctl", rctl._data);
paramOut(os, "fcttv", fcttv._data);
paramOut(os, "tctl", tctl._data);
paramOut(os, "pba", pba._data);
paramOut(os, "fcrtl", fcrtl._data);
paramOut(os, "fcrth", fcrth._data);
paramOut(os, "rdba", rdba._data);
paramOut(os, "rdlen", rdlen._data);
paramOut(os, "rdh", rdh._data);
paramOut(os, "rdt", rdt._data);
paramOut(os, "rdtr", rdtr._data);
paramOut(os, "rxdctl", rxdctl._data);
paramOut(os, "radv", radv._data);
paramOut(os, "rsrpd", rsrpd._data);
paramOut(os, "tdba", tdba._data);
paramOut(os, "tdlen", tdlen._data);
paramOut(os, "tdh", tdh._data);
paramOut(os, "tdt", tdt._data);
paramOut(os, "tidv", tidv._data);
paramOut(os, "txdctl", txdctl._data);
paramOut(os, "tadv", tadv._data);
paramOut(os, "rxcsum", rxcsum._data);
paramOut(os, "manc", manc._data);
}
void unserialize(Checkpoint *cp, const std::string §ion)
{
paramIn(cp, section, "ctrl", ctrl._data);
paramIn(cp, section, "sts", sts._data);
paramIn(cp, section, "eecd", eecd._data);
paramIn(cp, section, "eerd", eerd._data);
paramIn(cp, section, "ctrl_ext", ctrl_ext._data);
paramIn(cp, section, "mdic", mdic._data);
paramIn(cp, section, "icr", icr._data);
UNSERIALIZE_SCALAR(imr);
paramIn(cp, section, "itr", itr._data);
UNSERIALIZE_SCALAR(iam);
paramIn(cp, section, "rctl", rctl._data);
paramIn(cp, section, "fcttv", fcttv._data);
paramIn(cp, section, "tctl", tctl._data);
paramIn(cp, section, "pba", pba._data);
paramIn(cp, section, "fcrtl", fcrtl._data);
paramIn(cp, section, "fcrth", fcrth._data);
paramIn(cp, section, "rdba", rdba._data);
paramIn(cp, section, "rdlen", rdlen._data);
paramIn(cp, section, "rdh", rdh._data);
paramIn(cp, section, "rdt", rdt._data);
paramIn(cp, section, "rdtr", rdtr._data);
paramIn(cp, section, "rxdctl", rxdctl._data);
paramIn(cp, section, "radv", radv._data);
paramIn(cp, section, "rsrpd", rsrpd._data);
paramIn(cp, section, "tdba", tdba._data);
paramIn(cp, section, "tdlen", tdlen._data);
paramIn(cp, section, "tdh", tdh._data);
paramIn(cp, section, "tdt", tdt._data);
paramIn(cp, section, "tidv", tidv._data);
paramIn(cp, section, "txdctl", txdctl._data);
paramIn(cp, section, "tadv", tadv._data);
paramIn(cp, section, "rxcsum", rxcsum._data);
paramIn(cp, section, "manc", manc._data);
}
};
} // iGbReg namespace
|