summaryrefslogtreecommitdiff
path: root/src/dev/net/ns_gige.cc
blob: e1289b4b1008b1c00cf13d7b051ec229b68d2e27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
/*
 * Copyright (c) 2004-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Nathan Binkert
 *          Lisa Hsu
 */

/** @file
 * Device module for modelling the National Semiconductor
 * DP83820 ethernet controller.  Does not support priority queueing
 */

#include "dev/net/ns_gige.hh"

#include <deque>
#include <memory>
#include <string>

#include "base/debug.hh"
#include "base/inet.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "debug/EthernetAll.hh"
#include "dev/net/etherlink.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "params/NSGigE.hh"
#include "sim/system.hh"

// clang complains about std::set being overloaded with Packet::set if
// we open up the entire namespace std
using std::make_shared;
using std::min;
using std::ostream;
using std::string;

const char *NsRxStateStrings[] =
{
    "rxIdle",
    "rxDescRefr",
    "rxDescRead",
    "rxFifoBlock",
    "rxFragWrite",
    "rxDescWrite",
    "rxAdvance"
};

const char *NsTxStateStrings[] =
{
    "txIdle",
    "txDescRefr",
    "txDescRead",
    "txFifoBlock",
    "txFragRead",
    "txDescWrite",
    "txAdvance"
};

const char *NsDmaState[] =
{
    "dmaIdle",
    "dmaReading",
    "dmaWriting",
    "dmaReadWaiting",
    "dmaWriteWaiting"
};

using namespace Net;
using namespace TheISA;

///////////////////////////////////////////////////////////////////////
//
// NSGigE PCI Device
//
NSGigE::NSGigE(Params *p)
    : EtherDevBase(p), ioEnable(false),
      txFifo(p->tx_fifo_size), rxFifo(p->rx_fifo_size),
      txPacket(0), rxPacket(0), txPacketBufPtr(NULL), rxPacketBufPtr(NULL),
      txXferLen(0), rxXferLen(0), rxDmaFree(false), txDmaFree(false),
      txState(txIdle), txEnable(false), CTDD(false), txHalt(false),
      txFragPtr(0), txDescCnt(0), txDmaState(dmaIdle), rxState(rxIdle),
      rxEnable(false), CRDD(false), rxPktBytes(0), rxHalt(false),
      rxFragPtr(0), rxDescCnt(0), rxDmaState(dmaIdle), extstsEnable(false),
      eepromState(eepromStart), eepromClk(false), eepromBitsToRx(0),
      eepromOpcode(0), eepromAddress(0), eepromData(0),
      dmaReadDelay(p->dma_read_delay), dmaWriteDelay(p->dma_write_delay),
      dmaReadFactor(p->dma_read_factor), dmaWriteFactor(p->dma_write_factor),
      rxDmaData(NULL), rxDmaAddr(0), rxDmaLen(0),
      txDmaData(NULL), txDmaAddr(0), txDmaLen(0),
      rxDmaReadEvent([this]{ rxDmaReadDone(); }, name()),
      rxDmaWriteEvent([this]{ rxDmaWriteDone(); }, name()),
      txDmaReadEvent([this]{ txDmaReadDone(); }, name()),
      txDmaWriteEvent([this]{ txDmaWriteDone(); }, name()),
      dmaDescFree(p->dma_desc_free), dmaDataFree(p->dma_data_free),
      txDelay(p->tx_delay), rxDelay(p->rx_delay),
      rxKickTick(0),
      rxKickEvent([this]{ rxKick(); }, name()),
      txKickTick(0),
      txKickEvent([this]{ txKick(); }, name()),
      txEvent([this]{ txEventTransmit(); }, name()),
      rxFilterEnable(p->rx_filter),
      acceptBroadcast(false), acceptMulticast(false), acceptUnicast(false),
      acceptPerfect(false), acceptArp(false), multicastHashEnable(false),
      intrDelay(p->intr_delay), intrTick(0), cpuPendingIntr(false),
      intrEvent(0), interface(0)
{


    interface = new NSGigEInt(name() + ".int0", this);

    regsReset();
    memcpy(&rom.perfectMatch, p->hardware_address.bytes(), ETH_ADDR_LEN);

    memset(&rxDesc32, 0, sizeof(rxDesc32));
    memset(&txDesc32, 0, sizeof(txDesc32));
    memset(&rxDesc64, 0, sizeof(rxDesc64));
    memset(&txDesc64, 0, sizeof(txDesc64));
}

NSGigE::~NSGigE()
{
    delete interface;
}

/**
 * This is to write to the PCI general configuration registers
 */
Tick
NSGigE::writeConfig(PacketPtr pkt)
{
    int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
    if (offset < PCI_DEVICE_SPECIFIC)
        PciDevice::writeConfig(pkt);
    else
        panic("Device specific PCI config space not implemented!\n");

    switch (offset) {
        // seems to work fine without all these PCI settings, but i
        // put in the IO to double check, an assertion will fail if we
        // need to properly implement it
      case PCI_COMMAND:
        if (config.data[offset] & PCI_CMD_IOSE)
            ioEnable = true;
        else
            ioEnable = false;
        break;
    }

    return configDelay;
}

EtherInt*
NSGigE::getEthPort(const std::string &if_name, int idx)
{
    if (if_name == "interface") {
       if (interface->getPeer())
           panic("interface already connected to\n");
       return interface;
    }
    return NULL;
}

/**
 * This reads the device registers, which are detailed in the NS83820
 * spec sheet
 */
Tick
NSGigE::read(PacketPtr pkt)
{
    assert(ioEnable);

    //The mask is to give you only the offset into the device register file
    Addr daddr = pkt->getAddr() & 0xfff;
    DPRINTF(EthernetPIO, "read  da=%#x pa=%#x size=%d\n",
            daddr, pkt->getAddr(), pkt->getSize());


    // there are some reserved registers, you can see ns_gige_reg.h and
    // the spec sheet for details
    if (daddr > LAST && daddr <=  RESERVED) {
        panic("Accessing reserved register");
    } else if (daddr > RESERVED && daddr <= 0x3FC) {
        return readConfig(pkt);
    } else if (daddr >= MIB_START && daddr <= MIB_END) {
        // don't implement all the MIB's.  hopefully the kernel
        // doesn't actually DEPEND upon their values
        // MIB are just hardware stats keepers
        pkt->set<uint32_t>(0);
        pkt->makeAtomicResponse();
        return pioDelay;
    } else if (daddr > 0x3FC)
        panic("Something is messed up!\n");

    assert(pkt->getSize() == sizeof(uint32_t));
        uint32_t &reg = *pkt->getPtr<uint32_t>();
        uint16_t rfaddr;

        switch (daddr) {
          case CR:
            reg = regs.command;
            //these are supposed to be cleared on a read
            reg &= ~(CR_RXD | CR_TXD | CR_TXR | CR_RXR);
            break;

          case CFGR:
            reg = regs.config;
            break;

          case MEAR:
            reg = regs.mear;
            break;

          case PTSCR:
            reg = regs.ptscr;
            break;

          case ISR:
            reg = regs.isr;
            devIntrClear(ISR_ALL);
            break;

          case IMR:
            reg = regs.imr;
            break;

          case IER:
            reg = regs.ier;
            break;

          case IHR:
            reg = regs.ihr;
            break;

          case TXDP:
            reg = regs.txdp;
            break;

          case TXDP_HI:
            reg = regs.txdp_hi;
            break;

          case TX_CFG:
            reg = regs.txcfg;
            break;

          case GPIOR:
            reg = regs.gpior;
            break;

          case RXDP:
            reg = regs.rxdp;
            break;

          case RXDP_HI:
            reg = regs.rxdp_hi;
            break;

          case RX_CFG:
            reg = regs.rxcfg;
            break;

          case PQCR:
            reg = regs.pqcr;
            break;

          case WCSR:
            reg = regs.wcsr;
            break;

          case PCR:
            reg = regs.pcr;
            break;

            // see the spec sheet for how RFCR and RFDR work
            // basically, you write to RFCR to tell the machine
            // what you want to do next, then you act upon RFDR,
            // and the device will be prepared b/c of what you
            // wrote to RFCR
          case RFCR:
            reg = regs.rfcr;
            break;

          case RFDR:
            rfaddr = (uint16_t)(regs.rfcr & RFCR_RFADDR);
            switch (rfaddr) {
              // Read from perfect match ROM octets
              case 0x000:
                reg = rom.perfectMatch[1];
                reg = reg << 8;
                reg += rom.perfectMatch[0];
                break;
              case 0x002:
                reg = rom.perfectMatch[3] << 8;
                reg += rom.perfectMatch[2];
                break;
              case 0x004:
                reg = rom.perfectMatch[5] << 8;
                reg += rom.perfectMatch[4];
                break;
              default:
                // Read filter hash table
                if (rfaddr >= FHASH_ADDR &&
                    rfaddr < FHASH_ADDR + FHASH_SIZE) {

                    // Only word-aligned reads supported
                    if (rfaddr % 2)
                        panic("unaligned read from filter hash table!");

                    reg = rom.filterHash[rfaddr - FHASH_ADDR + 1] << 8;
                    reg += rom.filterHash[rfaddr - FHASH_ADDR];
                    break;
                }

                panic("reading RFDR for something other than pattern"
                      " matching or hashing! %#x\n", rfaddr);
            }
            break;

          case SRR:
            reg = regs.srr;
            break;

          case MIBC:
            reg = regs.mibc;
            reg &= ~(MIBC_MIBS | MIBC_ACLR);
            break;

          case VRCR:
            reg = regs.vrcr;
            break;

          case VTCR:
            reg = regs.vtcr;
            break;

          case VDR:
            reg = regs.vdr;
            break;

          case CCSR:
            reg = regs.ccsr;
            break;

          case TBICR:
            reg = regs.tbicr;
            break;

          case TBISR:
            reg = regs.tbisr;
            break;

          case TANAR:
            reg = regs.tanar;
            break;

          case TANLPAR:
            reg = regs.tanlpar;
            break;

          case TANER:
            reg = regs.taner;
            break;

          case TESR:
            reg = regs.tesr;
            break;

          case M5REG:
            reg = 0;
            if (params()->rx_thread)
                reg |= M5REG_RX_THREAD;
            if (params()->tx_thread)
                reg |= M5REG_TX_THREAD;
            if (params()->rss)
                reg |= M5REG_RSS;
            break;

          default:
            panic("reading unimplemented register: addr=%#x", daddr);
        }

        DPRINTF(EthernetPIO, "read from %#x: data=%d data=%#x\n",
                daddr, reg, reg);

    pkt->makeAtomicResponse();
    return pioDelay;
}

Tick
NSGigE::write(PacketPtr pkt)
{
    assert(ioEnable);

    Addr daddr = pkt->getAddr() & 0xfff;
    DPRINTF(EthernetPIO, "write da=%#x pa=%#x size=%d\n",
            daddr, pkt->getAddr(), pkt->getSize());

    if (daddr > LAST && daddr <=  RESERVED) {
        panic("Accessing reserved register");
    } else if (daddr > RESERVED && daddr <= 0x3FC) {
        return writeConfig(pkt);
    } else if (daddr > 0x3FC)
        panic("Something is messed up!\n");

    if (pkt->getSize() == sizeof(uint32_t)) {
        uint32_t reg = pkt->get<uint32_t>();
        uint16_t rfaddr;

        DPRINTF(EthernetPIO, "write data=%d data=%#x\n", reg, reg);

        switch (daddr) {
          case CR:
            regs.command = reg;
            if (reg & CR_TXD) {
                txEnable = false;
            } else if (reg & CR_TXE) {
                txEnable = true;

                // the kernel is enabling the transmit machine
                if (txState == txIdle)
                    txKick();
            }

            if (reg & CR_RXD) {
                rxEnable = false;
            } else if (reg & CR_RXE) {
                rxEnable = true;

                if (rxState == rxIdle)
                    rxKick();
            }

            if (reg & CR_TXR)
                txReset();

            if (reg & CR_RXR)
                rxReset();

            if (reg & CR_SWI)
                devIntrPost(ISR_SWI);

            if (reg & CR_RST) {
                txReset();
                rxReset();

                regsReset();
            }
            break;

          case CFGR:
            if (reg & CFGR_LNKSTS ||
                reg & CFGR_SPDSTS ||
                reg & CFGR_DUPSTS ||
                reg & CFGR_RESERVED ||
                reg & CFGR_T64ADDR ||
                reg & CFGR_PCI64_DET) {
                // First clear all writable bits
                regs.config &= CFGR_LNKSTS | CFGR_SPDSTS | CFGR_DUPSTS |
                    CFGR_RESERVED | CFGR_T64ADDR |
                    CFGR_PCI64_DET;
                // Now set the appropriate writable bits
                regs.config |= reg & ~(CFGR_LNKSTS | CFGR_SPDSTS | CFGR_DUPSTS |
                                       CFGR_RESERVED | CFGR_T64ADDR |
                                       CFGR_PCI64_DET);
            }

// all these #if 0's are because i don't THINK the kernel needs to
// have these implemented. if there is a problem relating to one of
// these, you may need to add functionality in.

// grouped together and #if 0'ed to avoid empty if body and make clang happy
#if 0
            if (reg & CFGR_TBI_EN) ;
            if (reg & CFGR_MODE_1000) ;

            if (reg & CFGR_PINT_DUPSTS ||
                reg & CFGR_PINT_LNKSTS ||
                reg & CFGR_PINT_SPDSTS)
                ;

            if (reg & CFGR_TMRTEST) ;
            if (reg & CFGR_MRM_DIS) ;
            if (reg & CFGR_MWI_DIS) ;

            if (reg & CFGR_DATA64_EN) ;
            if (reg & CFGR_M64ADDR) ;
            if (reg & CFGR_PHY_RST) ;
            if (reg & CFGR_PHY_DIS) ;

            if (reg & CFGR_REQALG) ;
            if (reg & CFGR_SB) ;
            if (reg & CFGR_POW) ;
            if (reg & CFGR_EXD) ;
            if (reg & CFGR_PESEL) ;
            if (reg & CFGR_BROM_DIS) ;
            if (reg & CFGR_EXT_125) ;
            if (reg & CFGR_BEM) ;

            if (reg & CFGR_T64ADDR) ;
            // panic("CFGR_T64ADDR is read only register!\n");
#endif
            if (reg & CFGR_AUTO_1000)
                panic("CFGR_AUTO_1000 not implemented!\n");

            if (reg & CFGR_PCI64_DET)
                panic("CFGR_PCI64_DET is read only register!\n");

            if (reg & CFGR_EXTSTS_EN)
                extstsEnable = true;
            else
                extstsEnable = false;
            break;

          case MEAR:
            // Clear writable bits
            regs.mear &= MEAR_EEDO;
            // Set appropriate writable bits
            regs.mear |= reg & ~MEAR_EEDO;

            // FreeBSD uses the EEPROM to read PMATCH (for the MAC address)
            // even though it could get it through RFDR
            if (reg & MEAR_EESEL) {
                // Rising edge of clock
                if (reg & MEAR_EECLK && !eepromClk)
                    eepromKick();
            }
            else {
                eepromState = eepromStart;
                regs.mear &= ~MEAR_EEDI;
            }

            eepromClk = reg & MEAR_EECLK;

            // since phy is completely faked, MEAR_MD* don't matter

// grouped together and #if 0'ed to avoid empty if body and make clang happy
#if 0
            if (reg & MEAR_MDIO) ;
            if (reg & MEAR_MDDIR) ;
            if (reg & MEAR_MDC) ;
#endif
            break;

          case PTSCR:
            regs.ptscr = reg & ~(PTSCR_RBIST_RDONLY);
            // these control BISTs for various parts of chip - we
            // don't care or do just fake that the BIST is done
            if (reg & PTSCR_RBIST_EN)
                regs.ptscr |= PTSCR_RBIST_DONE;
            if (reg & PTSCR_EEBIST_EN)
                regs.ptscr &= ~PTSCR_EEBIST_EN;
            if (reg & PTSCR_EELOAD_EN)
                regs.ptscr &= ~PTSCR_EELOAD_EN;
            break;

          case ISR: /* writing to the ISR has no effect */
            panic("ISR is a read only register!\n");

          case IMR:
            regs.imr = reg;
            devIntrChangeMask();
            break;

          case IER:
            regs.ier = reg;
            break;

          case IHR:
            regs.ihr = reg;
            /* not going to implement real interrupt holdoff */
            break;

          case TXDP:
            regs.txdp = (reg & 0xFFFFFFFC);
            assert(txState == txIdle);
            CTDD = false;
            break;

          case TXDP_HI:
            regs.txdp_hi = reg;
            break;

          case TX_CFG:
            regs.txcfg = reg;
#if 0
            if (reg & TX_CFG_CSI) ;
            if (reg & TX_CFG_HBI) ;
            if (reg & TX_CFG_MLB) ;
            if (reg & TX_CFG_ATP) ;
            if (reg & TX_CFG_ECRETRY) {
                /*
                 * this could easily be implemented, but considering
                 * the network is just a fake pipe, wouldn't make
                 * sense to do this
                 */
            }

            if (reg & TX_CFG_BRST_DIS) ;
#endif

#if 0
            /* we handle our own DMA, ignore the kernel's exhortations */
            if (reg & TX_CFG_MXDMA) ;
#endif

            // also, we currently don't care about fill/drain
            // thresholds though this may change in the future with
            // more realistic networks or a driver which changes it
            // according to feedback

            break;

          case GPIOR:
            // Only write writable bits
            regs.gpior &= GPIOR_UNUSED | GPIOR_GP5_IN | GPIOR_GP4_IN
                        | GPIOR_GP3_IN | GPIOR_GP2_IN | GPIOR_GP1_IN;
            regs.gpior |= reg & ~(GPIOR_UNUSED | GPIOR_GP5_IN | GPIOR_GP4_IN
                                | GPIOR_GP3_IN | GPIOR_GP2_IN | GPIOR_GP1_IN);
            /* these just control general purpose i/o pins, don't matter */
            break;

          case RXDP:
            regs.rxdp = reg;
            CRDD = false;
            break;

          case RXDP_HI:
            regs.rxdp_hi = reg;
            break;

          case RX_CFG:
            regs.rxcfg = reg;
#if 0
            if (reg & RX_CFG_AEP) ;
            if (reg & RX_CFG_ARP) ;
            if (reg & RX_CFG_STRIPCRC) ;
            if (reg & RX_CFG_RX_RD) ;
            if (reg & RX_CFG_ALP) ;
            if (reg & RX_CFG_AIRL) ;

            /* we handle our own DMA, ignore what kernel says about it */
            if (reg & RX_CFG_MXDMA) ;

            //also, we currently don't care about fill/drain thresholds
            //though this may change in the future with more realistic
            //networks or a driver which changes it according to feedback
            if (reg & (RX_CFG_DRTH | RX_CFG_DRTH0)) ;
#endif
            break;

          case PQCR:
            /* there is no priority queueing used in the linux 2.6 driver */
            regs.pqcr = reg;
            break;

          case WCSR:
            /* not going to implement wake on LAN */
            regs.wcsr = reg;
            break;

          case PCR:
            /* not going to implement pause control */
            regs.pcr = reg;
            break;

          case RFCR:
            regs.rfcr = reg;

            rxFilterEnable = (reg & RFCR_RFEN) ? true : false;
            acceptBroadcast = (reg & RFCR_AAB) ? true : false;
            acceptMulticast = (reg & RFCR_AAM) ? true : false;
            acceptUnicast = (reg & RFCR_AAU) ? true : false;
            acceptPerfect = (reg & RFCR_APM) ? true : false;
            acceptArp = (reg & RFCR_AARP) ? true : false;
            multicastHashEnable = (reg & RFCR_MHEN) ? true : false;

#if 0
            if (reg & RFCR_APAT)
                panic("RFCR_APAT not implemented!\n");
#endif
            if (reg & RFCR_UHEN)
                panic("Unicast hash filtering not used by drivers!\n");

            if (reg & RFCR_ULM)
                panic("RFCR_ULM not implemented!\n");

            break;

          case RFDR:
            rfaddr = (uint16_t)(regs.rfcr & RFCR_RFADDR);
            switch (rfaddr) {
              case 0x000:
                rom.perfectMatch[0] = (uint8_t)reg;
                rom.perfectMatch[1] = (uint8_t)(reg >> 8);
                break;
              case 0x002:
                rom.perfectMatch[2] = (uint8_t)reg;
                rom.perfectMatch[3] = (uint8_t)(reg >> 8);
                break;
              case 0x004:
                rom.perfectMatch[4] = (uint8_t)reg;
                rom.perfectMatch[5] = (uint8_t)(reg >> 8);
                break;
              default:

                if (rfaddr >= FHASH_ADDR &&
                    rfaddr < FHASH_ADDR + FHASH_SIZE) {

                    // Only word-aligned writes supported
                    if (rfaddr % 2)
                        panic("unaligned write to filter hash table!");

                    rom.filterHash[rfaddr - FHASH_ADDR] = (uint8_t)reg;
                    rom.filterHash[rfaddr - FHASH_ADDR + 1]
                        = (uint8_t)(reg >> 8);
                    break;
                }
                panic("writing RFDR for something other than pattern matching "
                    "or hashing! %#x\n", rfaddr);
            }
            break;

          case BRAR:
            regs.brar = reg;
            break;

          case BRDR:
            panic("the driver never uses BRDR, something is wrong!\n");

          case SRR:
            panic("SRR is read only register!\n");

          case MIBC:
            panic("the driver never uses MIBC, something is wrong!\n");

          case VRCR:
            regs.vrcr = reg;
            break;

          case VTCR:
            regs.vtcr = reg;
            break;

          case VDR:
            panic("the driver never uses VDR, something is wrong!\n");

          case CCSR:
            /* not going to implement clockrun stuff */
            regs.ccsr = reg;
            break;

          case TBICR:
            regs.tbicr = reg;
            if (reg & TBICR_MR_LOOPBACK)
                panic("TBICR_MR_LOOPBACK never used, something wrong!\n");

            if (reg & TBICR_MR_AN_ENABLE) {
                regs.tanlpar = regs.tanar;
                regs.tbisr |= (TBISR_MR_AN_COMPLETE | TBISR_MR_LINK_STATUS);
            }

#if 0
            if (reg & TBICR_MR_RESTART_AN) ;
#endif

            break;

          case TBISR:
            panic("TBISR is read only register!\n");

          case TANAR:
            // Only write the writable bits
            regs.tanar &= TANAR_RF1 | TANAR_RF2 | TANAR_UNUSED;
            regs.tanar |= reg & ~(TANAR_RF1 | TANAR_RF2 | TANAR_UNUSED);

            // Pause capability unimplemented
#if 0
            if (reg & TANAR_PS2) ;
            if (reg & TANAR_PS1) ;
#endif

            break;

          case TANLPAR:
            panic("this should only be written to by the fake phy!\n");

          case TANER:
            panic("TANER is read only register!\n");

          case TESR:
            regs.tesr = reg;
            break;

          default:
            panic("invalid register access daddr=%#x", daddr);
        }
    } else {
        panic("Invalid Request Size");
    }
    pkt->makeAtomicResponse();
    return pioDelay;
}

void
NSGigE::devIntrPost(uint32_t interrupts)
{
    if (interrupts & ISR_RESERVE)
        panic("Cannot set a reserved interrupt");

    if (interrupts & ISR_NOIMPL)
        warn("interrupt not implemented %#x\n", interrupts);

    interrupts &= ISR_IMPL;
    regs.isr |= interrupts;

    if (interrupts & regs.imr) {
        if (interrupts & ISR_SWI) {
            totalSwi++;
        }
        if (interrupts & ISR_RXIDLE) {
            totalRxIdle++;
        }
        if (interrupts & ISR_RXOK) {
            totalRxOk++;
        }
        if (interrupts & ISR_RXDESC) {
            totalRxDesc++;
        }
        if (interrupts & ISR_TXOK) {
            totalTxOk++;
        }
        if (interrupts & ISR_TXIDLE) {
            totalTxIdle++;
        }
        if (interrupts & ISR_TXDESC) {
            totalTxDesc++;
        }
        if (interrupts & ISR_RXORN) {
            totalRxOrn++;
        }
    }

    DPRINTF(EthernetIntr,
            "interrupt written to ISR: intr=%#x isr=%#x imr=%#x\n",
            interrupts, regs.isr, regs.imr);

    if ((regs.isr & regs.imr)) {
        Tick when = curTick();
        if ((regs.isr & regs.imr & ISR_NODELAY) == 0)
            when += intrDelay;
        postedInterrupts++;
        cpuIntrPost(when);
    }
}

/* writing this interrupt counting stats inside this means that this function
   is now limited to being used to clear all interrupts upon the kernel
   reading isr and servicing.  just telling you in case you were thinking
   of expanding use.
*/
void
NSGigE::devIntrClear(uint32_t interrupts)
{
    if (interrupts & ISR_RESERVE)
        panic("Cannot clear a reserved interrupt");

    if (regs.isr & regs.imr & ISR_SWI) {
        postedSwi++;
    }
    if (regs.isr & regs.imr & ISR_RXIDLE) {
        postedRxIdle++;
    }
    if (regs.isr & regs.imr & ISR_RXOK) {
        postedRxOk++;
    }
    if (regs.isr & regs.imr & ISR_RXDESC) {
            postedRxDesc++;
    }
    if (regs.isr & regs.imr & ISR_TXOK) {
        postedTxOk++;
    }
    if (regs.isr & regs.imr & ISR_TXIDLE) {
        postedTxIdle++;
    }
    if (regs.isr & regs.imr & ISR_TXDESC) {
        postedTxDesc++;
    }
    if (regs.isr & regs.imr & ISR_RXORN) {
        postedRxOrn++;
    }

    interrupts &= ~ISR_NOIMPL;
    regs.isr &= ~interrupts;

    DPRINTF(EthernetIntr,
            "interrupt cleared from ISR: intr=%x isr=%x imr=%x\n",
            interrupts, regs.isr, regs.imr);

    if (!(regs.isr & regs.imr))
        cpuIntrClear();
}

void
NSGigE::devIntrChangeMask()
{
    DPRINTF(EthernetIntr, "interrupt mask changed: isr=%x imr=%x masked=%x\n",
            regs.isr, regs.imr, regs.isr & regs.imr);

    if (regs.isr & regs.imr)
        cpuIntrPost(curTick());
    else
        cpuIntrClear();
}

void
NSGigE::cpuIntrPost(Tick when)
{
    // If the interrupt you want to post is later than an interrupt
    // already scheduled, just let it post in the coming one and don't
    // schedule another.
    // HOWEVER, must be sure that the scheduled intrTick is in the
    // future (this was formerly the source of a bug)
    /**
     * @todo this warning should be removed and the intrTick code should
     * be fixed.
     */
    assert(when >= curTick());
    assert(intrTick >= curTick() || intrTick == 0);
    if (when > intrTick && intrTick != 0) {
        DPRINTF(EthernetIntr, "don't need to schedule event...intrTick=%d\n",
                intrTick);
        return;
    }

    intrTick = when;
    if (intrTick < curTick()) {
        intrTick = curTick();
    }

    DPRINTF(EthernetIntr, "going to schedule an interrupt for intrTick=%d\n",
            intrTick);

    if (intrEvent)
        intrEvent->squash();

    intrEvent = new EventFunctionWrapper([this]{ cpuInterrupt(); },
                                         name(), true);
    schedule(intrEvent, intrTick);
}

void
NSGigE::cpuInterrupt()
{
    assert(intrTick == curTick());

    // Whether or not there's a pending interrupt, we don't care about
    // it anymore
    intrEvent = 0;
    intrTick = 0;

    // Don't send an interrupt if there's already one
    if (cpuPendingIntr) {
        DPRINTF(EthernetIntr,
                "would send an interrupt now, but there's already pending\n");
    } else {
        // Send interrupt
        cpuPendingIntr = true;

        DPRINTF(EthernetIntr, "posting interrupt\n");
        intrPost();
    }
}

void
NSGigE::cpuIntrClear()
{
    if (!cpuPendingIntr)
        return;

    if (intrEvent) {
        intrEvent->squash();
        intrEvent = 0;
    }

    intrTick = 0;

    cpuPendingIntr = false;

    DPRINTF(EthernetIntr, "clearing interrupt\n");
    intrClear();
}

bool
NSGigE::cpuIntrPending() const
{ return cpuPendingIntr; }

void
NSGigE::txReset()
{

    DPRINTF(Ethernet, "transmit reset\n");

    CTDD = false;
    txEnable = false;;
    txFragPtr = 0;
    assert(txDescCnt == 0);
    txFifo.clear();
    txState = txIdle;
    assert(txDmaState == dmaIdle);
}

void
NSGigE::rxReset()
{
    DPRINTF(Ethernet, "receive reset\n");

    CRDD = false;
    assert(rxPktBytes == 0);
    rxEnable = false;
    rxFragPtr = 0;
    assert(rxDescCnt == 0);
    assert(rxDmaState == dmaIdle);
    rxFifo.clear();
    rxState = rxIdle;
}

void
NSGigE::regsReset()
{
    memset(&regs, 0, sizeof(regs));
    regs.config = (CFGR_LNKSTS | CFGR_TBI_EN | CFGR_MODE_1000);
    regs.mear = 0x12;
    regs.txcfg = 0x120; // set drain threshold to 1024 bytes and
                        // fill threshold to 32 bytes
    regs.rxcfg = 0x4;   // set drain threshold to 16 bytes
    regs.srr = 0x0103;  // set the silicon revision to rev B or 0x103
    regs.mibc = MIBC_FRZ;
    regs.vdr = 0x81;    // set the vlan tag type to 802.1q
    regs.tesr = 0xc000; // TBI capable of both full and half duplex
    regs.brar = 0xffffffff;

    extstsEnable = false;
    acceptBroadcast = false;
    acceptMulticast = false;
    acceptUnicast = false;
    acceptPerfect = false;
    acceptArp = false;
}

bool
NSGigE::doRxDmaRead()
{
    assert(rxDmaState == dmaIdle || rxDmaState == dmaReadWaiting);
    rxDmaState = dmaReading;

    if (dmaPending() || drainState() != DrainState::Running)
        rxDmaState = dmaReadWaiting;
    else
        dmaRead(rxDmaAddr, rxDmaLen, &rxDmaReadEvent, (uint8_t*)rxDmaData);

    return true;
}

void
NSGigE::rxDmaReadDone()
{
    assert(rxDmaState == dmaReading);
    rxDmaState = dmaIdle;

    DPRINTF(EthernetDMA, "rx dma read  paddr=%#x len=%d\n",
            rxDmaAddr, rxDmaLen);
    DDUMP(EthernetDMA, rxDmaData, rxDmaLen);

    // If the transmit state machine has a pending DMA, let it go first
    if (txDmaState == dmaReadWaiting || txDmaState == dmaWriteWaiting)
        txKick();

    rxKick();
}

bool
NSGigE::doRxDmaWrite()
{
    assert(rxDmaState == dmaIdle || rxDmaState == dmaWriteWaiting);
    rxDmaState = dmaWriting;

    if (dmaPending() || drainState() != DrainState::Running)
        rxDmaState = dmaWriteWaiting;
    else
        dmaWrite(rxDmaAddr, rxDmaLen, &rxDmaWriteEvent, (uint8_t*)rxDmaData);
    return true;
}

void
NSGigE::rxDmaWriteDone()
{
    assert(rxDmaState == dmaWriting);
    rxDmaState = dmaIdle;

    DPRINTF(EthernetDMA, "rx dma write paddr=%#x len=%d\n",
            rxDmaAddr, rxDmaLen);
    DDUMP(EthernetDMA, rxDmaData, rxDmaLen);

    // If the transmit state machine has a pending DMA, let it go first
    if (txDmaState == dmaReadWaiting || txDmaState == dmaWriteWaiting)
        txKick();

    rxKick();
}

void
NSGigE::rxKick()
{
    bool is64bit = (bool)(regs.config & CFGR_M64ADDR);

    DPRINTF(EthernetSM,
            "receive kick rxState=%s (rxBuf.size=%d) %d-bit\n",
            NsRxStateStrings[rxState], rxFifo.size(), is64bit ? 64 : 32);

    Addr link, bufptr;
    uint32_t &cmdsts = is64bit ? rxDesc64.cmdsts : rxDesc32.cmdsts;
    uint32_t &extsts = is64bit ? rxDesc64.extsts : rxDesc32.extsts;

  next:
    if (rxKickTick > curTick()) {
        DPRINTF(EthernetSM, "receive kick exiting, can't run till %d\n",
                rxKickTick);

        goto exit;
    }

    // Go to the next state machine clock tick.
    rxKickTick = clockEdge(Cycles(1));

    switch(rxDmaState) {
      case dmaReadWaiting:
        if (doRxDmaRead())
            goto exit;
        break;
      case dmaWriteWaiting:
        if (doRxDmaWrite())
            goto exit;
        break;
      default:
        break;
    }

    link = is64bit ? (Addr)rxDesc64.link : (Addr)rxDesc32.link;
    bufptr = is64bit ? (Addr)rxDesc64.bufptr : (Addr)rxDesc32.bufptr;

    // see state machine from spec for details
    // the way this works is, if you finish work on one state and can
    // go directly to another, you do that through jumping to the
    // label "next".  however, if you have intermediate work, like DMA
    // so that you can't go to the next state yet, you go to exit and
    // exit the loop.  however, when the DMA is done it will trigger
    // an event and come back to this loop.
    switch (rxState) {
      case rxIdle:
        if (!rxEnable) {
            DPRINTF(EthernetSM, "Receive Disabled! Nothing to do.\n");
            goto exit;
        }

        if (CRDD) {
            rxState = rxDescRefr;

            rxDmaAddr = regs.rxdp & 0x3fffffff;
            rxDmaData =
                is64bit ? (void *)&rxDesc64.link : (void *)&rxDesc32.link;
            rxDmaLen = is64bit ? sizeof(rxDesc64.link) : sizeof(rxDesc32.link);
            rxDmaFree = dmaDescFree;

            descDmaReads++;
            descDmaRdBytes += rxDmaLen;

            if (doRxDmaRead())
                goto exit;
        } else {
            rxState = rxDescRead;

            rxDmaAddr = regs.rxdp & 0x3fffffff;
            rxDmaData = is64bit ? (void *)&rxDesc64 : (void *)&rxDesc32;
            rxDmaLen = is64bit ? sizeof(rxDesc64) : sizeof(rxDesc32);
            rxDmaFree = dmaDescFree;

            descDmaReads++;
            descDmaRdBytes += rxDmaLen;

            if (doRxDmaRead())
                goto exit;
        }
        break;

      case rxDescRefr:
        if (rxDmaState != dmaIdle)
            goto exit;

        rxState = rxAdvance;
        break;

     case rxDescRead:
        if (rxDmaState != dmaIdle)
            goto exit;

        DPRINTF(EthernetDesc, "rxDesc: addr=%08x read descriptor\n",
                regs.rxdp & 0x3fffffff);
        DPRINTF(EthernetDesc,
                "rxDesc: link=%#x bufptr=%#x cmdsts=%08x extsts=%08x\n",
                link, bufptr, cmdsts, extsts);

        if (cmdsts & CMDSTS_OWN) {
            devIntrPost(ISR_RXIDLE);
            rxState = rxIdle;
            goto exit;
        } else {
            rxState = rxFifoBlock;
            rxFragPtr = bufptr;
            rxDescCnt = cmdsts & CMDSTS_LEN_MASK;
        }
        break;

      case rxFifoBlock:
        if (!rxPacket) {
            /**
             * @todo in reality, we should be able to start processing
             * the packet as it arrives, and not have to wait for the
             * full packet ot be in the receive fifo.
             */
            if (rxFifo.empty())
                goto exit;

            DPRINTF(EthernetSM, "****processing receive of new packet****\n");

            // If we don't have a packet, grab a new one from the fifo.
            rxPacket = rxFifo.front();
            rxPktBytes = rxPacket->length;
            rxPacketBufPtr = rxPacket->data;

#if TRACING_ON
            if (DTRACE(Ethernet)) {
                IpPtr ip(rxPacket);
                if (ip) {
                    DPRINTF(Ethernet, "ID is %d\n", ip->id());
                    TcpPtr tcp(ip);
                    if (tcp) {
                        DPRINTF(Ethernet,
                                "Src Port=%d, Dest Port=%d, Seq=%d, Ack=%d\n",
                                tcp->sport(), tcp->dport(), tcp->seq(),
                                tcp->ack());
                    }
                }
            }
#endif

            // sanity check - i think the driver behaves like this
            assert(rxDescCnt >= rxPktBytes);
            rxFifo.pop();
        }


        // dont' need the && rxDescCnt > 0 if driver sanity check
        // above holds
        if (rxPktBytes > 0) {
            rxState = rxFragWrite;
            // don't need min<>(rxPktBytes,rxDescCnt) if above sanity
            // check holds
            rxXferLen = rxPktBytes;

            rxDmaAddr = rxFragPtr & 0x3fffffff;
            rxDmaData = rxPacketBufPtr;
            rxDmaLen = rxXferLen;
            rxDmaFree = dmaDataFree;

            if (doRxDmaWrite())
                goto exit;

        } else {
            rxState = rxDescWrite;

            //if (rxPktBytes == 0) {  /* packet is done */
            assert(rxPktBytes == 0);
            DPRINTF(EthernetSM, "done with receiving packet\n");

            cmdsts |= CMDSTS_OWN;
            cmdsts &= ~CMDSTS_MORE;
            cmdsts |= CMDSTS_OK;
            cmdsts &= 0xffff0000;
            cmdsts += rxPacket->length;   //i.e. set CMDSTS_SIZE

#if 0
            /*
             * all the driver uses these are for its own stats keeping
             * which we don't care about, aren't necessary for
             * functionality and doing this would just slow us down.
             * if they end up using this in a later version for
             * functional purposes, just undef
             */
            if (rxFilterEnable) {
                cmdsts &= ~CMDSTS_DEST_MASK;
                const EthAddr &dst = rxFifoFront()->dst();
                if (dst->unicast())
                    cmdsts |= CMDSTS_DEST_SELF;
                if (dst->multicast())
                    cmdsts |= CMDSTS_DEST_MULTI;
                if (dst->broadcast())
                    cmdsts |= CMDSTS_DEST_MASK;
            }
#endif

            IpPtr ip(rxPacket);
            if (extstsEnable && ip) {
                extsts |= EXTSTS_IPPKT;
                rxIpChecksums++;
                if (cksum(ip) != 0) {
                    DPRINTF(EthernetCksum, "Rx IP Checksum Error\n");
                    extsts |= EXTSTS_IPERR;
                }
                TcpPtr tcp(ip);
                UdpPtr udp(ip);
                if (tcp) {
                    extsts |= EXTSTS_TCPPKT;
                    rxTcpChecksums++;
                    if (cksum(tcp) != 0) {
                        DPRINTF(EthernetCksum, "Rx TCP Checksum Error\n");
                        extsts |= EXTSTS_TCPERR;

                    }
                } else if (udp) {
                    extsts |= EXTSTS_UDPPKT;
                    rxUdpChecksums++;
                    if (cksum(udp) != 0) {
                        DPRINTF(EthernetCksum, "Rx UDP Checksum Error\n");
                        extsts |= EXTSTS_UDPERR;
                    }
                }
            }
            rxPacket = 0;

            /*
             * the driver seems to always receive into desc buffers
             * of size 1514, so you never have a pkt that is split
             * into multiple descriptors on the receive side, so
             * i don't implement that case, hence the assert above.
             */

            DPRINTF(EthernetDesc,
                    "rxDesc: addr=%08x writeback cmdsts extsts\n",
                    regs.rxdp & 0x3fffffff);
            DPRINTF(EthernetDesc,
                    "rxDesc: link=%#x bufptr=%#x cmdsts=%08x extsts=%08x\n",
                    link, bufptr, cmdsts, extsts);

            rxDmaAddr = regs.rxdp & 0x3fffffff;
            rxDmaData = &cmdsts;
            if (is64bit) {
                rxDmaAddr += offsetof(ns_desc64, cmdsts);
                rxDmaLen = sizeof(rxDesc64.cmdsts) + sizeof(rxDesc64.extsts);
            } else {
                rxDmaAddr += offsetof(ns_desc32, cmdsts);
                rxDmaLen = sizeof(rxDesc32.cmdsts) + sizeof(rxDesc32.extsts);
            }
            rxDmaFree = dmaDescFree;

            descDmaWrites++;
            descDmaWrBytes += rxDmaLen;

            if (doRxDmaWrite())
                goto exit;
        }
        break;

      case rxFragWrite:
        if (rxDmaState != dmaIdle)
            goto exit;

        rxPacketBufPtr += rxXferLen;
        rxFragPtr += rxXferLen;
        rxPktBytes -= rxXferLen;

        rxState = rxFifoBlock;
        break;

      case rxDescWrite:
        if (rxDmaState != dmaIdle)
            goto exit;

        assert(cmdsts & CMDSTS_OWN);

        assert(rxPacket == 0);
        devIntrPost(ISR_RXOK);

        if (cmdsts & CMDSTS_INTR)
            devIntrPost(ISR_RXDESC);

        if (!rxEnable) {
            DPRINTF(EthernetSM, "Halting the RX state machine\n");
            rxState = rxIdle;
            goto exit;
        } else
            rxState = rxAdvance;
        break;

      case rxAdvance:
        if (link == 0) {
            devIntrPost(ISR_RXIDLE);
            rxState = rxIdle;
            CRDD = true;
            goto exit;
        } else {
            if (rxDmaState != dmaIdle)
                goto exit;
            rxState = rxDescRead;
            regs.rxdp = link;
            CRDD = false;

            rxDmaAddr = regs.rxdp & 0x3fffffff;
            rxDmaData = is64bit ? (void *)&rxDesc64 : (void *)&rxDesc32;
            rxDmaLen = is64bit ? sizeof(rxDesc64) : sizeof(rxDesc32);
            rxDmaFree = dmaDescFree;

            if (doRxDmaRead())
                goto exit;
        }
        break;

      default:
        panic("Invalid rxState!");
    }

    DPRINTF(EthernetSM, "entering next rxState=%s\n",
            NsRxStateStrings[rxState]);
    goto next;

  exit:
    /**
     * @todo do we want to schedule a future kick?
     */
    DPRINTF(EthernetSM, "rx state machine exited rxState=%s\n",
            NsRxStateStrings[rxState]);

    if (!rxKickEvent.scheduled())
        schedule(rxKickEvent, rxKickTick);
}

void
NSGigE::transmit()
{
    if (txFifo.empty()) {
        DPRINTF(Ethernet, "nothing to transmit\n");
        return;
    }

    DPRINTF(Ethernet, "Attempt Pkt Transmit: txFifo length=%d\n",
            txFifo.size());
    if (interface->sendPacket(txFifo.front())) {
#if TRACING_ON
        if (DTRACE(Ethernet)) {
            IpPtr ip(txFifo.front());
            if (ip) {
                DPRINTF(Ethernet, "ID is %d\n", ip->id());
                TcpPtr tcp(ip);
                if (tcp) {
                    DPRINTF(Ethernet,
                            "Src Port=%d, Dest Port=%d, Seq=%d, Ack=%d\n",
                            tcp->sport(), tcp->dport(), tcp->seq(),
                            tcp->ack());
                }
            }
        }
#endif

        DDUMP(EthernetData, txFifo.front()->data, txFifo.front()->length);
        txBytes += txFifo.front()->length;
        txPackets++;

        DPRINTF(Ethernet, "Successful Xmit! now txFifoAvail is %d\n",
                txFifo.avail());
        txFifo.pop();

        /*
         * normally do a writeback of the descriptor here, and ONLY
         * after that is done, send this interrupt.  but since our
         * stuff never actually fails, just do this interrupt here,
         * otherwise the code has to stray from this nice format.
         * besides, it's functionally the same.
         */
        devIntrPost(ISR_TXOK);
    }

   if (!txFifo.empty() && !txEvent.scheduled()) {
       DPRINTF(Ethernet, "reschedule transmit\n");
       schedule(txEvent, curTick() + retryTime);
   }
}

bool
NSGigE::doTxDmaRead()
{
    assert(txDmaState == dmaIdle || txDmaState == dmaReadWaiting);
    txDmaState = dmaReading;

    if (dmaPending() || drainState() != DrainState::Running)
        txDmaState = dmaReadWaiting;
    else
        dmaRead(txDmaAddr, txDmaLen, &txDmaReadEvent, (uint8_t*)txDmaData);

    return true;
}

void
NSGigE::txDmaReadDone()
{
    assert(txDmaState == dmaReading);
    txDmaState = dmaIdle;

    DPRINTF(EthernetDMA, "tx dma read  paddr=%#x len=%d\n",
            txDmaAddr, txDmaLen);
    DDUMP(EthernetDMA, txDmaData, txDmaLen);

    // If the receive state machine  has a pending DMA, let it go first
    if (rxDmaState == dmaReadWaiting || rxDmaState == dmaWriteWaiting)
        rxKick();

    txKick();
}

bool
NSGigE::doTxDmaWrite()
{
    assert(txDmaState == dmaIdle || txDmaState == dmaWriteWaiting);
    txDmaState = dmaWriting;

    if (dmaPending() || drainState() != DrainState::Running)
        txDmaState = dmaWriteWaiting;
    else
        dmaWrite(txDmaAddr, txDmaLen, &txDmaWriteEvent, (uint8_t*)txDmaData);
    return true;
}

void
NSGigE::txDmaWriteDone()
{
    assert(txDmaState == dmaWriting);
    txDmaState = dmaIdle;

    DPRINTF(EthernetDMA, "tx dma write paddr=%#x len=%d\n",
            txDmaAddr, txDmaLen);
    DDUMP(EthernetDMA, txDmaData, txDmaLen);

    // If the receive state machine  has a pending DMA, let it go first
    if (rxDmaState == dmaReadWaiting || rxDmaState == dmaWriteWaiting)
        rxKick();

    txKick();
}

void
NSGigE::txKick()
{
    bool is64bit = (bool)(regs.config & CFGR_M64ADDR);

    DPRINTF(EthernetSM, "transmit kick txState=%s %d-bit\n",
            NsTxStateStrings[txState], is64bit ? 64 : 32);

    Addr link, bufptr;
    uint32_t &cmdsts = is64bit ? txDesc64.cmdsts : txDesc32.cmdsts;
    uint32_t &extsts = is64bit ? txDesc64.extsts : txDesc32.extsts;

  next:
    if (txKickTick > curTick()) {
        DPRINTF(EthernetSM, "transmit kick exiting, can't run till %d\n",
                txKickTick);
        goto exit;
    }

    // Go to the next state machine clock tick.
    txKickTick = clockEdge(Cycles(1));

    switch(txDmaState) {
      case dmaReadWaiting:
        if (doTxDmaRead())
            goto exit;
        break;
      case dmaWriteWaiting:
        if (doTxDmaWrite())
            goto exit;
        break;
      default:
        break;
    }

    link = is64bit ? (Addr)txDesc64.link : (Addr)txDesc32.link;
    bufptr = is64bit ? (Addr)txDesc64.bufptr : (Addr)txDesc32.bufptr;
    switch (txState) {
      case txIdle:
        if (!txEnable) {
            DPRINTF(EthernetSM, "Transmit disabled.  Nothing to do.\n");
            goto exit;
        }

        if (CTDD) {
            txState = txDescRefr;

            txDmaAddr = regs.txdp & 0x3fffffff;
            txDmaData =
                is64bit ? (void *)&txDesc64.link : (void *)&txDesc32.link;
            txDmaLen = is64bit ? sizeof(txDesc64.link) : sizeof(txDesc32.link);
            txDmaFree = dmaDescFree;

            descDmaReads++;
            descDmaRdBytes += txDmaLen;

            if (doTxDmaRead())
                goto exit;

        } else {
            txState = txDescRead;

            txDmaAddr = regs.txdp & 0x3fffffff;
            txDmaData = is64bit ? (void *)&txDesc64 : (void *)&txDesc32;
            txDmaLen = is64bit ? sizeof(txDesc64) : sizeof(txDesc32);
            txDmaFree = dmaDescFree;

            descDmaReads++;
            descDmaRdBytes += txDmaLen;

            if (doTxDmaRead())
                goto exit;
        }
        break;

      case txDescRefr:
        if (txDmaState != dmaIdle)
            goto exit;

        txState = txAdvance;
        break;

      case txDescRead:
        if (txDmaState != dmaIdle)
            goto exit;

        DPRINTF(EthernetDesc, "txDesc: addr=%08x read descriptor\n",
                regs.txdp & 0x3fffffff);
        DPRINTF(EthernetDesc,
                "txDesc: link=%#x bufptr=%#x cmdsts=%#08x extsts=%#08x\n",
                link, bufptr, cmdsts, extsts);

        if (cmdsts & CMDSTS_OWN) {
            txState = txFifoBlock;
            txFragPtr = bufptr;
            txDescCnt = cmdsts & CMDSTS_LEN_MASK;
        } else {
            devIntrPost(ISR_TXIDLE);
            txState = txIdle;
            goto exit;
        }
        break;

      case txFifoBlock:
        if (!txPacket) {
            DPRINTF(EthernetSM, "****starting the tx of a new packet****\n");
            txPacket = make_shared<EthPacketData>(16384);
            txPacketBufPtr = txPacket->data;
        }

        if (txDescCnt == 0) {
            DPRINTF(EthernetSM, "the txDescCnt == 0, done with descriptor\n");
            if (cmdsts & CMDSTS_MORE) {
                DPRINTF(EthernetSM, "there are more descriptors to come\n");
                txState = txDescWrite;

                cmdsts &= ~CMDSTS_OWN;

                txDmaAddr = regs.txdp & 0x3fffffff;
                txDmaData = &cmdsts;
                if (is64bit) {
                    txDmaAddr += offsetof(ns_desc64, cmdsts);
                    txDmaLen = sizeof(txDesc64.cmdsts);
                } else {
                    txDmaAddr += offsetof(ns_desc32, cmdsts);
                    txDmaLen = sizeof(txDesc32.cmdsts);
                }
                txDmaFree = dmaDescFree;

                if (doTxDmaWrite())
                    goto exit;

            } else { /* this packet is totally done */
                DPRINTF(EthernetSM, "This packet is done, let's wrap it up\n");
                /* deal with the the packet that just finished */
                if ((regs.vtcr & VTCR_PPCHK) && extstsEnable) {
                    IpPtr ip(txPacket);
                    if (extsts & EXTSTS_UDPPKT) {
                        UdpPtr udp(ip);
                        if (udp) {
                            udp->sum(0);
                            udp->sum(cksum(udp));
                            txUdpChecksums++;
                        } else {
                            Debug::breakpoint();
                            warn_once("UDPPKT set, but not UDP!\n");
                        }
                    } else if (extsts & EXTSTS_TCPPKT) {
                        TcpPtr tcp(ip);
                        if (tcp) {
                            tcp->sum(0);
                            tcp->sum(cksum(tcp));
                            txTcpChecksums++;
                        } else {
                            warn_once("TCPPKT set, but not UDP!\n");
                        }
                    }
                    if (extsts & EXTSTS_IPPKT) {
                        if (ip) {
                            ip->sum(0);
                            ip->sum(cksum(ip));
                            txIpChecksums++;
                        } else {
                            warn_once("IPPKT set, but not UDP!\n");
                        }
                    }
                }

                txPacket->simLength = txPacketBufPtr - txPacket->data;
                txPacket->length = txPacketBufPtr - txPacket->data;
                // this is just because the receive can't handle a
                // packet bigger want to make sure
                if (txPacket->length > 1514)
                    panic("transmit packet too large, %s > 1514\n",
                          txPacket->length);

#ifndef NDEBUG
                bool success =
#endif
                    txFifo.push(txPacket);
                assert(success);

                /*
                 * this following section is not tqo spec, but
                 * functionally shouldn't be any different.  normally,
                 * the chip will wait til the transmit has occurred
                 * before writing back the descriptor because it has
                 * to wait to see that it was successfully transmitted
                 * to decide whether to set CMDSTS_OK or not.
                 * however, in the simulator since it is always
                 * successfully transmitted, and writing it exactly to
                 * spec would complicate the code, we just do it here
                 */

                cmdsts &= ~CMDSTS_OWN;
                cmdsts |= CMDSTS_OK;

                DPRINTF(EthernetDesc,
                        "txDesc writeback: cmdsts=%08x extsts=%08x\n",
                        cmdsts, extsts);

                txDmaFree = dmaDescFree;
                txDmaAddr = regs.txdp & 0x3fffffff;
                txDmaData = &cmdsts;
                if (is64bit) {
                    txDmaAddr += offsetof(ns_desc64, cmdsts);
                    txDmaLen =
                        sizeof(txDesc64.cmdsts) + sizeof(txDesc64.extsts);
                } else {
                    txDmaAddr += offsetof(ns_desc32, cmdsts);
                    txDmaLen =
                        sizeof(txDesc32.cmdsts) + sizeof(txDesc32.extsts);
                }

                descDmaWrites++;
                descDmaWrBytes += txDmaLen;

                transmit();
                txPacket = 0;

                if (!txEnable) {
                    DPRINTF(EthernetSM, "halting TX state machine\n");
                    txState = txIdle;
                    goto exit;
                } else
                    txState = txAdvance;

                if (doTxDmaWrite())
                    goto exit;
            }
        } else {
            DPRINTF(EthernetSM, "this descriptor isn't done yet\n");
            if (!txFifo.full()) {
                txState = txFragRead;

                /*
                 * The number of bytes transferred is either whatever
                 * is left in the descriptor (txDescCnt), or if there
                 * is not enough room in the fifo, just whatever room
                 * is left in the fifo
                 */
                txXferLen = min<uint32_t>(txDescCnt, txFifo.avail());

                txDmaAddr = txFragPtr & 0x3fffffff;
                txDmaData = txPacketBufPtr;
                txDmaLen = txXferLen;
                txDmaFree = dmaDataFree;

                if (doTxDmaRead())
                    goto exit;
            } else {
                txState = txFifoBlock;
                transmit();

                goto exit;
            }

        }
        break;

      case txFragRead:
        if (txDmaState != dmaIdle)
            goto exit;

        txPacketBufPtr += txXferLen;
        txFragPtr += txXferLen;
        txDescCnt -= txXferLen;
        txFifo.reserve(txXferLen);

        txState = txFifoBlock;
        break;

      case txDescWrite:
        if (txDmaState != dmaIdle)
            goto exit;

        if (cmdsts & CMDSTS_INTR)
            devIntrPost(ISR_TXDESC);

        if (!txEnable) {
            DPRINTF(EthernetSM, "halting TX state machine\n");
            txState = txIdle;
            goto exit;
        } else
            txState = txAdvance;
        break;

      case txAdvance:
        if (link == 0) {
            devIntrPost(ISR_TXIDLE);
            txState = txIdle;
            goto exit;
        } else {
            if (txDmaState != dmaIdle)
                goto exit;
            txState = txDescRead;
            regs.txdp = link;
            CTDD = false;

            txDmaAddr = link & 0x3fffffff;
            txDmaData = is64bit ? (void *)&txDesc64 : (void *)&txDesc32;
            txDmaLen = is64bit ? sizeof(txDesc64) : sizeof(txDesc32);
            txDmaFree = dmaDescFree;

            if (doTxDmaRead())
                goto exit;
        }
        break;

      default:
        panic("invalid state");
    }

    DPRINTF(EthernetSM, "entering next txState=%s\n",
            NsTxStateStrings[txState]);
    goto next;

  exit:
    /**
     * @todo do we want to schedule a future kick?
     */
    DPRINTF(EthernetSM, "tx state machine exited txState=%s\n",
            NsTxStateStrings[txState]);

    if (!txKickEvent.scheduled())
        schedule(txKickEvent, txKickTick);
}

/**
 * Advance the EEPROM state machine
 * Called on rising edge of EEPROM clock bit in MEAR
 */
void
NSGigE::eepromKick()
{
    switch (eepromState) {

      case eepromStart:

        // Wait for start bit
        if (regs.mear & MEAR_EEDI) {
            // Set up to get 2 opcode bits
            eepromState = eepromGetOpcode;
            eepromBitsToRx = 2;
            eepromOpcode = 0;
        }
        break;

      case eepromGetOpcode:
        eepromOpcode <<= 1;
        eepromOpcode += (regs.mear & MEAR_EEDI) ? 1 : 0;
        --eepromBitsToRx;

        // Done getting opcode
        if (eepromBitsToRx == 0) {
            if (eepromOpcode != EEPROM_READ)
                panic("only EEPROM reads are implemented!");

            // Set up to get address
            eepromState = eepromGetAddress;
            eepromBitsToRx = 6;
            eepromAddress = 0;
        }
        break;

      case eepromGetAddress:
        eepromAddress <<= 1;
        eepromAddress += (regs.mear & MEAR_EEDI) ? 1 : 0;
        --eepromBitsToRx;

        // Done getting address
        if (eepromBitsToRx == 0) {

            if (eepromAddress >= EEPROM_SIZE)
                panic("EEPROM read access out of range!");

            switch (eepromAddress) {

              case EEPROM_PMATCH2_ADDR:
                eepromData = rom.perfectMatch[5];
                eepromData <<= 8;
                eepromData += rom.perfectMatch[4];
                break;

              case EEPROM_PMATCH1_ADDR:
                eepromData = rom.perfectMatch[3];
                eepromData <<= 8;
                eepromData += rom.perfectMatch[2];
                break;

              case EEPROM_PMATCH0_ADDR:
                eepromData = rom.perfectMatch[1];
                eepromData <<= 8;
                eepromData += rom.perfectMatch[0];
                break;

              default:
                panic("FreeBSD driver only uses EEPROM to read PMATCH!");
            }
            // Set up to read data
            eepromState = eepromRead;
            eepromBitsToRx = 16;

            // Clear data in bit
            regs.mear &= ~MEAR_EEDI;
        }
        break;

      case eepromRead:
        // Clear Data Out bit
        regs.mear &= ~MEAR_EEDO;
        // Set bit to value of current EEPROM bit
        regs.mear |= (eepromData & 0x8000) ? MEAR_EEDO : 0x0;

        eepromData <<= 1;
        --eepromBitsToRx;

        // All done
        if (eepromBitsToRx == 0) {
            eepromState = eepromStart;
        }
        break;

      default:
        panic("invalid EEPROM state");
    }

}

void
NSGigE::transferDone()
{
    if (txFifo.empty()) {
        DPRINTF(Ethernet, "transfer complete: txFifo empty...nothing to do\n");
        return;
    }

    DPRINTF(Ethernet, "transfer complete: data in txFifo...schedule xmit\n");

    reschedule(txEvent, clockEdge(Cycles(1)), true);
}

bool
NSGigE::rxFilter(const EthPacketPtr &packet)
{
    EthPtr eth = packet;
    bool drop = true;
    string type;

    const EthAddr &dst = eth->dst();
    if (dst.unicast()) {
        // If we're accepting all unicast addresses
        if (acceptUnicast)
            drop = false;

        // If we make a perfect match
        if (acceptPerfect && dst == rom.perfectMatch)
            drop = false;

        if (acceptArp && eth->type() == ETH_TYPE_ARP)
            drop = false;

    } else if (dst.broadcast()) {
        // if we're accepting broadcasts
        if (acceptBroadcast)
            drop = false;

    } else if (dst.multicast()) {
        // if we're accepting all multicasts
        if (acceptMulticast)
            drop = false;

        // Multicast hashing faked - all packets accepted
        if (multicastHashEnable)
            drop = false;
    }

    if (drop) {
        DPRINTF(Ethernet, "rxFilter drop\n");
        DDUMP(EthernetData, packet->data, packet->length);
    }

    return drop;
}

bool
NSGigE::recvPacket(EthPacketPtr packet)
{
    rxBytes += packet->length;
    rxPackets++;

    DPRINTF(Ethernet, "Receiving packet from wire, rxFifoAvail=%d\n",
            rxFifo.avail());

    if (!rxEnable) {
        DPRINTF(Ethernet, "receive disabled...packet dropped\n");
        return true;
    }

    if (!rxFilterEnable) {
        DPRINTF(Ethernet,
            "receive packet filtering disabled . . . packet dropped\n");
        return true;
    }

    if (rxFilter(packet)) {
        DPRINTF(Ethernet, "packet filtered...dropped\n");
        return true;
    }

    if (rxFifo.avail() < packet->length) {
#if TRACING_ON
        IpPtr ip(packet);
        TcpPtr tcp(ip);
        if (ip) {
            DPRINTF(Ethernet,
                    "packet won't fit in receive buffer...pkt ID %d dropped\n",
                    ip->id());
            if (tcp) {
                DPRINTF(Ethernet, "Seq=%d\n", tcp->seq());
            }
        }
#endif
        droppedPackets++;
        devIntrPost(ISR_RXORN);
        return false;
    }

    rxFifo.push(packet);

    rxKick();
    return true;
}


void
NSGigE::drainResume()
{
    Drainable::drainResume();

    // During drain we could have left the state machines in a waiting state and
    // they wouldn't get out until some other event occured to kick them.
    // This way they'll get out immediately
    txKick();
    rxKick();
}


//=====================================================================
//
//
void
NSGigE::serialize(CheckpointOut &cp) const
{
    // Serialize the PciDevice base class
    PciDevice::serialize(cp);

    /*
     * Finalize any DMA events now.
     */
    // @todo will mem system save pending dma?

    /*
     * Serialize the device registers
     */
    SERIALIZE_SCALAR(regs.command);
    SERIALIZE_SCALAR(regs.config);
    SERIALIZE_SCALAR(regs.mear);
    SERIALIZE_SCALAR(regs.ptscr);
    SERIALIZE_SCALAR(regs.isr);
    SERIALIZE_SCALAR(regs.imr);
    SERIALIZE_SCALAR(regs.ier);
    SERIALIZE_SCALAR(regs.ihr);
    SERIALIZE_SCALAR(regs.txdp);
    SERIALIZE_SCALAR(regs.txdp_hi);
    SERIALIZE_SCALAR(regs.txcfg);
    SERIALIZE_SCALAR(regs.gpior);
    SERIALIZE_SCALAR(regs.rxdp);
    SERIALIZE_SCALAR(regs.rxdp_hi);
    SERIALIZE_SCALAR(regs.rxcfg);
    SERIALIZE_SCALAR(regs.pqcr);
    SERIALIZE_SCALAR(regs.wcsr);
    SERIALIZE_SCALAR(regs.pcr);
    SERIALIZE_SCALAR(regs.rfcr);
    SERIALIZE_SCALAR(regs.rfdr);
    SERIALIZE_SCALAR(regs.brar);
    SERIALIZE_SCALAR(regs.brdr);
    SERIALIZE_SCALAR(regs.srr);
    SERIALIZE_SCALAR(regs.mibc);
    SERIALIZE_SCALAR(regs.vrcr);
    SERIALIZE_SCALAR(regs.vtcr);
    SERIALIZE_SCALAR(regs.vdr);
    SERIALIZE_SCALAR(regs.ccsr);
    SERIALIZE_SCALAR(regs.tbicr);
    SERIALIZE_SCALAR(regs.tbisr);
    SERIALIZE_SCALAR(regs.tanar);
    SERIALIZE_SCALAR(regs.tanlpar);
    SERIALIZE_SCALAR(regs.taner);
    SERIALIZE_SCALAR(regs.tesr);

    SERIALIZE_ARRAY(rom.perfectMatch, ETH_ADDR_LEN);
    SERIALIZE_ARRAY(rom.filterHash, FHASH_SIZE);

    SERIALIZE_SCALAR(ioEnable);

    /*
     * Serialize the data Fifos
     */
    rxFifo.serialize("rxFifo", cp);
    txFifo.serialize("txFifo", cp);

    /*
     * Serialize the various helper variables
     */
    bool txPacketExists = txPacket != nullptr;
    SERIALIZE_SCALAR(txPacketExists);
    if (txPacketExists) {
        txPacket->simLength = txPacketBufPtr - txPacket->data;
        txPacket->length = txPacketBufPtr - txPacket->data;
        txPacket->serialize("txPacket", cp);
        uint32_t txPktBufPtr = (uint32_t) (txPacketBufPtr - txPacket->data);
        SERIALIZE_SCALAR(txPktBufPtr);
    }

    bool rxPacketExists = rxPacket != nullptr;
    SERIALIZE_SCALAR(rxPacketExists);
    if (rxPacketExists) {
        rxPacket->serialize("rxPacket", cp);
        uint32_t rxPktBufPtr = (uint32_t) (rxPacketBufPtr - rxPacket->data);
        SERIALIZE_SCALAR(rxPktBufPtr);
    }

    SERIALIZE_SCALAR(txXferLen);
    SERIALIZE_SCALAR(rxXferLen);

    /*
     * Serialize Cached Descriptors
     */
    SERIALIZE_SCALAR(rxDesc64.link);
    SERIALIZE_SCALAR(rxDesc64.bufptr);
    SERIALIZE_SCALAR(rxDesc64.cmdsts);
    SERIALIZE_SCALAR(rxDesc64.extsts);
    SERIALIZE_SCALAR(txDesc64.link);
    SERIALIZE_SCALAR(txDesc64.bufptr);
    SERIALIZE_SCALAR(txDesc64.cmdsts);
    SERIALIZE_SCALAR(txDesc64.extsts);
    SERIALIZE_SCALAR(rxDesc32.link);
    SERIALIZE_SCALAR(rxDesc32.bufptr);
    SERIALIZE_SCALAR(rxDesc32.cmdsts);
    SERIALIZE_SCALAR(rxDesc32.extsts);
    SERIALIZE_SCALAR(txDesc32.link);
    SERIALIZE_SCALAR(txDesc32.bufptr);
    SERIALIZE_SCALAR(txDesc32.cmdsts);
    SERIALIZE_SCALAR(txDesc32.extsts);
    SERIALIZE_SCALAR(extstsEnable);

    /*
     * Serialize tx state machine
     */
    int txState = this->txState;
    SERIALIZE_SCALAR(txState);
    SERIALIZE_SCALAR(txEnable);
    SERIALIZE_SCALAR(CTDD);
    SERIALIZE_SCALAR(txFragPtr);
    SERIALIZE_SCALAR(txDescCnt);
    int txDmaState = this->txDmaState;
    SERIALIZE_SCALAR(txDmaState);
    SERIALIZE_SCALAR(txKickTick);

    /*
     * Serialize rx state machine
     */
    int rxState = this->rxState;
    SERIALIZE_SCALAR(rxState);
    SERIALIZE_SCALAR(rxEnable);
    SERIALIZE_SCALAR(CRDD);
    SERIALIZE_SCALAR(rxPktBytes);
    SERIALIZE_SCALAR(rxFragPtr);
    SERIALIZE_SCALAR(rxDescCnt);
    int rxDmaState = this->rxDmaState;
    SERIALIZE_SCALAR(rxDmaState);
    SERIALIZE_SCALAR(rxKickTick);

    /*
     * Serialize EEPROM state machine
     */
    int eepromState = this->eepromState;
    SERIALIZE_SCALAR(eepromState);
    SERIALIZE_SCALAR(eepromClk);
    SERIALIZE_SCALAR(eepromBitsToRx);
    SERIALIZE_SCALAR(eepromOpcode);
    SERIALIZE_SCALAR(eepromAddress);
    SERIALIZE_SCALAR(eepromData);

    /*
     * If there's a pending transmit, store the time so we can
     * reschedule it later
     */
    Tick transmitTick = txEvent.scheduled() ? txEvent.when() - curTick() : 0;
    SERIALIZE_SCALAR(transmitTick);

    /*
     * receive address filter settings
     */
    SERIALIZE_SCALAR(rxFilterEnable);
    SERIALIZE_SCALAR(acceptBroadcast);
    SERIALIZE_SCALAR(acceptMulticast);
    SERIALIZE_SCALAR(acceptUnicast);
    SERIALIZE_SCALAR(acceptPerfect);
    SERIALIZE_SCALAR(acceptArp);
    SERIALIZE_SCALAR(multicastHashEnable);

    /*
     * Keep track of pending interrupt status.
     */
    SERIALIZE_SCALAR(intrTick);
    SERIALIZE_SCALAR(cpuPendingIntr);
    Tick intrEventTick = 0;
    if (intrEvent)
        intrEventTick = intrEvent->when();
    SERIALIZE_SCALAR(intrEventTick);

}

void
NSGigE::unserialize(CheckpointIn &cp)
{
    // Unserialize the PciDevice base class
    PciDevice::unserialize(cp);

    UNSERIALIZE_SCALAR(regs.command);
    UNSERIALIZE_SCALAR(regs.config);
    UNSERIALIZE_SCALAR(regs.mear);
    UNSERIALIZE_SCALAR(regs.ptscr);
    UNSERIALIZE_SCALAR(regs.isr);
    UNSERIALIZE_SCALAR(regs.imr);
    UNSERIALIZE_SCALAR(regs.ier);
    UNSERIALIZE_SCALAR(regs.ihr);
    UNSERIALIZE_SCALAR(regs.txdp);
    UNSERIALIZE_SCALAR(regs.txdp_hi);
    UNSERIALIZE_SCALAR(regs.txcfg);
    UNSERIALIZE_SCALAR(regs.gpior);
    UNSERIALIZE_SCALAR(regs.rxdp);
    UNSERIALIZE_SCALAR(regs.rxdp_hi);
    UNSERIALIZE_SCALAR(regs.rxcfg);
    UNSERIALIZE_SCALAR(regs.pqcr);
    UNSERIALIZE_SCALAR(regs.wcsr);
    UNSERIALIZE_SCALAR(regs.pcr);
    UNSERIALIZE_SCALAR(regs.rfcr);
    UNSERIALIZE_SCALAR(regs.rfdr);
    UNSERIALIZE_SCALAR(regs.brar);
    UNSERIALIZE_SCALAR(regs.brdr);
    UNSERIALIZE_SCALAR(regs.srr);
    UNSERIALIZE_SCALAR(regs.mibc);
    UNSERIALIZE_SCALAR(regs.vrcr);
    UNSERIALIZE_SCALAR(regs.vtcr);
    UNSERIALIZE_SCALAR(regs.vdr);
    UNSERIALIZE_SCALAR(regs.ccsr);
    UNSERIALIZE_SCALAR(regs.tbicr);
    UNSERIALIZE_SCALAR(regs.tbisr);
    UNSERIALIZE_SCALAR(regs.tanar);
    UNSERIALIZE_SCALAR(regs.tanlpar);
    UNSERIALIZE_SCALAR(regs.taner);
    UNSERIALIZE_SCALAR(regs.tesr);

    UNSERIALIZE_ARRAY(rom.perfectMatch, ETH_ADDR_LEN);
    UNSERIALIZE_ARRAY(rom.filterHash, FHASH_SIZE);

    UNSERIALIZE_SCALAR(ioEnable);

    /*
     * unserialize the data fifos
     */
    rxFifo.unserialize("rxFifo", cp);
    txFifo.unserialize("txFifo", cp);

    /*
     * unserialize the various helper variables
     */
    bool txPacketExists;
    UNSERIALIZE_SCALAR(txPacketExists);
    if (txPacketExists) {
        txPacket = make_shared<EthPacketData>(16384);
        txPacket->unserialize("txPacket", cp);
        uint32_t txPktBufPtr;
        UNSERIALIZE_SCALAR(txPktBufPtr);
        txPacketBufPtr = (uint8_t *) txPacket->data + txPktBufPtr;
    } else
        txPacket = 0;

    bool rxPacketExists;
    UNSERIALIZE_SCALAR(rxPacketExists);
    rxPacket = 0;
    if (rxPacketExists) {
        rxPacket = make_shared<EthPacketData>();
        rxPacket->unserialize("rxPacket", cp);
        uint32_t rxPktBufPtr;
        UNSERIALIZE_SCALAR(rxPktBufPtr);
        rxPacketBufPtr = (uint8_t *) rxPacket->data + rxPktBufPtr;
    } else
        rxPacket = 0;

    UNSERIALIZE_SCALAR(txXferLen);
    UNSERIALIZE_SCALAR(rxXferLen);

    /*
     * Unserialize Cached Descriptors
     */
    UNSERIALIZE_SCALAR(rxDesc64.link);
    UNSERIALIZE_SCALAR(rxDesc64.bufptr);
    UNSERIALIZE_SCALAR(rxDesc64.cmdsts);
    UNSERIALIZE_SCALAR(rxDesc64.extsts);
    UNSERIALIZE_SCALAR(txDesc64.link);
    UNSERIALIZE_SCALAR(txDesc64.bufptr);
    UNSERIALIZE_SCALAR(txDesc64.cmdsts);
    UNSERIALIZE_SCALAR(txDesc64.extsts);
    UNSERIALIZE_SCALAR(rxDesc32.link);
    UNSERIALIZE_SCALAR(rxDesc32.bufptr);
    UNSERIALIZE_SCALAR(rxDesc32.cmdsts);
    UNSERIALIZE_SCALAR(rxDesc32.extsts);
    UNSERIALIZE_SCALAR(txDesc32.link);
    UNSERIALIZE_SCALAR(txDesc32.bufptr);
    UNSERIALIZE_SCALAR(txDesc32.cmdsts);
    UNSERIALIZE_SCALAR(txDesc32.extsts);
    UNSERIALIZE_SCALAR(extstsEnable);

    /*
     * unserialize tx state machine
     */
    int txState;
    UNSERIALIZE_SCALAR(txState);
    this->txState = (TxState) txState;
    UNSERIALIZE_SCALAR(txEnable);
    UNSERIALIZE_SCALAR(CTDD);
    UNSERIALIZE_SCALAR(txFragPtr);
    UNSERIALIZE_SCALAR(txDescCnt);
    int txDmaState;
    UNSERIALIZE_SCALAR(txDmaState);
    this->txDmaState = (DmaState) txDmaState;
    UNSERIALIZE_SCALAR(txKickTick);
    if (txKickTick)
        schedule(txKickEvent, txKickTick);

    /*
     * unserialize rx state machine
     */
    int rxState;
    UNSERIALIZE_SCALAR(rxState);
    this->rxState = (RxState) rxState;
    UNSERIALIZE_SCALAR(rxEnable);
    UNSERIALIZE_SCALAR(CRDD);
    UNSERIALIZE_SCALAR(rxPktBytes);
    UNSERIALIZE_SCALAR(rxFragPtr);
    UNSERIALIZE_SCALAR(rxDescCnt);
    int rxDmaState;
    UNSERIALIZE_SCALAR(rxDmaState);
    this->rxDmaState = (DmaState) rxDmaState;
    UNSERIALIZE_SCALAR(rxKickTick);
    if (rxKickTick)
        schedule(rxKickEvent, rxKickTick);

    /*
     * Unserialize EEPROM state machine
     */
    int eepromState;
    UNSERIALIZE_SCALAR(eepromState);
    this->eepromState = (EEPROMState) eepromState;
    UNSERIALIZE_SCALAR(eepromClk);
    UNSERIALIZE_SCALAR(eepromBitsToRx);
    UNSERIALIZE_SCALAR(eepromOpcode);
    UNSERIALIZE_SCALAR(eepromAddress);
    UNSERIALIZE_SCALAR(eepromData);

    /*
     * If there's a pending transmit, reschedule it now
     */
    Tick transmitTick;
    UNSERIALIZE_SCALAR(transmitTick);
    if (transmitTick)
        schedule(txEvent, curTick() + transmitTick);

    /*
     * unserialize receive address filter settings
     */
    UNSERIALIZE_SCALAR(rxFilterEnable);
    UNSERIALIZE_SCALAR(acceptBroadcast);
    UNSERIALIZE_SCALAR(acceptMulticast);
    UNSERIALIZE_SCALAR(acceptUnicast);
    UNSERIALIZE_SCALAR(acceptPerfect);
    UNSERIALIZE_SCALAR(acceptArp);
    UNSERIALIZE_SCALAR(multicastHashEnable);

    /*
     * Keep track of pending interrupt status.
     */
    UNSERIALIZE_SCALAR(intrTick);
    UNSERIALIZE_SCALAR(cpuPendingIntr);
    Tick intrEventTick;
    UNSERIALIZE_SCALAR(intrEventTick);
    if (intrEventTick) {
        intrEvent = new EventFunctionWrapper([this]{ cpuInterrupt(); },
                                             name(), true);
        schedule(intrEvent, intrEventTick);
    }
}

NSGigE *
NSGigEParams::create()
{
    return new NSGigE(this);
}