1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
|
/*
* Copyright (c) 2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Andrew Schultz
* Miguel Serrano
*/
/* @file
* A single PCI device configuration space entry.
*/
#include <list>
#include <string>
#include <vector>
#include "base/inifile.hh"
#include "base/intmath.hh"
#include "base/misc.hh"
#include "base/str.hh"
#include "base/trace.hh"
#include "debug/PCIDEV.hh"
#include "dev/alpha/tsunamireg.h"
#include "dev/pciconfigall.hh"
#include "dev/pcidev.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "sim/byteswap.hh"
#include "sim/core.hh"
PciDevice::PciConfigPort::PciConfigPort(PciDevice *dev, int busid, int devid,
int funcid, Platform *p)
: SimpleTimingPort(dev->name() + "-pciconf", dev), device(dev),
platform(p), busId(busid), deviceId(devid), functionId(funcid)
{
configAddr = platform->calcPciConfigAddr(busId, deviceId, functionId);
}
Tick
PciDevice::PciConfigPort::recvAtomic(PacketPtr pkt)
{
assert(pkt->getAddr() >= configAddr &&
pkt->getAddr() < configAddr + PCI_CONFIG_SIZE);
// @todo someone should pay for this
pkt->headerDelay = pkt->payloadDelay = 0;
return pkt->isRead() ? device->readConfig(pkt) : device->writeConfig(pkt);
}
AddrRangeList
PciDevice::PciConfigPort::getAddrRanges() const
{
AddrRangeList ranges;
if (configAddr != ULL(-1))
ranges.push_back(RangeSize(configAddr, PCI_CONFIG_SIZE+1));
return ranges;
}
PciDevice::PciDevice(const Params *p)
: DmaDevice(p),
PMCAP_BASE(p->PMCAPBaseOffset),
PMCAP_ID_OFFSET(p->PMCAPBaseOffset+PMCAP_ID),
PMCAP_PC_OFFSET(p->PMCAPBaseOffset+PMCAP_PC),
PMCAP_PMCS_OFFSET(p->PMCAPBaseOffset+PMCAP_PMCS),
MSICAP_BASE(p->MSICAPBaseOffset),
MSIXCAP_BASE(p->MSIXCAPBaseOffset),
MSIXCAP_ID_OFFSET(p->MSIXCAPBaseOffset+MSIXCAP_ID),
MSIXCAP_MXC_OFFSET(p->MSIXCAPBaseOffset+MSIXCAP_MXC),
MSIXCAP_MTAB_OFFSET(p->MSIXCAPBaseOffset+MSIXCAP_MTAB),
MSIXCAP_MPBA_OFFSET(p->MSIXCAPBaseOffset+MSIXCAP_MPBA),
PXCAP_BASE(p->PXCAPBaseOffset),
platform(p->platform),
pioDelay(p->pio_latency),
configDelay(p->config_latency),
configPort(this, params()->pci_bus, params()->pci_dev,
params()->pci_func, params()->platform)
{
config.vendor = htole(p->VendorID);
config.device = htole(p->DeviceID);
config.command = htole(p->Command);
config.status = htole(p->Status);
config.revision = htole(p->Revision);
config.progIF = htole(p->ProgIF);
config.subClassCode = htole(p->SubClassCode);
config.classCode = htole(p->ClassCode);
config.cacheLineSize = htole(p->CacheLineSize);
config.latencyTimer = htole(p->LatencyTimer);
config.headerType = htole(p->HeaderType);
config.bist = htole(p->BIST);
config.baseAddr[0] = htole(p->BAR0);
config.baseAddr[1] = htole(p->BAR1);
config.baseAddr[2] = htole(p->BAR2);
config.baseAddr[3] = htole(p->BAR3);
config.baseAddr[4] = htole(p->BAR4);
config.baseAddr[5] = htole(p->BAR5);
config.cardbusCIS = htole(p->CardbusCIS);
config.subsystemVendorID = htole(p->SubsystemVendorID);
config.subsystemID = htole(p->SubsystemID);
config.expansionROM = htole(p->ExpansionROM);
config.capabilityPtr = htole(p->CapabilityPtr);
// Zero out the 7 bytes of reserved space in the PCI Config space register.
bzero(config.reserved, 7*sizeof(uint8_t));
config.interruptLine = htole(p->InterruptLine);
config.interruptPin = htole(p->InterruptPin);
config.minimumGrant = htole(p->MinimumGrant);
config.maximumLatency = htole(p->MaximumLatency);
// Initialize the capability lists
// These structs are bitunions, meaning the data is stored in host
// endianess and must be converted to Little Endian when accessed
// by the guest
// PMCAP
pmcap.pid = (uint16_t)p->PMCAPCapId; // pid.cid
pmcap.pid |= (uint16_t)p->PMCAPNextCapability << 8; //pid.next
pmcap.pc = p->PMCAPCapabilities;
pmcap.pmcs = p->PMCAPCtrlStatus;
// MSICAP
msicap.mid = (uint16_t)p->MSICAPCapId; //mid.cid
msicap.mid |= (uint16_t)p->MSICAPNextCapability << 8; //mid.next
msicap.mc = p->MSICAPMsgCtrl;
msicap.ma = p->MSICAPMsgAddr;
msicap.mua = p->MSICAPMsgUpperAddr;
msicap.md = p->MSICAPMsgData;
msicap.mmask = p->MSICAPMaskBits;
msicap.mpend = p->MSICAPPendingBits;
// MSIXCAP
msixcap.mxid = (uint16_t)p->MSIXCAPCapId; //mxid.cid
msixcap.mxid |= (uint16_t)p->MSIXCAPNextCapability << 8; //mxid.next
msixcap.mxc = p->MSIXMsgCtrl;
msixcap.mtab = p->MSIXTableOffset;
msixcap.mpba = p->MSIXPbaOffset;
// allocate MSIX structures if MSIXCAP_BASE
// indicates the MSIXCAP is being used by having a
// non-zero base address.
// The MSIX tables are stored by the guest in
// little endian byte-order as according the
// PCIe specification. Make sure to take the proper
// actions when manipulating these tables on the host
uint16_t msixcap_mxc_ts = msixcap.mxc & 0x07ff;
if (MSIXCAP_BASE != 0x0) {
int msix_vecs = msixcap_mxc_ts + 1;
MSIXTable tmp1 = {{0UL,0UL,0UL,0UL}};
msix_table.resize(msix_vecs, tmp1);
MSIXPbaEntry tmp2 = {0};
int pba_size = msix_vecs / MSIXVECS_PER_PBA;
if ((msix_vecs % MSIXVECS_PER_PBA) > 0) {
pba_size++;
}
msix_pba.resize(pba_size, tmp2);
}
MSIX_TABLE_OFFSET = msixcap.mtab & 0xfffffffc;
MSIX_TABLE_END = MSIX_TABLE_OFFSET +
(msixcap_mxc_ts + 1) * sizeof(MSIXTable);
MSIX_PBA_OFFSET = msixcap.mpba & 0xfffffffc;
MSIX_PBA_END = MSIX_PBA_OFFSET +
((msixcap_mxc_ts + 1) / MSIXVECS_PER_PBA)
* sizeof(MSIXPbaEntry);
if (((msixcap_mxc_ts + 1) % MSIXVECS_PER_PBA) > 0) {
MSIX_PBA_END += sizeof(MSIXPbaEntry);
}
// PXCAP
pxcap.pxid = (uint16_t)p->PXCAPCapId; //pxid.cid
pxcap.pxid |= (uint16_t)p->PXCAPNextCapability << 8; //pxid.next
pxcap.pxcap = p->PXCAPCapabilities;
pxcap.pxdcap = p->PXCAPDevCapabilities;
pxcap.pxdc = p->PXCAPDevCtrl;
pxcap.pxds = p->PXCAPDevStatus;
pxcap.pxlcap = p->PXCAPLinkCap;
pxcap.pxlc = p->PXCAPLinkCtrl;
pxcap.pxls = p->PXCAPLinkStatus;
pxcap.pxdcap2 = p->PXCAPDevCap2;
pxcap.pxdc2 = p->PXCAPDevCtrl2;
BARSize[0] = p->BAR0Size;
BARSize[1] = p->BAR1Size;
BARSize[2] = p->BAR2Size;
BARSize[3] = p->BAR3Size;
BARSize[4] = p->BAR4Size;
BARSize[5] = p->BAR5Size;
legacyIO[0] = p->BAR0LegacyIO;
legacyIO[1] = p->BAR1LegacyIO;
legacyIO[2] = p->BAR2LegacyIO;
legacyIO[3] = p->BAR3LegacyIO;
legacyIO[4] = p->BAR4LegacyIO;
legacyIO[5] = p->BAR5LegacyIO;
for (int i = 0; i < 6; ++i) {
if (legacyIO[i]) {
BARAddrs[i] = p->LegacyIOBase + letoh(config.baseAddr[i]);
config.baseAddr[i] = 0;
} else {
BARAddrs[i] = 0;
uint32_t barsize = BARSize[i];
if (barsize != 0 && !isPowerOf2(barsize)) {
fatal("BAR %d size %d is not a power of 2\n", i, BARSize[i]);
}
}
}
platform->registerPciDevice(p->pci_bus, p->pci_dev, p->pci_func,
letoh(config.interruptLine));
}
void
PciDevice::init()
{
if (!configPort.isConnected())
panic("PCI config port on %s not connected to anything!\n", name());
configPort.sendRangeChange();
DmaDevice::init();
}
Tick
PciDevice::readConfig(PacketPtr pkt)
{
int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
/* Return 0 for accesses to unimplemented PCI configspace areas */
if (offset >= PCI_DEVICE_SPECIFIC &&
offset < PCI_CONFIG_SIZE) {
warn_once("Device specific PCI config space "
"not implemented for %s!\n", this->name());
switch (pkt->getSize()) {
case sizeof(uint8_t):
pkt->set<uint8_t>(0);
break;
case sizeof(uint16_t):
pkt->set<uint16_t>(0);
break;
case sizeof(uint32_t):
pkt->set<uint32_t>(0);
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
} else if (offset > PCI_CONFIG_SIZE) {
panic("Out-of-range access to PCI config space!\n");
}
switch (pkt->getSize()) {
case sizeof(uint8_t):
pkt->set<uint8_t>(config.data[offset]);
DPRINTF(PCIDEV,
"readConfig: dev %#x func %#x reg %#x 1 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint8_t>());
break;
case sizeof(uint16_t):
pkt->set<uint16_t>(*(uint16_t*)&config.data[offset]);
DPRINTF(PCIDEV,
"readConfig: dev %#x func %#x reg %#x 2 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint16_t>());
break;
case sizeof(uint32_t):
pkt->set<uint32_t>(*(uint32_t*)&config.data[offset]);
DPRINTF(PCIDEV,
"readConfig: dev %#x func %#x reg %#x 4 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint32_t>());
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
pkt->makeAtomicResponse();
return configDelay;
}
AddrRangeList
PciDevice::getAddrRanges() const
{
AddrRangeList ranges;
int x = 0;
for (x = 0; x < 6; x++)
if (BARAddrs[x] != 0)
ranges.push_back(RangeSize(BARAddrs[x],BARSize[x]));
return ranges;
}
Tick
PciDevice::writeConfig(PacketPtr pkt)
{
int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
/* No effect if we write to config space that is not implemented*/
if (offset >= PCI_DEVICE_SPECIFIC &&
offset < PCI_CONFIG_SIZE) {
warn_once("Device specific PCI config space "
"not implemented for %s!\n", this->name());
switch (pkt->getSize()) {
case sizeof(uint8_t):
case sizeof(uint16_t):
case sizeof(uint32_t):
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
} else if (offset > PCI_CONFIG_SIZE) {
panic("Out-of-range access to PCI config space!\n");
}
switch (pkt->getSize()) {
case sizeof(uint8_t):
switch (offset) {
case PCI0_INTERRUPT_LINE:
config.interruptLine = pkt->get<uint8_t>();
break;
case PCI_CACHE_LINE_SIZE:
config.cacheLineSize = pkt->get<uint8_t>();
break;
case PCI_LATENCY_TIMER:
config.latencyTimer = pkt->get<uint8_t>();
break;
/* Do nothing for these read-only registers */
case PCI0_INTERRUPT_PIN:
case PCI0_MINIMUM_GRANT:
case PCI0_MAXIMUM_LATENCY:
case PCI_CLASS_CODE:
case PCI_REVISION_ID:
break;
default:
panic("writing to a read only register");
}
DPRINTF(PCIDEV,
"writeConfig: dev %#x func %#x reg %#x 1 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint8_t>());
break;
case sizeof(uint16_t):
switch (offset) {
case PCI_COMMAND:
config.command = pkt->get<uint8_t>();
break;
case PCI_STATUS:
config.status = pkt->get<uint8_t>();
break;
case PCI_CACHE_LINE_SIZE:
config.cacheLineSize = pkt->get<uint8_t>();
break;
default:
panic("writing to a read only register");
}
DPRINTF(PCIDEV,
"writeConfig: dev %#x func %#x reg %#x 2 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint16_t>());
break;
case sizeof(uint32_t):
switch (offset) {
case PCI0_BASE_ADDR0:
case PCI0_BASE_ADDR1:
case PCI0_BASE_ADDR2:
case PCI0_BASE_ADDR3:
case PCI0_BASE_ADDR4:
case PCI0_BASE_ADDR5:
{
int barnum = BAR_NUMBER(offset);
if (!legacyIO[barnum]) {
// convert BAR values to host endianness
uint32_t he_old_bar = letoh(config.baseAddr[barnum]);
uint32_t he_new_bar = letoh(pkt->get<uint32_t>());
uint32_t bar_mask =
BAR_IO_SPACE(he_old_bar) ? BAR_IO_MASK : BAR_MEM_MASK;
// Writing 0xffffffff to a BAR tells the card to set the
// value of the bar to a bitmask indicating the size of
// memory it needs
if (he_new_bar == 0xffffffff) {
he_new_bar = ~(BARSize[barnum] - 1);
} else {
// does it mean something special to write 0 to a BAR?
he_new_bar &= ~bar_mask;
if (he_new_bar) {
BARAddrs[barnum] = BAR_IO_SPACE(he_old_bar) ?
platform->calcPciIOAddr(he_new_bar) :
platform->calcPciMemAddr(he_new_bar);
pioPort.sendRangeChange();
}
}
config.baseAddr[barnum] = htole((he_new_bar & ~bar_mask) |
(he_old_bar & bar_mask));
}
}
break;
case PCI0_ROM_BASE_ADDR:
if (letoh(pkt->get<uint32_t>()) == 0xfffffffe)
config.expansionROM = htole((uint32_t)0xffffffff);
else
config.expansionROM = pkt->get<uint32_t>();
break;
case PCI_COMMAND:
// This could also clear some of the error bits in the Status
// register. However they should never get set, so lets ignore
// it for now
config.command = pkt->get<uint32_t>();
break;
default:
DPRINTF(PCIDEV, "Writing to a read only register");
}
DPRINTF(PCIDEV,
"writeConfig: dev %#x func %#x reg %#x 4 bytes: data = %#x\n",
params()->pci_dev, params()->pci_func, offset,
(uint32_t)pkt->get<uint32_t>());
break;
default:
panic("invalid access size(?) for PCI configspace!\n");
}
pkt->makeAtomicResponse();
return configDelay;
}
void
PciDevice::serialize(CheckpointOut &cp) const
{
SERIALIZE_ARRAY(BARSize, sizeof(BARSize) / sizeof(BARSize[0]));
SERIALIZE_ARRAY(BARAddrs, sizeof(BARAddrs) / sizeof(BARAddrs[0]));
SERIALIZE_ARRAY(config.data, sizeof(config.data) / sizeof(config.data[0]));
// serialize the capability list registers
paramOut(cp, csprintf("pmcap.pid"), uint16_t(pmcap.pid));
paramOut(cp, csprintf("pmcap.pc"), uint16_t(pmcap.pc));
paramOut(cp, csprintf("pmcap.pmcs"), uint16_t(pmcap.pmcs));
paramOut(cp, csprintf("msicap.mid"), uint16_t(msicap.mid));
paramOut(cp, csprintf("msicap.mc"), uint16_t(msicap.mc));
paramOut(cp, csprintf("msicap.ma"), uint32_t(msicap.ma));
SERIALIZE_SCALAR(msicap.mua);
paramOut(cp, csprintf("msicap.md"), uint16_t(msicap.md));
SERIALIZE_SCALAR(msicap.mmask);
SERIALIZE_SCALAR(msicap.mpend);
paramOut(cp, csprintf("msixcap.mxid"), uint16_t(msixcap.mxid));
paramOut(cp, csprintf("msixcap.mxc"), uint16_t(msixcap.mxc));
paramOut(cp, csprintf("msixcap.mtab"), uint32_t(msixcap.mtab));
paramOut(cp, csprintf("msixcap.mpba"), uint32_t(msixcap.mpba));
// Only serialize if we have a non-zero base address
if (MSIXCAP_BASE != 0x0) {
uint16_t msixcap_mxc_ts = msixcap.mxc & 0x07ff;
int msix_array_size = msixcap_mxc_ts + 1;
int pba_array_size = msix_array_size/MSIXVECS_PER_PBA;
if ((msix_array_size % MSIXVECS_PER_PBA) > 0) {
pba_array_size++;
}
SERIALIZE_SCALAR(msix_array_size);
SERIALIZE_SCALAR(pba_array_size);
for (int i = 0; i < msix_array_size; i++) {
paramOut(cp, csprintf("msix_table[%d].addr_lo", i),
msix_table[i].fields.addr_lo);
paramOut(cp, csprintf("msix_table[%d].addr_hi", i),
msix_table[i].fields.addr_hi);
paramOut(cp, csprintf("msix_table[%d].msg_data", i),
msix_table[i].fields.msg_data);
paramOut(cp, csprintf("msix_table[%d].vec_ctrl", i),
msix_table[i].fields.vec_ctrl);
}
for (int i = 0; i < pba_array_size; i++) {
paramOut(cp, csprintf("msix_pba[%d].bits", i),
msix_pba[i].bits);
}
}
paramOut(cp, csprintf("pxcap.pxid"), uint16_t(pxcap.pxid));
paramOut(cp, csprintf("pxcap.pxcap"), uint16_t(pxcap.pxcap));
paramOut(cp, csprintf("pxcap.pxdcap"), uint32_t(pxcap.pxdcap));
paramOut(cp, csprintf("pxcap.pxdc"), uint16_t(pxcap.pxdc));
paramOut(cp, csprintf("pxcap.pxds"), uint16_t(pxcap.pxds));
paramOut(cp, csprintf("pxcap.pxlcap"), uint32_t(pxcap.pxlcap));
paramOut(cp, csprintf("pxcap.pxlc"), uint16_t(pxcap.pxlc));
paramOut(cp, csprintf("pxcap.pxls"), uint16_t(pxcap.pxls));
paramOut(cp, csprintf("pxcap.pxdcap2"), uint32_t(pxcap.pxdcap2));
paramOut(cp, csprintf("pxcap.pxdc2"), uint32_t(pxcap.pxdc2));
}
void
PciDevice::unserialize(CheckpointIn &cp)
{
UNSERIALIZE_ARRAY(BARSize, sizeof(BARSize) / sizeof(BARSize[0]));
UNSERIALIZE_ARRAY(BARAddrs, sizeof(BARAddrs) / sizeof(BARAddrs[0]));
UNSERIALIZE_ARRAY(config.data,
sizeof(config.data) / sizeof(config.data[0]));
// unserialize the capability list registers
uint16_t tmp16;
uint32_t tmp32;
paramIn(cp, csprintf("pmcap.pid"), tmp16);
pmcap.pid = tmp16;
paramIn(cp, csprintf("pmcap.pc"), tmp16);
pmcap.pc = tmp16;
paramIn(cp, csprintf("pmcap.pmcs"), tmp16);
pmcap.pmcs = tmp16;
paramIn(cp, csprintf("msicap.mid"), tmp16);
msicap.mid = tmp16;
paramIn(cp, csprintf("msicap.mc"), tmp16);
msicap.mc = tmp16;
paramIn(cp, csprintf("msicap.ma"), tmp32);
msicap.ma = tmp32;
UNSERIALIZE_SCALAR(msicap.mua);
paramIn(cp, csprintf("msicap.md"), tmp16);;
msicap.md = tmp16;
UNSERIALIZE_SCALAR(msicap.mmask);
UNSERIALIZE_SCALAR(msicap.mpend);
paramIn(cp, csprintf("msixcap.mxid"), tmp16);
msixcap.mxid = tmp16;
paramIn(cp, csprintf("msixcap.mxc"), tmp16);
msixcap.mxc = tmp16;
paramIn(cp, csprintf("msixcap.mtab"), tmp32);
msixcap.mtab = tmp32;
paramIn(cp, csprintf("msixcap.mpba"), tmp32);
msixcap.mpba = tmp32;
// Only allocate if MSIXCAP_BASE is not 0x0
if (MSIXCAP_BASE != 0x0) {
int msix_array_size;
int pba_array_size;
UNSERIALIZE_SCALAR(msix_array_size);
UNSERIALIZE_SCALAR(pba_array_size);
MSIXTable tmp1 = {{0UL, 0UL, 0UL, 0UL}};
msix_table.resize(msix_array_size, tmp1);
MSIXPbaEntry tmp2 = {0};
msix_pba.resize(pba_array_size, tmp2);
for (int i = 0; i < msix_array_size; i++) {
paramIn(cp, csprintf("msix_table[%d].addr_lo", i),
msix_table[i].fields.addr_lo);
paramIn(cp, csprintf("msix_table[%d].addr_hi", i),
msix_table[i].fields.addr_hi);
paramIn(cp, csprintf("msix_table[%d].msg_data", i),
msix_table[i].fields.msg_data);
paramIn(cp, csprintf("msix_table[%d].vec_ctrl", i),
msix_table[i].fields.vec_ctrl);
}
for (int i = 0; i < pba_array_size; i++) {
paramIn(cp, csprintf("msix_pba[%d].bits", i),
msix_pba[i].bits);
}
}
paramIn(cp, csprintf("pxcap.pxid"), tmp16);
pxcap.pxid = tmp16;
paramIn(cp, csprintf("pxcap.pxcap"), tmp16);
pxcap.pxcap = tmp16;
paramIn(cp, csprintf("pxcap.pxdcap"), tmp32);
pxcap.pxdcap = tmp32;
paramIn(cp, csprintf("pxcap.pxdc"), tmp16);
pxcap.pxdc = tmp16;
paramIn(cp, csprintf("pxcap.pxds"), tmp16);
pxcap.pxds = tmp16;
paramIn(cp, csprintf("pxcap.pxlcap"), tmp32);
pxcap.pxlcap = tmp32;
paramIn(cp, csprintf("pxcap.pxlc"), tmp16);
pxcap.pxlc = tmp16;
paramIn(cp, csprintf("pxcap.pxls"), tmp16);
pxcap.pxls = tmp16;
paramIn(cp, csprintf("pxcap.pxdcap2"), tmp32);
pxcap.pxdcap2 = tmp32;
paramIn(cp, csprintf("pxcap.pxdc2"), tmp32);
pxcap.pxdc2 = tmp32;
pioPort.sendRangeChange();
}
|