1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
/*
* Copyright (c) 2014-2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* For use for simulation and test purposes only
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author: Brad Beckmann, Sooraj Puthoor
*/
#include "gpu-compute/fetch_unit.hh"
#include "debug/GPUFetch.hh"
#include "debug/GPUPort.hh"
#include "debug/GPUTLB.hh"
#include "gpu-compute/compute_unit.hh"
#include "gpu-compute/gpu_dyn_inst.hh"
#include "gpu-compute/gpu_static_inst.hh"
#include "gpu-compute/shader.hh"
#include "gpu-compute/wavefront.hh"
#include "mem/ruby/system/RubySystem.hh"
uint32_t FetchUnit::globalFetchUnitID;
FetchUnit::FetchUnit(const ComputeUnitParams* params) :
timingSim(true),
computeUnit(nullptr),
fetchScheduler(params),
waveList(nullptr)
{
}
FetchUnit::~FetchUnit()
{
fetchQueue.clear();
fetchStatusQueue.clear();
}
void
FetchUnit::init(ComputeUnit *cu)
{
computeUnit = cu;
timingSim = computeUnit->shader->timingSim;
fetchQueue.clear();
fetchStatusQueue.resize(computeUnit->shader->n_wf);
for (int j = 0; j < computeUnit->shader->n_wf; ++j) {
fetchStatusQueue[j] = std::make_pair(waveList->at(j), false);
}
fetchScheduler.bindList(&fetchQueue);
}
void
FetchUnit::exec()
{
// re-evaluate waves which are marked as not ready for fetch
for (int j = 0; j < computeUnit->shader->n_wf; ++j) {
// Following code assumes 64-bit opertaion and all insts are
// represented by 64-bit pointers to inst objects.
Wavefront *curWave = fetchStatusQueue[j].first;
assert (curWave);
// The wavefront has to be active, the IB occupancy has to be
// 4 or less instructions and it can not have any branches to
// prevent speculative instruction fetches
if (!fetchStatusQueue[j].second) {
if (curWave->status == Wavefront::S_RUNNING &&
curWave->instructionBuffer.size() <= 4 &&
!curWave->instructionBufferHasBranch() &&
!curWave->pendingFetch) {
fetchQueue.push_back(curWave);
fetchStatusQueue[j].second = true;
}
}
}
// Fetch only if there is some wave ready to be fetched
// An empty fetchQueue will cause the schedular to panic
if (fetchQueue.size()) {
Wavefront *waveToBeFetched = fetchScheduler.chooseWave();
waveToBeFetched->pendingFetch = true;
fetchStatusQueue[waveToBeFetched->wfSlotId].second = false;
initiateFetch(waveToBeFetched);
}
}
void
FetchUnit::initiateFetch(Wavefront *wavefront)
{
// calculate the virtual address to fetch from the SQC
Addr vaddr = wavefront->pc();
/**
* the instruction buffer holds one instruction per entry, regardless
* of the underlying instruction's size. the PC, however, addresses
* instrutions on a 32b granularity so we must account for that here.
*/
for (int i = 0; i < wavefront->instructionBuffer.size(); ++i) {
vaddr +=
wavefront->instructionBuffer.at(i)->staticInstruction()->instSize();
}
vaddr = wavefront->basePtr + vaddr;
DPRINTF(GPUTLB, "CU%d: WF[%d][%d]: Initiating fetch translation: %#x\n",
computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId, vaddr);
// Since this is an instruction prefetch, if you're split then just finish
// out the current line.
int block_size = computeUnit->cacheLineSize();
// check for split accesses
Addr split_addr = roundDown(vaddr + block_size - 1, block_size);
int size = block_size;
if (split_addr > vaddr) {
// misaligned access, just grab the rest of the line
size = split_addr - vaddr;
}
// set up virtual request
Request *req = new Request(0, vaddr, size, Request::INST_FETCH,
computeUnit->masterId(), 0, 0, 0);
PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
// This fetchBlock is kind of faux right now - because the translations so
// far don't actually return Data
uint64_t fetchBlock;
pkt->dataStatic(&fetchBlock);
if (timingSim) {
// SenderState needed on Return
pkt->senderState = new ComputeUnit::ITLBPort::SenderState(wavefront);
// Sender State needed by TLB hierarchy
pkt->senderState =
new TheISA::GpuTLB::TranslationState(BaseTLB::Execute,
computeUnit->shader->gpuTc,
false, pkt->senderState);
if (computeUnit->sqcTLBPort->isStalled()) {
assert(computeUnit->sqcTLBPort->retries.size() > 0);
DPRINTF(GPUTLB, "Failed to send TLB req for FETCH addr %#x\n",
vaddr);
computeUnit->sqcTLBPort->retries.push_back(pkt);
} else if (!computeUnit->sqcTLBPort->sendTimingReq(pkt)) {
// Stall the data port;
// No more packet is issued till
// ruby indicates resources are freed by
// a recvReqRetry() call back on this port.
computeUnit->sqcTLBPort->stallPort();
DPRINTF(GPUTLB, "Failed to send TLB req for FETCH addr %#x\n",
vaddr);
computeUnit->sqcTLBPort->retries.push_back(pkt);
} else {
DPRINTF(GPUTLB, "sent FETCH translation request for %#x\n", vaddr);
}
} else {
pkt->senderState =
new TheISA::GpuTLB::TranslationState(BaseTLB::Execute,
computeUnit->shader->gpuTc);
computeUnit->sqcTLBPort->sendFunctional(pkt);
TheISA::GpuTLB::TranslationState *sender_state =
safe_cast<TheISA::GpuTLB::TranslationState*>(pkt->senderState);
delete sender_state->tlbEntry;
delete sender_state;
// fetch the instructions from the SQC when we operate in
// functional mode only
fetch(pkt, wavefront);
}
}
void
FetchUnit::fetch(PacketPtr pkt, Wavefront *wavefront)
{
assert(pkt->req->hasPaddr());
assert(pkt->req->hasSize());
DPRINTF(GPUFetch, "CU%d: WF[%d][%d]: Fetch Access: %#x\n",
computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId,
pkt->req->getPaddr());
// this is necessary because the GPU TLB receives packets instead of
// requests. when the translation is complete, all relevent fields in the
// request will be populated, but not in the packet. here we create the
// new packet so we can set the size, addr, and proper flags.
PacketPtr oldPkt = pkt;
pkt = new Packet(oldPkt->req, oldPkt->cmd);
delete oldPkt;
TheGpuISA::RawMachInst *data =
new TheGpuISA::RawMachInst[pkt->req->getSize() /
sizeof(TheGpuISA::RawMachInst)];
pkt->dataDynamic<TheGpuISA::RawMachInst>(data);
// New SenderState for the memory access
pkt->senderState = new ComputeUnit::SQCPort::SenderState(wavefront);
if (timingSim) {
// translation is done. Send the appropriate timing memory request.
if (!computeUnit->sqcPort->sendTimingReq(pkt)) {
computeUnit->sqcPort->retries.push_back(std::make_pair(pkt,
wavefront));
DPRINTF(GPUPort, "CU%d: WF[%d][%d]: Fetch addr %#x failed!\n",
computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId,
pkt->req->getPaddr());
} else {
DPRINTF(GPUPort, "CU%d: WF[%d][%d]: Fetch addr %#x sent!\n",
computeUnit->cu_id, wavefront->simdId, wavefront->wfSlotId,
pkt->req->getPaddr());
}
} else {
computeUnit->sqcPort->sendFunctional(pkt);
processFetchReturn(pkt);
}
}
void
FetchUnit::processFetchReturn(PacketPtr pkt)
{
ComputeUnit::SQCPort::SenderState *sender_state =
safe_cast<ComputeUnit::SQCPort::SenderState*>(pkt->senderState);
Wavefront *wavefront = sender_state->wavefront;
DPRINTF(GPUFetch, "CU%d: WF[%d][%d]: Fetch addr %#x returned "
"%d bytes, %d instructions!\n", computeUnit->cu_id,
wavefront->simdId, wavefront->wfSlotId, pkt->req->getPaddr(),
pkt->req->getSize(), pkt->req->getSize() /
sizeof(TheGpuISA::RawMachInst));
if (wavefront->dropFetch) {
assert(wavefront->instructionBuffer.empty());
wavefront->dropFetch = false;
} else {
TheGpuISA::RawMachInst *inst_index_ptr =
(TheGpuISA::RawMachInst*)pkt->getPtr<uint8_t>();
assert(wavefront->instructionBuffer.size() <= 4);
for (int i = 0; i < pkt->req->getSize() /
sizeof(TheGpuISA::RawMachInst); ++i) {
GPUStaticInst *inst_ptr = decoder.decode(inst_index_ptr[i]);
assert(inst_ptr);
if (inst_ptr->instSize() == 8) {
/**
* this instruction occupies 2 consecutive
* entries in the instruction array, the
* second of which contains a nullptr. so if
* this inst is 8 bytes we advance two entries
* instead of 1
*/
++i;
}
DPRINTF(GPUFetch, "CU%d: WF[%d][%d]: added %s\n",
computeUnit->cu_id, wavefront->simdId,
wavefront->wfSlotId, inst_ptr->disassemble());
GPUDynInstPtr gpuDynInst =
std::make_shared<GPUDynInst>(computeUnit, wavefront, inst_ptr,
computeUnit->getAndIncSeqNum());
wavefront->instructionBuffer.push_back(gpuDynInst);
}
}
wavefront->pendingFetch = false;
delete pkt->senderState;
delete pkt->req;
delete pkt;
}
void
FetchUnit::bindWaveList(std::vector<Wavefront*> *wave_list)
{
waveList = wave_list;
}
|