1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
|
/*
* Copyright (c) 2017 Jason Lowe-Power
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Jason Lowe-Power
*/
#include "learning_gem5/part2/simple_cache.hh"
#include "base/random.hh"
#include "debug/SimpleCache.hh"
#include "sim/system.hh"
SimpleCache::SimpleCache(SimpleCacheParams *params) :
MemObject(params),
latency(params->latency),
blockSize(params->system->cacheLineSize()),
capacity(params->size / blockSize),
memPort(params->name + ".mem_side", this),
blocked(false), originalPacket(nullptr), waitingPortId(-1)
{
// Since the CPU side ports are a vector of ports, create an instance of
// the CPUSidePort for each connection. This member of params is
// automatically created depending on the name of the vector port and
// holds the number of connections to this port name
for (int i = 0; i < params->port_cpu_side_connection_count; ++i) {
cpuPorts.emplace_back(name() + csprintf(".cpu_side[%d]", i), i, this);
}
}
BaseMasterPort&
SimpleCache::getMasterPort(const std::string& if_name, PortID idx)
{
panic_if(idx != InvalidPortID, "This object doesn't support vector ports");
// This is the name from the Python SimObject declaration in SimpleCache.py
if (if_name == "mem_side") {
return memPort;
} else {
// pass it along to our super class
return MemObject::getMasterPort(if_name, idx);
}
}
BaseSlavePort&
SimpleCache::getSlavePort(const std::string& if_name, PortID idx)
{
// This is the name from the Python SimObject declaration (SimpleMemobj.py)
if (if_name == "cpu_side" && idx < cpuPorts.size()) {
// We should have already created all of the ports in the constructor
return cpuPorts[idx];
} else {
// pass it along to our super class
return MemObject::getSlavePort(if_name, idx);
}
}
void
SimpleCache::CPUSidePort::sendPacket(PacketPtr pkt)
{
// Note: This flow control is very simple since the cache is blocking.
panic_if(blockedPacket != nullptr, "Should never try to send if blocked!");
// If we can't send the packet across the port, store it for later.
DPRINTF(SimpleCache, "Sending %s to CPU\n", pkt->print());
if (!sendTimingResp(pkt)) {
DPRINTF(SimpleCache, "failed!\n");
blockedPacket = pkt;
}
}
AddrRangeList
SimpleCache::CPUSidePort::getAddrRanges() const
{
return owner->getAddrRanges();
}
void
SimpleCache::CPUSidePort::trySendRetry()
{
if (needRetry && blockedPacket == nullptr) {
// Only send a retry if the port is now completely free
needRetry = false;
DPRINTF(SimpleCache, "Sending retry req.\n");
sendRetryReq();
}
}
void
SimpleCache::CPUSidePort::recvFunctional(PacketPtr pkt)
{
// Just forward to the cache.
return owner->handleFunctional(pkt);
}
bool
SimpleCache::CPUSidePort::recvTimingReq(PacketPtr pkt)
{
DPRINTF(SimpleCache, "Got request %s\n", pkt->print());
if (blockedPacket || needRetry) {
// The cache may not be able to send a reply if this is blocked
DPRINTF(SimpleCache, "Request blocked\n");
needRetry = true;
return false;
}
// Just forward to the cache.
if (!owner->handleRequest(pkt, id)) {
DPRINTF(SimpleCache, "Request failed\n");
// stalling
needRetry = true;
return false;
} else {
DPRINTF(SimpleCache, "Request succeeded\n");
return true;
}
}
void
SimpleCache::CPUSidePort::recvRespRetry()
{
// We should have a blocked packet if this function is called.
assert(blockedPacket != nullptr);
// Grab the blocked packet.
PacketPtr pkt = blockedPacket;
blockedPacket = nullptr;
DPRINTF(SimpleCache, "Retrying response pkt %s\n", pkt->print());
// Try to resend it. It's possible that it fails again.
sendPacket(pkt);
// We may now be able to accept new packets
trySendRetry();
}
void
SimpleCache::MemSidePort::sendPacket(PacketPtr pkt)
{
// Note: This flow control is very simple since the cache is blocking.
panic_if(blockedPacket != nullptr, "Should never try to send if blocked!");
// If we can't send the packet across the port, store it for later.
if (!sendTimingReq(pkt)) {
blockedPacket = pkt;
}
}
bool
SimpleCache::MemSidePort::recvTimingResp(PacketPtr pkt)
{
// Just forward to the cache.
return owner->handleResponse(pkt);
}
void
SimpleCache::MemSidePort::recvReqRetry()
{
// We should have a blocked packet if this function is called.
assert(blockedPacket != nullptr);
// Grab the blocked packet.
PacketPtr pkt = blockedPacket;
blockedPacket = nullptr;
// Try to resend it. It's possible that it fails again.
sendPacket(pkt);
}
void
SimpleCache::MemSidePort::recvRangeChange()
{
owner->sendRangeChange();
}
bool
SimpleCache::handleRequest(PacketPtr pkt, int port_id)
{
if (blocked) {
// There is currently an outstanding request so we can't respond. Stall
return false;
}
DPRINTF(SimpleCache, "Got request for addr %#x\n", pkt->getAddr());
// This cache is now blocked waiting for the response to this packet.
blocked = true;
// Store the port for when we get the response
assert(waitingPortId == -1);
waitingPortId = port_id;
// Schedule an event after cache access latency to actually access
schedule(new EventFunctionWrapper([this, pkt]{ accessTiming(pkt); },
name() + ".accessEvent", true),
clockEdge(latency));
return true;
}
bool
SimpleCache::handleResponse(PacketPtr pkt)
{
assert(blocked);
DPRINTF(SimpleCache, "Got response for addr %#x\n", pkt->getAddr());
// For now assume that inserts are off of the critical path and don't count
// for any added latency.
insert(pkt);
missLatency.sample(curTick() - missTime);
// If we had to upgrade the request packet to a full cache line, now we
// can use that packet to construct the response.
if (originalPacket != nullptr) {
DPRINTF(SimpleCache, "Copying data from new packet to old\n");
// We had to upgrade a previous packet. We can functionally deal with
// the cache access now. It better be a hit.
bool hit M5_VAR_USED = accessFunctional(originalPacket);
panic_if(!hit, "Should always hit after inserting");
originalPacket->makeResponse();
delete pkt; // We may need to delay this, I'm not sure.
pkt = originalPacket;
originalPacket = nullptr;
} // else, pkt contains the data it needs
sendResponse(pkt);
return true;
}
void SimpleCache::sendResponse(PacketPtr pkt)
{
assert(blocked);
DPRINTF(SimpleCache, "Sending resp for addr %#x\n", pkt->getAddr());
int port = waitingPortId;
// The packet is now done. We're about to put it in the port, no need for
// this object to continue to stall.
// We need to free the resource before sending the packet in case the CPU
// tries to send another request immediately (e.g., in the same callchain).
blocked = false;
waitingPortId = -1;
// Simply forward to the memory port
cpuPorts[port].sendPacket(pkt);
// For each of the cpu ports, if it needs to send a retry, it should do it
// now since this memory object may be unblocked now.
for (auto& port : cpuPorts) {
port.trySendRetry();
}
}
void
SimpleCache::handleFunctional(PacketPtr pkt)
{
if (accessFunctional(pkt)) {
pkt->makeResponse();
} else {
memPort.sendFunctional(pkt);
}
}
void
SimpleCache::accessTiming(PacketPtr pkt)
{
bool hit = accessFunctional(pkt);
DPRINTF(SimpleCache, "%s for packet: %s\n", hit ? "Hit" : "Miss",
pkt->print());
if (hit) {
// Respond to the CPU side
hits++; // update stats
DDUMP(SimpleCache, pkt->getConstPtr<uint8_t>(), pkt->getSize());
pkt->makeResponse();
sendResponse(pkt);
} else {
misses++; // update stats
missTime = curTick();
// Forward to the memory side.
// We can't directly forward the packet unless it is exactly the size
// of the cache line, and aligned. Check for that here.
Addr addr = pkt->getAddr();
Addr block_addr = pkt->getBlockAddr(blockSize);
unsigned size = pkt->getSize();
if (addr == block_addr && size == blockSize) {
// Aligned and block size. We can just forward.
DPRINTF(SimpleCache, "forwarding packet\n");
memPort.sendPacket(pkt);
} else {
DPRINTF(SimpleCache, "Upgrading packet to block size\n");
panic_if(addr - block_addr + size > blockSize,
"Cannot handle accesses that span multiple cache lines");
// Unaligned access to one cache block
assert(pkt->needsResponse());
MemCmd cmd;
if (pkt->isWrite() || pkt->isRead()) {
// Read the data from memory to write into the block.
// We'll write the data in the cache (i.e., a writeback cache)
cmd = MemCmd::ReadReq;
} else {
panic("Unknown packet type in upgrade size");
}
// Create a new packet that is blockSize
PacketPtr new_pkt = new Packet(pkt->req, cmd, blockSize);
new_pkt->allocate();
// Should now be block aligned
assert(new_pkt->getAddr() == new_pkt->getBlockAddr(blockSize));
// Save the old packet
originalPacket = pkt;
DPRINTF(SimpleCache, "forwarding packet\n");
memPort.sendPacket(new_pkt);
}
}
}
bool
SimpleCache::accessFunctional(PacketPtr pkt)
{
Addr block_addr = pkt->getBlockAddr(blockSize);
auto it = cacheStore.find(block_addr);
if (it != cacheStore.end()) {
if (pkt->isWrite()) {
// Write the data into the block in the cache
pkt->writeDataToBlock(it->second, blockSize);
} else if (pkt->isRead()) {
// Read the data out of the cache block into the packet
pkt->setDataFromBlock(it->second, blockSize);
} else {
panic("Unknown packet type!");
}
return true;
}
return false;
}
void
SimpleCache::insert(PacketPtr pkt)
{
// The packet should be aligned.
assert(pkt->getAddr() == pkt->getBlockAddr(blockSize));
// The address should not be in the cache
assert(cacheStore.find(pkt->getAddr()) == cacheStore.end());
// The pkt should be a response
assert(pkt->isResponse());
if (cacheStore.size() >= capacity) {
// Select random thing to evict. This is a little convoluted since we
// are using a std::unordered_map. See http://bit.ly/2hrnLP2
int bucket, bucket_size;
do {
bucket = random_mt.random(0, (int)cacheStore.bucket_count() - 1);
} while ( (bucket_size = cacheStore.bucket_size(bucket)) == 0 );
auto block = std::next(cacheStore.begin(bucket),
random_mt.random(0, bucket_size - 1));
DPRINTF(SimpleCache, "Removing addr %#x\n", block->first);
// Write back the data.
// Create a new request-packet pair
RequestPtr req = std::make_shared<Request>(
block->first, blockSize, 0, 0);
PacketPtr new_pkt = new Packet(req, MemCmd::WritebackDirty, blockSize);
new_pkt->dataDynamic(block->second); // This will be deleted later
DPRINTF(SimpleCache, "Writing packet back %s\n", pkt->print());
// Send the write to memory
memPort.sendPacket(new_pkt);
// Delete this entry
cacheStore.erase(block->first);
}
DPRINTF(SimpleCache, "Inserting %s\n", pkt->print());
DDUMP(SimpleCache, pkt->getConstPtr<uint8_t>(), blockSize);
// Allocate space for the cache block data
uint8_t *data = new uint8_t[blockSize];
// Insert the data and address into the cache store
cacheStore[pkt->getAddr()] = data;
// Write the data into the cache
pkt->writeDataToBlock(data, blockSize);
}
AddrRangeList
SimpleCache::getAddrRanges() const
{
DPRINTF(SimpleCache, "Sending new ranges\n");
// Just use the same ranges as whatever is on the memory side.
return memPort.getAddrRanges();
}
void
SimpleCache::sendRangeChange() const
{
for (auto& port : cpuPorts) {
port.sendRangeChange();
}
}
void
SimpleCache::regStats()
{
// If you don't do this you get errors about uninitialized stats.
MemObject::regStats();
hits.name(name() + ".hits")
.desc("Number of hits")
;
misses.name(name() + ".misses")
.desc("Number of misses")
;
missLatency.name(name() + ".missLatency")
.desc("Ticks for misses to the cache")
.init(16) // number of buckets
;
hitRatio.name(name() + ".hitRatio")
.desc("The ratio of hits to the total accesses to the cache")
;
hitRatio = hits / (hits + misses);
}
SimpleCache*
SimpleCacheParams::create()
{
return new SimpleCache(this);
}
|