1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
|
/*
* Copyright (c) 2017 Jason Lowe-Power
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* This file contains the directory controller of a simple example MSI protocol
*
* In Ruby the directory controller both contains the directory coherence state
* but also functions as the memory controller in many ways. There are states
* in the directory that are both memory-centric and cache-centric. Be careful!
*
* The protocol in this file is based off of the MSI protocol found in
* A Primer on Memory Consistency and Cache Coherence
* Daniel J. Sorin, Mark D. Hill, and David A. Wood
* Synthesis Lectures on Computer Architecture 2011 6:3, 141-149
*
* Table 8.2 contains the transitions and actions found in this file and
* section 8.2.4 explains the protocol in detail.
*
* See Learning gem5 Part 3: Ruby for more details.
*
* Authors: Jason Lowe-Power
*/
machine(MachineType:Directory, "Directory protocol")
:
// This "DirectoryMemory" is a little weird. It is initially allocated
// so that it *can* cover all of memory (i.e., there are pointers for
// every 64-byte block in memory). However, the entries are lazily
// created in getDirEntry()
DirectoryMemory * directory;
// You can put any parameters you want here. They will be exported as
// normal SimObject parameters (like in the SimObject description file)
// and you can set these parameters at runtime via the python config
// file. If there is no default here (like directory), it is mandatory
// to set the parameter in the python config. Otherwise, it uses the
// default value set here.
Cycles toMemLatency := 1;
// Forwarding requests from the directory *to* the caches.
MessageBuffer *forwardToCache, network="To", virtual_network="1",
vnet_type="forward";
// Response from the directory *to* the cache.
MessageBuffer *responseToCache, network="To", virtual_network="2",
vnet_type="response";
// Requests *from* the cache to the directory
MessageBuffer *requestFromCache, network="From", virtual_network="0",
vnet_type="request";
// Responses *from* the cache to the directory
MessageBuffer *responseFromCache, network="From", virtual_network="2",
vnet_type="response";
// Special buffer for memory responses. Kind of like the mandatory queue
MessageBuffer *responseFromMemory;
{
// For many things in SLICC you can specify a default. However, this
// default must use the C++ name (mangled SLICC name). For the state below
// you have to use the controller name and the name we use for states.
state_declaration(State, desc="Directory states",
default="Directory_State_I") {
// Stable states.
// NOTE: Thise are "cache-centric" states like in Sorin et al.
// However, The access permissions are memory-centric.
I, AccessPermission:Read_Write, desc="Invalid in the caches.";
S, AccessPermission:Read_Only, desc="At least one cache has the blk";
M, AccessPermission:Invalid, desc="A cache has the block in M";
// Transient states
S_D, AccessPermission:Busy, desc="Moving to S, but need data";
// Waiting for data from memory
S_m, AccessPermission:Read_Write, desc="In S waiting for mem";
M_m, AccessPermission:Read_Write, desc="Moving to M waiting for mem";
// Waiting for write-ack from memory
MI_m, AccessPermission:Busy, desc="Moving to I waiting for ack";
SS_m, AccessPermission:Busy, desc="Moving to S waiting for ack";
}
enumeration(Event, desc="Directory events") {
// Data requests from the cache
GetS, desc="Request for read-only data from cache";
GetM, desc="Request for read-write data from cache";
// Writeback requests from the cache
PutSNotLast, desc="PutS and the block has other sharers";
PutSLast, desc="PutS and the block has no other sharers";
PutMOwner, desc="Dirty data writeback from the owner";
PutMNonOwner, desc="Dirty data writeback from non-owner";
// Cache responses
Data, desc="Response to fwd request with data";
// From Memory
MemData, desc="Data from memory";
MemAck, desc="Ack from memory that write is complete";
}
// NOTE: We use a netdest for the sharers and the owner so we can simply
// copy the structure into the message we send as a response.
structure(Entry, desc="...", interface="AbstractEntry") {
State DirState, desc="Directory state";
NetDest Sharers, desc="Sharers for this block";
NetDest Owner, desc="Owner of this block";
}
Tick clockEdge();
// This either returns the valid directory entry, or, if it hasn't been
// allocated yet, this allocates the entry. This may save some host memory
// since this is lazily populated.
Entry getDirectoryEntry(Addr addr), return_by_pointer = "yes" {
Entry dir_entry := static_cast(Entry, "pointer", directory[addr]);
if (is_invalid(dir_entry)) {
// This first time we see this address allocate an entry for it.
dir_entry := static_cast(Entry, "pointer",
directory.allocate(addr, new Entry));
}
return dir_entry;
}
/*************************************************************************/
// Functions that we need to define/override to use our specific structures
// in this implementation.
// NOTE: we don't have TBE in this machine, so we don't need to pass it
// to these overridden functions.
State getState(Addr addr) {
if (directory.isPresent(addr)) {
return getDirectoryEntry(addr).DirState;
} else {
return State:I;
}
}
void setState(Addr addr, State state) {
if (directory.isPresent(addr)) {
if (state == State:M) {
DPRINTF(RubySlicc, "Owner %s\n", getDirectoryEntry(addr).Owner);
assert(getDirectoryEntry(addr).Owner.count() == 1);
assert(getDirectoryEntry(addr).Sharers.count() == 0);
}
getDirectoryEntry(addr).DirState := state;
if (state == State:I) {
assert(getDirectoryEntry(addr).Owner.count() == 0);
assert(getDirectoryEntry(addr).Sharers.count() == 0);
}
}
}
// This is really the access permissions of memory.
// TODO: I don't understand this at the directory.
AccessPermission getAccessPermission(Addr addr) {
if (directory.isPresent(addr)) {
Entry e := getDirectoryEntry(addr);
return Directory_State_to_permission(e.DirState);
} else {
return AccessPermission:NotPresent;
}
}
void setAccessPermission(Addr addr, State state) {
if (directory.isPresent(addr)) {
Entry e := getDirectoryEntry(addr);
e.changePermission(Directory_State_to_permission(state));
}
}
void functionalRead(Addr addr, Packet *pkt) {
functionalMemoryRead(pkt);
}
// This returns the number of writes. So, if we write then return 1
int functionalWrite(Addr addr, Packet *pkt) {
if (functionalMemoryWrite(pkt)) {
return 1;
} else {
return 0;
}
}
/*************************************************************************/
// Network ports
out_port(forward_out, RequestMsg, forwardToCache);
out_port(response_out, ResponseMsg, responseToCache);
in_port(memQueue_in, MemoryMsg, responseFromMemory) {
if (memQueue_in.isReady(clockEdge())) {
peek(memQueue_in, MemoryMsg) {
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
trigger(Event:MemData, in_msg.addr);
} else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
trigger(Event:MemAck, in_msg.addr);
} else {
error("Invalid message");
}
}
}
}
in_port(response_in, ResponseMsg, responseFromCache) {
if (response_in.isReady(clockEdge())) {
peek(response_in, ResponseMsg) {
if (in_msg.Type == CoherenceResponseType:Data) {
trigger(Event:Data, in_msg.addr);
} else {
error("Unexpected message type.");
}
}
}
}
in_port(request_in, RequestMsg, requestFromCache) {
if (request_in.isReady(clockEdge())) {
peek(request_in, RequestMsg) {
Entry entry := getDirectoryEntry(in_msg.addr);
if (in_msg.Type == CoherenceRequestType:GetS) {
// NOTE: Since we don't have a TBE in this machine, there
// is no need to pass a TBE into trigger. Also, for the
// directory there is no cache entry.
trigger(Event:GetS, in_msg.addr);
} else if (in_msg.Type == CoherenceRequestType:GetM) {
trigger(Event:GetM, in_msg.addr);
} else if (in_msg.Type == CoherenceRequestType:PutS) {
assert(is_valid(entry));
// If there is only a single sharer (i.e., the requestor)
if (entry.Sharers.count() == 1) {
assert(entry.Sharers.isElement(in_msg.Requestor));
trigger(Event:PutSLast, in_msg.addr);
} else {
trigger(Event:PutSNotLast, in_msg.addr);
}
} else if (in_msg.Type == CoherenceRequestType:PutM) {
assert(is_valid(entry));
if (entry.Owner.isElement(in_msg.Requestor)) {
trigger(Event:PutMOwner, in_msg.addr);
} else {
trigger(Event:PutMNonOwner, in_msg.addr);
}
} else {
error("Unexpected message type.");
}
}
}
}
/*************************************************************************/
// Actions
// Memory actions.
action(sendMemRead, "r", desc="Send a memory read request") {
peek(request_in, RequestMsg) {
// Special function from AbstractController that will send a new
// packet out of the "Ruby" black box to the memory side. At some
// point the response will be on the memory queue.
// Like enqeue, this takes a latency for the request.
queueMemoryRead(in_msg.Requestor, address, toMemLatency);
}
}
action(sendDataToMem, "w", desc="Write data to memory") {
peek(request_in, RequestMsg) {
DPRINTF(RubySlicc, "Writing memory for %#x\n", address);
DPRINTF(RubySlicc, "Writing %s\n", in_msg.DataBlk);
queueMemoryWrite(in_msg.Requestor, address, toMemLatency,
in_msg.DataBlk);
}
}
action(sendRespDataToMem, "rw", desc="Write data to memory from resp") {
peek(response_in, ResponseMsg) {
DPRINTF(RubySlicc, "Writing memory for %#x\n", address);
DPRINTF(RubySlicc, "Writing %s\n", in_msg.DataBlk);
queueMemoryWrite(in_msg.Sender, address, toMemLatency,
in_msg.DataBlk);
}
}
// Sharer/owner actions
action(addReqToSharers, "aS", desc="Add requestor to sharer list") {
peek(request_in, RequestMsg) {
getDirectoryEntry(address).Sharers.add(in_msg.Requestor);
}
}
action(setOwner, "sO", desc="Set the owner") {
peek(request_in, RequestMsg) {
getDirectoryEntry(address).Owner.add(in_msg.Requestor);
}
}
action(addOwnerToSharers, "oS", desc="Add the owner to sharers") {
Entry e := getDirectoryEntry(address);
assert(e.Owner.count() == 1);
e.Sharers.addNetDest(e.Owner);
}
action(removeReqFromSharers, "rS", desc="Remove requestor from sharers") {
peek(request_in, RequestMsg) {
getDirectoryEntry(address).Sharers.remove(in_msg.Requestor);
}
}
action(clearSharers, "cS", desc="Clear the sharer list") {
getDirectoryEntry(address).Sharers.clear();
}
action(clearOwner, "cO", desc="Clear the owner") {
getDirectoryEntry(address).Owner.clear();
}
// Invalidates and forwards
action(sendInvToSharers, "i", desc="Send invalidate to all sharers") {
peek(request_in, RequestMsg) {
enqueue(forward_out, RequestMsg, 1) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:Inv;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination := getDirectoryEntry(address).Sharers;
out_msg.MessageSize := MessageSizeType:Control;
}
}
}
action(sendFwdGetS, "fS", desc="Send forward getS to owner") {
assert(getDirectoryEntry(address).Owner.count() == 1);
peek(request_in, RequestMsg) {
enqueue(forward_out, RequestMsg, 1) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GetS;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination := getDirectoryEntry(address).Owner;
out_msg.MessageSize := MessageSizeType:Control;
}
}
}
action(sendFwdGetM, "fM", desc="Send forward getM to owner") {
assert(getDirectoryEntry(address).Owner.count() == 1);
peek(request_in, RequestMsg) {
enqueue(forward_out, RequestMsg, 1) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GetM;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination := getDirectoryEntry(address).Owner;
out_msg.MessageSize := MessageSizeType:Control;
}
}
}
// Responses to requests
// This also needs to send along the number of sharers!!!!
action(sendDataToReq, "d", desc="Send data from memory to requestor. ") {
//"May need to send sharer number, too") {
peek(memQueue_in, MemoryMsg) {
enqueue(response_out, ResponseMsg, 1) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:Data;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.OriginalRequestorMachId);
out_msg.DataBlk := in_msg.DataBlk;
out_msg.MessageSize := MessageSizeType:Data;
Entry e := getDirectoryEntry(address);
// Only need to include acks if we are the owner.
if (e.Owner.isElement(in_msg.OriginalRequestorMachId)) {
out_msg.Acks := e.Sharers.count();
} else {
out_msg.Acks := 0;
}
assert(out_msg.Acks >= 0);
}
}
}
action(sendPutAck, "a", desc="Send the put ack") {
peek(request_in, RequestMsg) {
enqueue(forward_out, RequestMsg, 1) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:PutAck;
out_msg.Requestor := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Control;
}
}
}
// Queue management
action(popResponseQueue, "pR", desc="Pop the response queue") {
response_in.dequeue(clockEdge());
}
action(popRequestQueue, "pQ", desc="Pop the request queue") {
request_in.dequeue(clockEdge());
}
action(popMemQueue, "pM", desc="Pop the memory queue") {
memQueue_in.dequeue(clockEdge());
}
// Stalling actions
action(stall, "z", desc="Stall the incoming request") {
// Do nothing.
}
/*************************************************************************/
// transitions
transition({I, S}, GetS, S_m) {
sendMemRead;
addReqToSharers;
popRequestQueue;
}
transition(I, {PutSNotLast, PutSLast, PutMNonOwner}) {
sendPutAck;
popRequestQueue;
}
transition(S_m, MemData, S) {
sendDataToReq;
popMemQueue;
}
transition(I, GetM, M_m) {
sendMemRead;
setOwner;
popRequestQueue;
}
transition(M_m, MemData, M) {
sendDataToReq;
clearSharers; // NOTE: This isn't *required* in some cases.
popMemQueue;
}
transition(S, GetM, M_m) {
sendMemRead;
removeReqFromSharers;
sendInvToSharers;
setOwner;
popRequestQueue;
}
transition({S, S_D, SS_m, S_m}, {PutSNotLast, PutMNonOwner}) {
removeReqFromSharers;
sendPutAck;
popRequestQueue;
}
transition(S, PutSLast, I) {
removeReqFromSharers;
sendPutAck;
popRequestQueue;
}
transition(M, GetS, S_D) {
sendFwdGetS;
addReqToSharers;
addOwnerToSharers;
clearOwner;
popRequestQueue;
}
transition(M, GetM) {
sendFwdGetM;
clearOwner;
setOwner;
popRequestQueue;
}
transition({M, M_m, MI_m}, {PutSNotLast, PutSLast, PutMNonOwner}) {
sendPutAck;
popRequestQueue;
}
transition(M, PutMOwner, MI_m) {
sendDataToMem;
clearOwner;
sendPutAck;
popRequestQueue;
}
transition(MI_m, MemAck, I) {
popMemQueue;
}
transition(S_D, {GetS, GetM}) {
stall;
}
transition(S_D, PutSLast) {
removeReqFromSharers;
sendPutAck;
popRequestQueue;
}
transition(S_D, Data, SS_m) {
sendRespDataToMem;
popResponseQueue;
}
transition(SS_m, MemAck, S) {
popMemQueue;
}
// If we get another request for a block that's waiting on memory,
// stall that request.
transition({MI_m, SS_m, S_m, M_m}, {GetS, GetM}) {
stall;
}
}
|