summaryrefslogtreecommitdiff
path: root/src/mem/SimpleDRAM.py
blob: c874256109f9dc8be0d67e0a3ec2d34579ef7fea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder.  You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Andreas Hansson
#          Ani Udipi

from m5.params import *
from AbstractMemory import *

# Enum for memory scheduling algorithms, currently First-Come
# First-Served and a First-Row Hit then First-Come First-Served
class MemSched(Enum): vals = ['fcfs', 'frfcfs']

# Enum for the address mapping, currently corresponding to either
# optimising for sequential accesses hitting in the open row, or
# striping across banks.
class AddrMap(Enum): vals = ['openmap', 'closemap']

# Enum for the page policy, either open or close.
class PageManage(Enum): vals = ['open', 'close']

# SimpleDRAM is a single-channel single-ported DRAM controller model
# that aims to model the most important system-level performance
# effects of a DRAM without getting into too much detail of the DRAM
# itself.
class SimpleDRAM(AbstractMemory):
    type = 'SimpleDRAM'

    # single-ported on the system interface side, instantiate with a
    # bus in front of the controller for multiple ports
    port = SlavePort("Slave port")

    # the physical organisation of the DRAM
    lines_per_rowbuffer = Param.Unsigned(64, "Row buffer size in cache lines")
    ranks_per_channel = Param.Unsigned(2, "Number of ranks per channel")
    banks_per_rank = Param.Unsigned(8, "Number of banks per rank")

    # the basic configuration of the controller architecture
    write_buffer_size = Param.Unsigned(32, "Number of read queue entries")
    read_buffer_size = Param.Unsigned(32, "Number of write queue entries")

    # threshold in percent for when to trigger writes and start
    # emptying the write buffer as it starts to get full
    write_thresh_perc = Param.Percent(70, "Threshold to trigger writes")

    # scheduler, address map and page policy
    mem_sched_policy = Param.MemSched('fcfs', "Memory scheduling policy")
    addr_mapping = Param.AddrMap('openmap', "Address mapping policy")
    page_policy = Param.PageManage('open', "Page closure management policy")

    # timing behaviour and constraints - all in nanoseconds

    # the amount of time in nanoseconds from issuing an activate command
    # to the data being available in the row buffer for a read/write
    tRCD = Param.Latency("14ns", "RAS to CAS delay")

    # the time from issuing a read/write command to seeing the actual data
    tCL = Param.Latency("14ns", "CAS latency")

    # minimum time between a precharge and subsequent activate
    tRP = Param.Latency("14ns", "Row precharge time")

    # time to complete a burst transfer, typically the burst length
    # divided by two due to the DDR bus, but by making it a parameter
    # it is easier to also evaluate SDR memories like WideIO.
    # This parameter has to account for bus width and burst length.
    # Adjustment also necessary if cache line size is greater than
    # data size read/written by one full burst.
    tBURST = Param.Latency("4ns",
                           "Burst duration (for DDR burst length / 2 cycles)")

    # time taken to complete one refresh cycle (N rows in all banks)
    tRFC = Param.Latency("300ns", "Refresh cycle time")

    # refresh command interval, how often a "ref" command needs
    # to be sent. It is 7.8 us for a 64ms refresh requirement
    tREFI = Param.Latency("7.8us", "Refresh command interval")

    # write-to-read turn around penalty, assumed same as read-to-write
    tWTR = Param.Latency("1ns", "Write to read switching time")

    # Currently unimplemented, unused, deduced or rolled into other params
    ######################################################################

    # the minimum amount of time between a row being activated, and
    # precharged (de-activated)
    # tRAS - assumed to be 3 * tRP

    # tRC  - assumed to be 4 * tRP

    # burst length for an access derived from peerBlockSize

    # @todo: Implement tFAW in the model
    # minimum time window in which a maximum of four activates are
    # allowed to take place
    # tFAW = Param.Latency("30ns", "Four activation window")