1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
|
/*
* Copyright (c) 2011-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Steve Reinhardt
* Andreas Hansson
*/
/**
* @file
* Implementation of a memory-mapped bus bridge that connects a master
* and a slave through a request and response queue.
*/
#include "base/trace.hh"
#include "debug/BusBridge.hh"
#include "mem/bridge.hh"
#include "params/Bridge.hh"
Bridge::BridgeSlavePort::BridgeSlavePort(const std::string &_name,
Bridge* _bridge,
BridgeMasterPort& _masterPort,
int _delay, int _nack_delay,
int _resp_limit,
std::vector<Range<Addr> > _ranges)
: SlavePort(_name, _bridge), bridge(_bridge), masterPort(_masterPort),
delay(_delay), nackDelay(_nack_delay),
ranges(_ranges.begin(), _ranges.end()),
outstandingResponses(0), inRetry(false),
respQueueLimit(_resp_limit), sendEvent(*this)
{
}
Bridge::BridgeMasterPort::BridgeMasterPort(const std::string &_name,
Bridge* _bridge,
BridgeSlavePort& _slavePort,
int _delay, int _req_limit)
: MasterPort(_name, _bridge), bridge(_bridge), slavePort(_slavePort),
delay(_delay), inRetry(false), reqQueueLimit(_req_limit),
sendEvent(*this)
{
}
Bridge::Bridge(Params *p)
: MemObject(p),
slavePort(p->name + "-slave", this, masterPort, p->delay,
p->nack_delay, p->resp_size, p->ranges),
masterPort(p->name + "-master", this, slavePort, p->delay, p->req_size),
ackWrites(p->write_ack), _params(p)
{
if (ackWrites)
panic("No support for acknowledging writes\n");
}
MasterPort&
Bridge::getMasterPort(const std::string &if_name, int idx)
{
if (if_name == "master")
return masterPort;
else
// pass it along to our super class
return MemObject::getMasterPort(if_name, idx);
}
SlavePort&
Bridge::getSlavePort(const std::string &if_name, int idx)
{
if (if_name == "slave")
return slavePort;
else
// pass it along to our super class
return MemObject::getSlavePort(if_name, idx);
}
void
Bridge::init()
{
// make sure both sides are connected and have the same block size
if (!slavePort.isConnected() || !masterPort.isConnected())
fatal("Both ports of bus bridge are not connected to a bus.\n");
if (slavePort.peerBlockSize() != masterPort.peerBlockSize())
fatal("Slave port size %d, master port size %d \n " \
"Busses don't have the same block size... Not supported.\n",
slavePort.peerBlockSize(), masterPort.peerBlockSize());
// notify the master side of our address ranges
slavePort.sendRangeChange();
}
bool
Bridge::BridgeSlavePort::respQueueFull()
{
return outstandingResponses == respQueueLimit;
}
bool
Bridge::BridgeMasterPort::reqQueueFull()
{
return requestQueue.size() == reqQueueLimit;
}
bool
Bridge::BridgeMasterPort::recvTimingResp(PacketPtr pkt)
{
// all checks are done when the request is accepted on the slave
// side, so we are guaranteed to have space for the response
DPRINTF(BusBridge, "recvTiming: response %s addr 0x%x\n",
pkt->cmdString(), pkt->getAddr());
DPRINTF(BusBridge, "Request queue size: %d\n", requestQueue.size());
slavePort.queueForSendTiming(pkt);
return true;
}
bool
Bridge::BridgeSlavePort::recvTimingReq(PacketPtr pkt)
{
DPRINTF(BusBridge, "recvTiming: request %s addr 0x%x\n",
pkt->cmdString(), pkt->getAddr());
DPRINTF(BusBridge, "Response queue size: %d outresp: %d\n",
responseQueue.size(), outstandingResponses);
if (masterPort.reqQueueFull()) {
DPRINTF(BusBridge, "Request queue full, nacking\n");
nackRequest(pkt);
return true;
}
if (pkt->needsResponse()) {
if (respQueueFull()) {
DPRINTF(BusBridge,
"Response queue full, no space for response, nacking\n");
DPRINTF(BusBridge,
"queue size: %d outstanding resp: %d\n",
responseQueue.size(), outstandingResponses);
nackRequest(pkt);
return true;
} else {
DPRINTF(BusBridge, "Request Needs response, reserving space\n");
assert(outstandingResponses != respQueueLimit);
++outstandingResponses;
}
}
masterPort.queueForSendTiming(pkt);
return true;
}
void
Bridge::BridgeSlavePort::nackRequest(PacketPtr pkt)
{
// Nack the packet
pkt->makeTimingResponse();
pkt->setNacked();
// The Nack packets are stored in the response queue just like any
// other response, but they do not occupy any space as this is
// tracked by the outstandingResponses, this guarantees space for
// the Nack packets, but implicitly means we have an (unrealistic)
// unbounded Nack queue.
// put it on the list to send
Tick readyTime = curTick() + nackDelay;
DeferredResponse resp(pkt, readyTime, true);
// nothing on the list, add it and we're done
if (responseQueue.empty()) {
assert(!sendEvent.scheduled());
bridge->schedule(sendEvent, readyTime);
responseQueue.push_back(resp);
return;
}
assert(sendEvent.scheduled() || inRetry);
// does it go at the end?
if (readyTime >= responseQueue.back().ready) {
responseQueue.push_back(resp);
return;
}
// ok, somewhere in the middle, fun
std::list<DeferredResponse>::iterator i = responseQueue.begin();
std::list<DeferredResponse>::iterator end = responseQueue.end();
std::list<DeferredResponse>::iterator begin = responseQueue.begin();
bool done = false;
while (i != end && !done) {
if (readyTime < (*i).ready) {
if (i == begin)
bridge->reschedule(sendEvent, readyTime);
responseQueue.insert(i, resp);
done = true;
}
i++;
}
assert(done);
}
void
Bridge::BridgeMasterPort::queueForSendTiming(PacketPtr pkt)
{
Tick readyTime = curTick() + delay;
// If we expect to see a response, we need to restore the source
// and destination field that is potentially changed by a second
// bus
if (!pkt->memInhibitAsserted() && pkt->needsResponse()) {
// Update the sender state so we can deal with the response
// appropriately
RequestState *req_state = new RequestState(pkt);
pkt->senderState = req_state;
}
// If we're about to put this packet at the head of the queue, we
// need to schedule an event to do the transmit. Otherwise there
// should already be an event scheduled for sending the head
// packet.
if (requestQueue.empty()) {
bridge->schedule(sendEvent, readyTime);
}
assert(requestQueue.size() != reqQueueLimit);
requestQueue.push_back(DeferredRequest(pkt, readyTime));
}
void
Bridge::BridgeSlavePort::queueForSendTiming(PacketPtr pkt)
{
// This is a response for a request we forwarded earlier. The
// corresponding request state should be stored in the packet's
// senderState field.
RequestState *req_state = dynamic_cast<RequestState*>(pkt->senderState);
assert(req_state != NULL);
// set up new packet dest & senderState based on values saved
// from original request
req_state->fixResponse(pkt);
// the bridge assumes that at least one bus has set the
// destination field of the packet
assert(pkt->isDestValid());
DPRINTF(BusBridge, "response, new dest %d\n", pkt->getDest());
delete req_state;
Tick readyTime = curTick() + delay;
// If we're about to put this packet at the head of the queue, we
// need to schedule an event to do the transmit. Otherwise there
// should already be an event scheduled for sending the head
// packet.
if (responseQueue.empty()) {
bridge->schedule(sendEvent, readyTime);
}
responseQueue.push_back(DeferredResponse(pkt, readyTime));
}
void
Bridge::BridgeMasterPort::trySend()
{
assert(!requestQueue.empty());
DeferredRequest req = requestQueue.front();
assert(req.ready <= curTick());
PacketPtr pkt = req.pkt;
DPRINTF(BusBridge, "trySend request: addr 0x%x\n", pkt->getAddr());
if (sendTimingReq(pkt)) {
// send successful
requestQueue.pop_front();
// If there are more packets to send, schedule event to try again.
if (!requestQueue.empty()) {
req = requestQueue.front();
DPRINTF(BusBridge, "Scheduling next send\n");
bridge->schedule(sendEvent,
std::max(req.ready, curTick() + 1));
}
} else {
inRetry = true;
}
DPRINTF(BusBridge, "trySend: request queue size: %d\n",
requestQueue.size());
}
void
Bridge::BridgeSlavePort::trySend()
{
assert(!responseQueue.empty());
DeferredResponse resp = responseQueue.front();
assert(resp.ready <= curTick());
PacketPtr pkt = resp.pkt;
DPRINTF(BusBridge, "trySend response: dest %d addr 0x%x\n",
pkt->getDest(), pkt->getAddr());
bool was_nacked_here = resp.nackedHere;
if (sendTimingResp(pkt)) {
DPRINTF(BusBridge, " successful\n");
// send successful
responseQueue.pop_front();
if (!was_nacked_here) {
assert(outstandingResponses != 0);
--outstandingResponses;
}
// If there are more packets to send, schedule event to try again.
if (!responseQueue.empty()) {
resp = responseQueue.front();
DPRINTF(BusBridge, "Scheduling next send\n");
bridge->schedule(sendEvent,
std::max(resp.ready, curTick() + 1));
}
} else {
DPRINTF(BusBridge, " unsuccessful\n");
inRetry = true;
}
DPRINTF(BusBridge, "trySend: queue size: %d outstanding resp: %d\n",
responseQueue.size(), outstandingResponses);
}
void
Bridge::BridgeMasterPort::recvRetry()
{
inRetry = false;
Tick nextReady = requestQueue.front().ready;
if (nextReady <= curTick())
trySend();
else
bridge->schedule(sendEvent, nextReady);
}
void
Bridge::BridgeSlavePort::recvRetry()
{
inRetry = false;
Tick nextReady = responseQueue.front().ready;
if (nextReady <= curTick())
trySend();
else
bridge->schedule(sendEvent, nextReady);
}
Tick
Bridge::BridgeSlavePort::recvAtomic(PacketPtr pkt)
{
return delay + masterPort.sendAtomic(pkt);
}
void
Bridge::BridgeSlavePort::recvFunctional(PacketPtr pkt)
{
std::list<DeferredResponse>::iterator i;
pkt->pushLabel(name());
// check the response queue
for (i = responseQueue.begin(); i != responseQueue.end(); ++i) {
if (pkt->checkFunctional((*i).pkt)) {
pkt->makeResponse();
return;
}
}
// also check the master port's request queue
if (masterPort.checkFunctional(pkt)) {
return;
}
pkt->popLabel();
// fall through if pkt still not satisfied
masterPort.sendFunctional(pkt);
}
bool
Bridge::BridgeMasterPort::checkFunctional(PacketPtr pkt)
{
bool found = false;
std::list<DeferredRequest>::iterator i = requestQueue.begin();
while(i != requestQueue.end() && !found) {
if (pkt->checkFunctional((*i).pkt)) {
pkt->makeResponse();
found = true;
}
++i;
}
return found;
}
AddrRangeList
Bridge::BridgeSlavePort::getAddrRanges()
{
return ranges;
}
Bridge *
BridgeParams::create()
{
return new Bridge(this);
}
|