1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
|
/*
* Copyright (c) 2012-2013, 2018 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
* Nikos Nikoleris
*/
/**
* @file
* Definition of BaseCache functions.
*/
#include "mem/cache/base.hh"
#include "base/compiler.hh"
#include "base/logging.hh"
#include "debug/Cache.hh"
#include "debug/CachePort.hh"
#include "debug/CacheRepl.hh"
#include "debug/CacheVerbose.hh"
#include "mem/cache/mshr.hh"
#include "mem/cache/prefetch/base.hh"
#include "mem/cache/queue_entry.hh"
#include "params/BaseCache.hh"
#include "params/WriteAllocator.hh"
#include "sim/core.hh"
class BaseMasterPort;
class BaseSlavePort;
using namespace std;
BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
BaseCache *_cache,
const std::string &_label)
: QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
blocked(false), mustSendRetry(false),
sendRetryEvent([this]{ processSendRetry(); }, _name)
{
}
BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
: MemObject(p),
cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
memSidePort(p->name + ".mem_side", this, "MemSidePort"),
mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
tags(p->tags),
prefetcher(p->prefetcher),
prefetchOnAccess(p->prefetch_on_access),
writeAllocator(p->write_allocator),
writebackClean(p->writeback_clean),
tempBlockWriteback(nullptr),
writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
name(), false,
EventBase::Delayed_Writeback_Pri),
blkSize(blk_size),
lookupLatency(p->tag_latency),
dataLatency(p->data_latency),
forwardLatency(p->tag_latency),
fillLatency(p->data_latency),
responseLatency(p->response_latency),
numTarget(p->tgts_per_mshr),
forwardSnoops(true),
clusivity(p->clusivity),
isReadOnly(p->is_read_only),
blocked(0),
order(0),
noTargetMSHR(nullptr),
missCount(p->max_miss_count),
addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
system(p->system)
{
// the MSHR queue has no reserve entries as we check the MSHR
// queue on every single allocation, whereas the write queue has
// as many reserve entries as we have MSHRs, since every MSHR may
// eventually require a writeback, and we do not check the write
// buffer before committing to an MSHR
// forward snoops is overridden in init() once we can query
// whether the connected master is actually snooping or not
tempBlock = new TempCacheBlk(blkSize);
tags->init(this);
if (prefetcher)
prefetcher->setCache(this);
}
BaseCache::~BaseCache()
{
delete tempBlock;
}
void
BaseCache::CacheSlavePort::setBlocked()
{
assert(!blocked);
DPRINTF(CachePort, "Port is blocking new requests\n");
blocked = true;
// if we already scheduled a retry in this cycle, but it has not yet
// happened, cancel it
if (sendRetryEvent.scheduled()) {
owner.deschedule(sendRetryEvent);
DPRINTF(CachePort, "Port descheduled retry\n");
mustSendRetry = true;
}
}
void
BaseCache::CacheSlavePort::clearBlocked()
{
assert(blocked);
DPRINTF(CachePort, "Port is accepting new requests\n");
blocked = false;
if (mustSendRetry) {
// @TODO: need to find a better time (next cycle?)
owner.schedule(sendRetryEvent, curTick() + 1);
}
}
void
BaseCache::CacheSlavePort::processSendRetry()
{
DPRINTF(CachePort, "Port is sending retry\n");
// reset the flag and call retry
mustSendRetry = false;
sendRetryReq();
}
Addr
BaseCache::regenerateBlkAddr(CacheBlk* blk)
{
if (blk != tempBlock) {
return tags->regenerateBlkAddr(blk);
} else {
return tempBlock->getAddr();
}
}
void
BaseCache::init()
{
if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
fatal("Cache ports on %s are not connected\n", name());
cpuSidePort.sendRangeChange();
forwardSnoops = cpuSidePort.isSnooping();
}
BaseMasterPort &
BaseCache::getMasterPort(const std::string &if_name, PortID idx)
{
if (if_name == "mem_side") {
return memSidePort;
} else {
return MemObject::getMasterPort(if_name, idx);
}
}
BaseSlavePort &
BaseCache::getSlavePort(const std::string &if_name, PortID idx)
{
if (if_name == "cpu_side") {
return cpuSidePort;
} else {
return MemObject::getSlavePort(if_name, idx);
}
}
bool
BaseCache::inRange(Addr addr) const
{
for (const auto& r : addrRanges) {
if (r.contains(addr)) {
return true;
}
}
return false;
}
void
BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
{
if (pkt->needsResponse()) {
pkt->makeTimingResponse();
// @todo: Make someone pay for this
pkt->headerDelay = pkt->payloadDelay = 0;
// In this case we are considering request_time that takes
// into account the delay of the xbar, if any, and just
// lat, neglecting responseLatency, modelling hit latency
// just as lookupLatency or or the value of lat overriden
// by access(), that calls accessBlock() function.
cpuSidePort.schedTimingResp(pkt, request_time, true);
} else {
DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
pkt->print());
// queue the packet for deletion, as the sending cache is
// still relying on it; if the block is found in access(),
// CleanEvict and Writeback messages will be deleted
// here as well
pendingDelete.reset(pkt);
}
}
void
BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
Tick forward_time, Tick request_time)
{
if (writeAllocator &&
pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
pkt->getBlockAddr(blkSize));
}
if (mshr) {
/// MSHR hit
/// @note writebacks will be checked in getNextMSHR()
/// for any conflicting requests to the same block
//@todo remove hw_pf here
// Coalesce unless it was a software prefetch (see above).
if (pkt) {
assert(!pkt->isWriteback());
// CleanEvicts corresponding to blocks which have
// outstanding requests in MSHRs are simply sunk here
if (pkt->cmd == MemCmd::CleanEvict) {
pendingDelete.reset(pkt);
} else if (pkt->cmd == MemCmd::WriteClean) {
// A WriteClean should never coalesce with any
// outstanding cache maintenance requests.
// We use forward_time here because there is an
// uncached memory write, forwarded to WriteBuffer.
allocateWriteBuffer(pkt, forward_time);
} else {
DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
pkt->print());
assert(pkt->req->masterId() < system->maxMasters());
mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
// We use forward_time here because it is the same
// considering new targets. We have multiple
// requests for the same address here. It
// specifies the latency to allocate an internal
// buffer and to schedule an event to the queued
// port and also takes into account the additional
// delay of the xbar.
mshr->allocateTarget(pkt, forward_time, order++,
allocOnFill(pkt->cmd));
if (mshr->getNumTargets() == numTarget) {
noTargetMSHR = mshr;
setBlocked(Blocked_NoTargets);
// need to be careful with this... if this mshr isn't
// ready yet (i.e. time > curTick()), we don't want to
// move it ahead of mshrs that are ready
// mshrQueue.moveToFront(mshr);
}
}
}
} else {
// no MSHR
assert(pkt->req->masterId() < system->maxMasters());
mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
// We use forward_time here because there is an
// writeback or writeclean, forwarded to WriteBuffer.
allocateWriteBuffer(pkt, forward_time);
} else {
if (blk && blk->isValid()) {
// If we have a write miss to a valid block, we
// need to mark the block non-readable. Otherwise
// if we allow reads while there's an outstanding
// write miss, the read could return stale data
// out of the cache block... a more aggressive
// system could detect the overlap (if any) and
// forward data out of the MSHRs, but we don't do
// that yet. Note that we do need to leave the
// block valid so that it stays in the cache, in
// case we get an upgrade response (and hence no
// new data) when the write miss completes.
// As long as CPUs do proper store/load forwarding
// internally, and have a sufficiently weak memory
// model, this is probably unnecessary, but at some
// point it must have seemed like we needed it...
assert((pkt->needsWritable() && !blk->isWritable()) ||
pkt->req->isCacheMaintenance());
blk->status &= ~BlkReadable;
}
// Here we are using forward_time, modelling the latency of
// a miss (outbound) just as forwardLatency, neglecting the
// lookupLatency component.
allocateMissBuffer(pkt, forward_time);
}
}
}
void
BaseCache::recvTimingReq(PacketPtr pkt)
{
// anything that is merely forwarded pays for the forward latency and
// the delay provided by the crossbar
Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
// We use lookupLatency here because it is used to specify the latency
// to access.
Cycles lat = lookupLatency;
CacheBlk *blk = nullptr;
bool satisfied = false;
{
PacketList writebacks;
// Note that lat is passed by reference here. The function
// access() calls accessBlock() which can modify lat value.
satisfied = access(pkt, blk, lat, writebacks);
// copy writebacks to write buffer here to ensure they logically
// precede anything happening below
doWritebacks(writebacks, forward_time);
}
// Here we charge the headerDelay that takes into account the latencies
// of the bus, if the packet comes from it.
// The latency charged it is just lat that is the value of lookupLatency
// modified by access() function, or if not just lookupLatency.
// In case of a hit we are neglecting response latency.
// In case of a miss we are neglecting forward latency.
Tick request_time = clockEdge(lat) + pkt->headerDelay;
// Here we reset the timing of the packet.
pkt->headerDelay = pkt->payloadDelay = 0;
// track time of availability of next prefetch, if any
Tick next_pf_time = MaxTick;
if (satisfied) {
// if need to notify the prefetcher we have to do it before
// anything else as later handleTimingReqHit might turn the
// packet in a response
if (prefetcher &&
(prefetchOnAccess || (blk && blk->wasPrefetched()))) {
if (blk)
blk->status &= ~BlkHWPrefetched;
// Don't notify on SWPrefetch
if (!pkt->cmd.isSWPrefetch()) {
assert(!pkt->req->isCacheMaintenance());
next_pf_time = prefetcher->notify(pkt);
}
}
handleTimingReqHit(pkt, blk, request_time);
} else {
handleTimingReqMiss(pkt, blk, forward_time, request_time);
// We should call the prefetcher reguardless if the request is
// satisfied or not, reguardless if the request is in the MSHR
// or not. The request could be a ReadReq hit, but still not
// satisfied (potentially because of a prior write to the same
// cache line. So, even when not satisfied, there is an MSHR
// already allocated for this, we need to let the prefetcher
// know about the request
// Don't notify prefetcher on SWPrefetch, cache maintenance
// operations or for writes that we are coaslescing.
if (prefetcher && pkt &&
!pkt->cmd.isSWPrefetch() &&
!pkt->req->isCacheMaintenance() &&
!(writeAllocator && writeAllocator->coalesce() &&
pkt->isWrite())) {
next_pf_time = prefetcher->notify(pkt);
}
}
if (next_pf_time != MaxTick) {
schedMemSideSendEvent(next_pf_time);
}
}
void
BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
{
Tick completion_time = clockEdge(responseLatency) +
pkt->headerDelay + pkt->payloadDelay;
// Reset the bus additional time as it is now accounted for
pkt->headerDelay = pkt->payloadDelay = 0;
cpuSidePort.schedTimingResp(pkt, completion_time, true);
}
void
BaseCache::recvTimingResp(PacketPtr pkt)
{
assert(pkt->isResponse());
// all header delay should be paid for by the crossbar, unless
// this is a prefetch response from above
panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
"%s saw a non-zero packet delay\n", name());
const bool is_error = pkt->isError();
if (is_error) {
DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
pkt->print());
}
DPRINTF(Cache, "%s: Handling response %s\n", __func__,
pkt->print());
// if this is a write, we should be looking at an uncacheable
// write
if (pkt->isWrite()) {
assert(pkt->req->isUncacheable());
handleUncacheableWriteResp(pkt);
return;
}
// we have dealt with any (uncacheable) writes above, from here on
// we know we are dealing with an MSHR due to a miss or a prefetch
MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
assert(mshr);
if (mshr == noTargetMSHR) {
// we always clear at least one target
clearBlocked(Blocked_NoTargets);
noTargetMSHR = nullptr;
}
// Initial target is used just for stats
MSHR::Target *initial_tgt = mshr->getTarget();
int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
Tick miss_latency = curTick() - initial_tgt->recvTime;
if (pkt->req->isUncacheable()) {
assert(pkt->req->masterId() < system->maxMasters());
mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
miss_latency;
} else {
assert(pkt->req->masterId() < system->maxMasters());
mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
miss_latency;
}
PacketList writebacks;
bool is_fill = !mshr->isForward &&
(pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
mshr->wasWholeLineWrite);
// make sure that if the mshr was due to a whole line write then
// the response is an invalidation
assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
if (is_fill && !is_error) {
DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
pkt->getAddr());
const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
writeAllocator->allocate() : mshr->allocOnFill();
blk = handleFill(pkt, blk, writebacks, allocate);
assert(blk != nullptr);
}
if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
// The block was marked not readable while there was a pending
// cache maintenance operation, restore its flag.
blk->status |= BlkReadable;
// This was a cache clean operation (without invalidate)
// and we have a copy of the block already. Since there
// is no invalidation, we can promote targets that don't
// require a writable copy
mshr->promoteReadable();
}
if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
// If at this point the referenced block is writable and the
// response is not a cache invalidate, we promote targets that
// were deferred as we couldn't guarrantee a writable copy
mshr->promoteWritable();
}
serviceMSHRTargets(mshr, pkt, blk, writebacks);
if (mshr->promoteDeferredTargets()) {
// avoid later read getting stale data while write miss is
// outstanding.. see comment in timingAccess()
if (blk) {
blk->status &= ~BlkReadable;
}
mshrQueue.markPending(mshr);
schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
} else {
// while we deallocate an mshr from the queue we still have to
// check the isFull condition before and after as we might
// have been using the reserved entries already
const bool was_full = mshrQueue.isFull();
mshrQueue.deallocate(mshr);
if (was_full && !mshrQueue.isFull()) {
clearBlocked(Blocked_NoMSHRs);
}
// Request the bus for a prefetch if this deallocation freed enough
// MSHRs for a prefetch to take place
if (prefetcher && mshrQueue.canPrefetch()) {
Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
clockEdge());
if (next_pf_time != MaxTick)
schedMemSideSendEvent(next_pf_time);
}
}
// if we used temp block, check to see if its valid and then clear it out
if (blk == tempBlock && tempBlock->isValid()) {
evictBlock(blk, writebacks);
}
const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
// copy writebacks to write buffer
doWritebacks(writebacks, forward_time);
DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
delete pkt;
}
Tick
BaseCache::recvAtomic(PacketPtr pkt)
{
// We are in atomic mode so we pay just for lookupLatency here.
Cycles lat = lookupLatency;
// follow the same flow as in recvTimingReq, and check if a cache
// above us is responding
if (pkt->cacheResponding() && !pkt->isClean()) {
assert(!pkt->req->isCacheInvalidate());
DPRINTF(Cache, "Cache above responding to %s: not responding\n",
pkt->print());
// if a cache is responding, and it had the line in Owned
// rather than Modified state, we need to invalidate any
// copies that are not on the same path to memory
assert(pkt->needsWritable() && !pkt->responderHadWritable());
lat += ticksToCycles(memSidePort.sendAtomic(pkt));
return lat * clockPeriod();
}
// should assert here that there are no outstanding MSHRs or
// writebacks... that would mean that someone used an atomic
// access in timing mode
CacheBlk *blk = nullptr;
PacketList writebacks;
bool satisfied = access(pkt, blk, lat, writebacks);
if (pkt->isClean() && blk && blk->isDirty()) {
// A cache clean opearation is looking for a dirty
// block. If a dirty block is encountered a WriteClean
// will update any copies to the path to the memory
// until the point of reference.
DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
__func__, pkt->print(), blk->print());
PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
writebacks.push_back(wb_pkt);
pkt->setSatisfied();
}
// handle writebacks resulting from the access here to ensure they
// logically precede anything happening below
doWritebacksAtomic(writebacks);
assert(writebacks.empty());
if (!satisfied) {
lat += handleAtomicReqMiss(pkt, blk, writebacks);
}
// Note that we don't invoke the prefetcher at all in atomic mode.
// It's not clear how to do it properly, particularly for
// prefetchers that aggressively generate prefetch candidates and
// rely on bandwidth contention to throttle them; these will tend
// to pollute the cache in atomic mode since there is no bandwidth
// contention. If we ever do want to enable prefetching in atomic
// mode, though, this is the place to do it... see timingAccess()
// for an example (though we'd want to issue the prefetch(es)
// immediately rather than calling requestMemSideBus() as we do
// there).
// do any writebacks resulting from the response handling
doWritebacksAtomic(writebacks);
// if we used temp block, check to see if its valid and if so
// clear it out, but only do so after the call to recvAtomic is
// finished so that any downstream observers (such as a snoop
// filter), first see the fill, and only then see the eviction
if (blk == tempBlock && tempBlock->isValid()) {
// the atomic CPU calls recvAtomic for fetch and load/store
// sequentuially, and we may already have a tempBlock
// writeback from the fetch that we have not yet sent
if (tempBlockWriteback) {
// if that is the case, write the prevoius one back, and
// do not schedule any new event
writebackTempBlockAtomic();
} else {
// the writeback/clean eviction happens after the call to
// recvAtomic has finished (but before any successive
// calls), so that the response handling from the fill is
// allowed to happen first
schedule(writebackTempBlockAtomicEvent, curTick());
}
tempBlockWriteback = evictBlock(blk);
}
if (pkt->needsResponse()) {
pkt->makeAtomicResponse();
}
return lat * clockPeriod();
}
void
BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
{
Addr blk_addr = pkt->getBlockAddr(blkSize);
bool is_secure = pkt->isSecure();
CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
pkt->pushLabel(name());
CacheBlkPrintWrapper cbpw(blk);
// Note that just because an L2/L3 has valid data doesn't mean an
// L1 doesn't have a more up-to-date modified copy that still
// needs to be found. As a result we always update the request if
// we have it, but only declare it satisfied if we are the owner.
// see if we have data at all (owned or otherwise)
bool have_data = blk && blk->isValid()
&& pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
blk->data);
// data we have is dirty if marked as such or if we have an
// in-service MSHR that is pending a modified line
bool have_dirty =
have_data && (blk->isDirty() ||
(mshr && mshr->inService && mshr->isPendingModified()));
bool done = have_dirty ||
cpuSidePort.trySatisfyFunctional(pkt) ||
mshrQueue.trySatisfyFunctional(pkt, blk_addr) ||
writeBuffer.trySatisfyFunctional(pkt, blk_addr) ||
memSidePort.trySatisfyFunctional(pkt);
DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
(blk && blk->isValid()) ? "valid " : "",
have_data ? "data " : "", done ? "done " : "");
// We're leaving the cache, so pop cache->name() label
pkt->popLabel();
if (done) {
pkt->makeResponse();
} else {
// if it came as a request from the CPU side then make sure it
// continues towards the memory side
if (from_cpu_side) {
memSidePort.sendFunctional(pkt);
} else if (cpuSidePort.isSnooping()) {
// if it came from the memory side, it must be a snoop request
// and we should only forward it if we are forwarding snoops
cpuSidePort.sendFunctionalSnoop(pkt);
}
}
}
void
BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
{
assert(pkt->isRequest());
uint64_t overwrite_val;
bool overwrite_mem;
uint64_t condition_val64;
uint32_t condition_val32;
int offset = pkt->getOffset(blkSize);
uint8_t *blk_data = blk->data + offset;
assert(sizeof(uint64_t) >= pkt->getSize());
overwrite_mem = true;
// keep a copy of our possible write value, and copy what is at the
// memory address into the packet
pkt->writeData((uint8_t *)&overwrite_val);
pkt->setData(blk_data);
if (pkt->req->isCondSwap()) {
if (pkt->getSize() == sizeof(uint64_t)) {
condition_val64 = pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val64, blk_data,
sizeof(uint64_t));
} else if (pkt->getSize() == sizeof(uint32_t)) {
condition_val32 = (uint32_t)pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val32, blk_data,
sizeof(uint32_t));
} else
panic("Invalid size for conditional read/write\n");
}
if (overwrite_mem) {
std::memcpy(blk_data, &overwrite_val, pkt->getSize());
blk->status |= BlkDirty;
}
}
QueueEntry*
BaseCache::getNextQueueEntry()
{
// Check both MSHR queue and write buffer for potential requests,
// note that null does not mean there is no request, it could
// simply be that it is not ready
MSHR *miss_mshr = mshrQueue.getNext();
WriteQueueEntry *wq_entry = writeBuffer.getNext();
// If we got a write buffer request ready, first priority is a
// full write buffer, otherwise we favour the miss requests
if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
// need to search MSHR queue for conflicting earlier miss.
MSHR *conflict_mshr =
mshrQueue.findPending(wq_entry->blkAddr,
wq_entry->isSecure);
if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
// Service misses in order until conflict is cleared.
return conflict_mshr;
// @todo Note that we ignore the ready time of the conflict here
}
// No conflicts; issue write
return wq_entry;
} else if (miss_mshr) {
// need to check for conflicting earlier writeback
WriteQueueEntry *conflict_mshr =
writeBuffer.findPending(miss_mshr->blkAddr,
miss_mshr->isSecure);
if (conflict_mshr) {
// not sure why we don't check order here... it was in the
// original code but commented out.
// The only way this happens is if we are
// doing a write and we didn't have permissions
// then subsequently saw a writeback (owned got evicted)
// We need to make sure to perform the writeback first
// To preserve the dirty data, then we can issue the write
// should we return wq_entry here instead? I.e. do we
// have to flush writes in order? I don't think so... not
// for Alpha anyway. Maybe for x86?
return conflict_mshr;
// @todo Note that we ignore the ready time of the conflict here
}
// No conflicts; issue read
return miss_mshr;
}
// fall through... no pending requests. Try a prefetch.
assert(!miss_mshr && !wq_entry);
if (prefetcher && mshrQueue.canPrefetch()) {
// If we have a miss queue slot, we can try a prefetch
PacketPtr pkt = prefetcher->getPacket();
if (pkt) {
Addr pf_addr = pkt->getBlockAddr(blkSize);
if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
!mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
!writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
// Update statistic on number of prefetches issued
// (hwpf_mshr_misses)
assert(pkt->req->masterId() < system->maxMasters());
mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
// allocate an MSHR and return it, note
// that we send the packet straight away, so do not
// schedule the send
return allocateMissBuffer(pkt, curTick(), false);
} else {
// free the request and packet
delete pkt;
}
}
}
return nullptr;
}
void
BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
{
assert(pkt->isRequest());
assert(blk && blk->isValid());
// Occasionally this is not true... if we are a lower-level cache
// satisfying a string of Read and ReadEx requests from
// upper-level caches, a Read will mark the block as shared but we
// can satisfy a following ReadEx anyway since we can rely on the
// Read requester(s) to have buffered the ReadEx snoop and to
// invalidate their blocks after receiving them.
// assert(!pkt->needsWritable() || blk->isWritable());
assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
// Check RMW operations first since both isRead() and
// isWrite() will be true for them
if (pkt->cmd == MemCmd::SwapReq) {
if (pkt->isAtomicOp()) {
// extract data from cache and save it into the data field in
// the packet as a return value from this atomic op
int offset = tags->extractBlkOffset(pkt->getAddr());
uint8_t *blk_data = blk->data + offset;
std::memcpy(pkt->getPtr<uint8_t>(), blk_data, pkt->getSize());
// execute AMO operation
(*(pkt->getAtomicOp()))(blk_data);
// set block status to dirty
blk->status |= BlkDirty;
} else {
cmpAndSwap(blk, pkt);
}
} else if (pkt->isWrite()) {
// we have the block in a writable state and can go ahead,
// note that the line may be also be considered writable in
// downstream caches along the path to memory, but always
// Exclusive, and never Modified
assert(blk->isWritable());
// Write or WriteLine at the first cache with block in writable state
if (blk->checkWrite(pkt)) {
pkt->writeDataToBlock(blk->data, blkSize);
}
// Always mark the line as dirty (and thus transition to the
// Modified state) even if we are a failed StoreCond so we
// supply data to any snoops that have appended themselves to
// this cache before knowing the store will fail.
blk->status |= BlkDirty;
DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
} else if (pkt->isRead()) {
if (pkt->isLLSC()) {
blk->trackLoadLocked(pkt);
}
// all read responses have a data payload
assert(pkt->hasRespData());
pkt->setDataFromBlock(blk->data, blkSize);
} else if (pkt->isUpgrade()) {
// sanity check
assert(!pkt->hasSharers());
if (blk->isDirty()) {
// we were in the Owned state, and a cache above us that
// has the line in Shared state needs to be made aware
// that the data it already has is in fact dirty
pkt->setCacheResponding();
blk->status &= ~BlkDirty;
}
} else if (pkt->isClean()) {
blk->status &= ~BlkDirty;
} else {
assert(pkt->isInvalidate());
invalidateBlock(blk);
DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
pkt->print());
}
}
/////////////////////////////////////////////////////
//
// Access path: requests coming in from the CPU side
//
/////////////////////////////////////////////////////
bool
BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
PacketList &writebacks)
{
// sanity check
assert(pkt->isRequest());
chatty_assert(!(isReadOnly && pkt->isWrite()),
"Should never see a write in a read-only cache %s\n",
name());
// Here lat is the value passed as parameter to accessBlock() function
// that can modify its value.
blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
blk ? "hit " + blk->print() : "miss");
if (pkt->req->isCacheMaintenance()) {
// A cache maintenance operation is always forwarded to the
// memory below even if the block is found in dirty state.
// We defer any changes to the state of the block until we
// create and mark as in service the mshr for the downstream
// packet.
return false;
}
if (pkt->isEviction()) {
// We check for presence of block in above caches before issuing
// Writeback or CleanEvict to write buffer. Therefore the only
// possible cases can be of a CleanEvict packet coming from above
// encountering a Writeback generated in this cache peer cache and
// waiting in the write buffer. Cases of upper level peer caches
// generating CleanEvict and Writeback or simply CleanEvict and
// CleanEvict almost simultaneously will be caught by snoops sent out
// by crossbar.
WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
pkt->isSecure());
if (wb_entry) {
assert(wb_entry->getNumTargets() == 1);
PacketPtr wbPkt = wb_entry->getTarget()->pkt;
assert(wbPkt->isWriteback());
if (pkt->isCleanEviction()) {
// The CleanEvict and WritebackClean snoops into other
// peer caches of the same level while traversing the
// crossbar. If a copy of the block is found, the
// packet is deleted in the crossbar. Hence, none of
// the other upper level caches connected to this
// cache have the block, so we can clear the
// BLOCK_CACHED flag in the Writeback if set and
// discard the CleanEvict by returning true.
wbPkt->clearBlockCached();
return true;
} else {
assert(pkt->cmd == MemCmd::WritebackDirty);
// Dirty writeback from above trumps our clean
// writeback... discard here
// Note: markInService will remove entry from writeback buffer.
markInService(wb_entry);
delete wbPkt;
}
}
}
// Writeback handling is special case. We can write the block into
// the cache without having a writeable copy (or any copy at all).
if (pkt->isWriteback()) {
assert(blkSize == pkt->getSize());
// we could get a clean writeback while we are having
// outstanding accesses to a block, do the simple thing for
// now and drop the clean writeback so that we do not upset
// any ordering/decisions about ownership already taken
if (pkt->cmd == MemCmd::WritebackClean &&
mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
"dropping\n", pkt->getAddr());
return true;
}
if (!blk) {
// need to do a replacement
blk = allocateBlock(pkt, writebacks);
if (!blk) {
// no replaceable block available: give up, fwd to next level.
incMissCount(pkt);
return false;
}
blk->status |= (BlkValid | BlkReadable);
}
// only mark the block dirty if we got a writeback command,
// and leave it as is for a clean writeback
if (pkt->cmd == MemCmd::WritebackDirty) {
// TODO: the coherent cache can assert(!blk->isDirty());
blk->status |= BlkDirty;
}
// if the packet does not have sharers, it is passing
// writable, and we got the writeback in Modified or Exclusive
// state, if not we are in the Owned or Shared state
if (!pkt->hasSharers()) {
blk->status |= BlkWritable;
}
// nothing else to do; writeback doesn't expect response
assert(!pkt->needsResponse());
pkt->writeDataToBlock(blk->data, blkSize);
DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
incHitCount(pkt);
// populate the time when the block will be ready to access.
blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
pkt->payloadDelay;
return true;
} else if (pkt->cmd == MemCmd::CleanEvict) {
if (blk) {
// Found the block in the tags, need to stop CleanEvict from
// propagating further down the hierarchy. Returning true will
// treat the CleanEvict like a satisfied write request and delete
// it.
return true;
}
// We didn't find the block here, propagate the CleanEvict further
// down the memory hierarchy. Returning false will treat the CleanEvict
// like a Writeback which could not find a replaceable block so has to
// go to next level.
return false;
} else if (pkt->cmd == MemCmd::WriteClean) {
// WriteClean handling is a special case. We can allocate a
// block directly if it doesn't exist and we can update the
// block immediately. The WriteClean transfers the ownership
// of the block as well.
assert(blkSize == pkt->getSize());
if (!blk) {
if (pkt->writeThrough()) {
// if this is a write through packet, we don't try to
// allocate if the block is not present
return false;
} else {
// a writeback that misses needs to allocate a new block
blk = allocateBlock(pkt, writebacks);
if (!blk) {
// no replaceable block available: give up, fwd to
// next level.
incMissCount(pkt);
return false;
}
blk->status |= (BlkValid | BlkReadable);
}
}
// at this point either this is a writeback or a write-through
// write clean operation and the block is already in this
// cache, we need to update the data and the block flags
assert(blk);
// TODO: the coherent cache can assert(!blk->isDirty());
if (!pkt->writeThrough()) {
blk->status |= BlkDirty;
}
// nothing else to do; writeback doesn't expect response
assert(!pkt->needsResponse());
pkt->writeDataToBlock(blk->data, blkSize);
DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
incHitCount(pkt);
// populate the time when the block will be ready to access.
blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
pkt->payloadDelay;
// if this a write-through packet it will be sent to cache
// below
return !pkt->writeThrough();
} else if (blk && (pkt->needsWritable() ? blk->isWritable() :
blk->isReadable())) {
// OK to satisfy access
incHitCount(pkt);
satisfyRequest(pkt, blk);
maintainClusivity(pkt->fromCache(), blk);
return true;
}
// Can't satisfy access normally... either no block (blk == nullptr)
// or have block but need writable
incMissCount(pkt);
if (!blk && pkt->isLLSC() && pkt->isWrite()) {
// complete miss on store conditional... just give up now
pkt->req->setExtraData(0);
return true;
}
return false;
}
void
BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
{
if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
clusivity == Enums::mostly_excl) {
// if we have responded to a cache, and our block is still
// valid, but not dirty, and this cache is mostly exclusive
// with respect to the cache above, drop the block
invalidateBlock(blk);
}
}
CacheBlk*
BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
bool allocate)
{
assert(pkt->isResponse());
Addr addr = pkt->getAddr();
bool is_secure = pkt->isSecure();
#if TRACING_ON
CacheBlk::State old_state = blk ? blk->status : 0;
#endif
// When handling a fill, we should have no writes to this line.
assert(addr == pkt->getBlockAddr(blkSize));
assert(!writeBuffer.findMatch(addr, is_secure));
if (!blk) {
// better have read new data...
assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
// need to do a replacement if allocating, otherwise we stick
// with the temporary storage
blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
if (!blk) {
// No replaceable block or a mostly exclusive
// cache... just use temporary storage to complete the
// current request and then get rid of it
assert(!tempBlock->isValid());
blk = tempBlock;
tempBlock->insert(addr, is_secure);
DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
is_secure ? "s" : "ns");
}
// we should never be overwriting a valid block
assert(!blk->isValid());
} else {
// existing block... probably an upgrade
assert(regenerateBlkAddr(blk) == addr);
assert(blk->isSecure() == is_secure);
// either we're getting new data or the block should already be valid
assert(pkt->hasData() || blk->isValid());
// don't clear block status... if block is already dirty we
// don't want to lose that
}
blk->status |= BlkValid | BlkReadable;
// sanity check for whole-line writes, which should always be
// marked as writable as part of the fill, and then later marked
// dirty as part of satisfyRequest
if (pkt->cmd == MemCmd::InvalidateResp) {
assert(!pkt->hasSharers());
}
// here we deal with setting the appropriate state of the line,
// and we start by looking at the hasSharers flag, and ignore the
// cacheResponding flag (normally signalling dirty data) if the
// packet has sharers, thus the line is never allocated as Owned
// (dirty but not writable), and always ends up being either
// Shared, Exclusive or Modified, see Packet::setCacheResponding
// for more details
if (!pkt->hasSharers()) {
// we could get a writable line from memory (rather than a
// cache) even in a read-only cache, note that we set this bit
// even for a read-only cache, possibly revisit this decision
blk->status |= BlkWritable;
// check if we got this via cache-to-cache transfer (i.e., from a
// cache that had the block in Modified or Owned state)
if (pkt->cacheResponding()) {
// we got the block in Modified state, and invalidated the
// owners copy
blk->status |= BlkDirty;
chatty_assert(!isReadOnly, "Should never see dirty snoop response "
"in read-only cache %s\n", name());
}
}
DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
addr, is_secure ? "s" : "ns", old_state, blk->print());
// if we got new data, copy it in (checking for a read response
// and a response that has data is the same in the end)
if (pkt->isRead()) {
// sanity checks
assert(pkt->hasData());
assert(pkt->getSize() == blkSize);
pkt->writeDataToBlock(blk->data, blkSize);
}
// We pay for fillLatency here.
blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
pkt->payloadDelay;
return blk;
}
CacheBlk*
BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
{
// Get address
const Addr addr = pkt->getAddr();
// Get secure bit
const bool is_secure = pkt->isSecure();
// Find replacement victim
std::vector<CacheBlk*> evict_blks;
CacheBlk *victim = tags->findVictim(addr, is_secure, evict_blks);
// It is valid to return nullptr if there is no victim
if (!victim)
return nullptr;
// Print victim block's information
DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
// Check for transient state allocations. If any of the entries listed
// for eviction has a transient state, the allocation fails
for (const auto& blk : evict_blks) {
if (blk->isValid()) {
Addr repl_addr = regenerateBlkAddr(blk);
MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
if (repl_mshr) {
// must be an outstanding upgrade or clean request
// on a block we're about to replace...
assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
repl_mshr->isCleaning());
// too hard to replace block with transient state
// allocation failed, block not inserted
return nullptr;
}
}
}
// The victim will be replaced by a new entry, so increase the replacement
// counter if a valid block is being replaced
if (victim->isValid()) {
DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
"(%s): %s\n", regenerateBlkAddr(victim),
victim->isSecure() ? "s" : "ns",
addr, is_secure ? "s" : "ns",
victim->isDirty() ? "writeback" : "clean");
replacements++;
}
// Evict valid blocks associated to this victim block
for (const auto& blk : evict_blks) {
if (blk->isValid()) {
if (blk->wasPrefetched()) {
unusedPrefetches++;
}
evictBlock(blk, writebacks);
}
}
// Insert new block at victimized entry
tags->insertBlock(addr, is_secure, pkt->req->masterId(),
pkt->req->taskId(), victim);
return victim;
}
void
BaseCache::invalidateBlock(CacheBlk *blk)
{
if (blk != tempBlock)
tags->invalidate(blk);
blk->invalidate();
}
void
BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
{
PacketPtr pkt = evictBlock(blk);
if (pkt) {
writebacks.push_back(pkt);
}
}
PacketPtr
BaseCache::writebackBlk(CacheBlk *blk)
{
chatty_assert(!isReadOnly || writebackClean,
"Writeback from read-only cache");
assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
writebacks[Request::wbMasterId]++;
RequestPtr req = std::make_shared<Request>(
regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
if (blk->isSecure())
req->setFlags(Request::SECURE);
req->taskId(blk->task_id);
PacketPtr pkt =
new Packet(req, blk->isDirty() ?
MemCmd::WritebackDirty : MemCmd::WritebackClean);
DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
pkt->print(), blk->isWritable(), blk->isDirty());
if (blk->isWritable()) {
// not asserting shared means we pass the block in modified
// state, mark our own block non-writeable
blk->status &= ~BlkWritable;
} else {
// we are in the Owned state, tell the receiver
pkt->setHasSharers();
}
// make sure the block is not marked dirty
blk->status &= ~BlkDirty;
pkt->allocate();
pkt->setDataFromBlock(blk->data, blkSize);
return pkt;
}
PacketPtr
BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
{
RequestPtr req = std::make_shared<Request>(
regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
if (blk->isSecure()) {
req->setFlags(Request::SECURE);
}
req->taskId(blk->task_id);
PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
if (dest) {
req->setFlags(dest);
pkt->setWriteThrough();
}
DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
blk->isWritable(), blk->isDirty());
if (blk->isWritable()) {
// not asserting shared means we pass the block in modified
// state, mark our own block non-writeable
blk->status &= ~BlkWritable;
} else {
// we are in the Owned state, tell the receiver
pkt->setHasSharers();
}
// make sure the block is not marked dirty
blk->status &= ~BlkDirty;
pkt->allocate();
pkt->setDataFromBlock(blk->data, blkSize);
return pkt;
}
void
BaseCache::memWriteback()
{
tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
}
void
BaseCache::memInvalidate()
{
tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
}
bool
BaseCache::isDirty() const
{
return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
}
void
BaseCache::writebackVisitor(CacheBlk &blk)
{
if (blk.isDirty()) {
assert(blk.isValid());
RequestPtr request = std::make_shared<Request>(
regenerateBlkAddr(&blk), blkSize, 0, Request::funcMasterId);
request->taskId(blk.task_id);
if (blk.isSecure()) {
request->setFlags(Request::SECURE);
}
Packet packet(request, MemCmd::WriteReq);
packet.dataStatic(blk.data);
memSidePort.sendFunctional(&packet);
blk.status &= ~BlkDirty;
}
}
void
BaseCache::invalidateVisitor(CacheBlk &blk)
{
if (blk.isDirty())
warn_once("Invalidating dirty cache lines. " \
"Expect things to break.\n");
if (blk.isValid()) {
assert(!blk.isDirty());
invalidateBlock(&blk);
}
}
Tick
BaseCache::nextQueueReadyTime() const
{
Tick nextReady = std::min(mshrQueue.nextReadyTime(),
writeBuffer.nextReadyTime());
// Don't signal prefetch ready time if no MSHRs available
// Will signal once enoguh MSHRs are deallocated
if (prefetcher && mshrQueue.canPrefetch()) {
nextReady = std::min(nextReady,
prefetcher->nextPrefetchReadyTime());
}
return nextReady;
}
bool
BaseCache::sendMSHRQueuePacket(MSHR* mshr)
{
assert(mshr);
// use request from 1st target
PacketPtr tgt_pkt = mshr->getTarget()->pkt;
DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
// if the cache is in write coalescing mode or (additionally) in
// no allocation mode, and we have a write packet with an MSHR
// that is not a whole-line write (due to incompatible flags etc),
// then reset the write mode
if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
if (!mshr->isWholeLineWrite()) {
// if we are currently write coalescing, hold on the
// MSHR as many cycles extra as we need to completely
// write a cache line
if (writeAllocator->delay(mshr->blkAddr)) {
Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
"for write coalescing\n", tgt_pkt->print(), delay);
mshrQueue.delay(mshr, delay);
return false;
} else {
writeAllocator->reset();
}
} else {
writeAllocator->resetDelay(mshr->blkAddr);
}
}
CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
// either a prefetch that is not present upstream, or a normal
// MSHR request, proceed to get the packet to send downstream
PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
mshr->isWholeLineWrite());
mshr->isForward = (pkt == nullptr);
if (mshr->isForward) {
// not a cache block request, but a response is expected
// make copy of current packet to forward, keep current
// copy for response handling
pkt = new Packet(tgt_pkt, false, true);
assert(!pkt->isWrite());
}
// play it safe and append (rather than set) the sender state,
// as forwarded packets may already have existing state
pkt->pushSenderState(mshr);
if (pkt->isClean() && blk && blk->isDirty()) {
// A cache clean opearation is looking for a dirty block. Mark
// the packet so that the destination xbar can determine that
// there will be a follow-up write packet as well.
pkt->setSatisfied();
}
if (!memSidePort.sendTimingReq(pkt)) {
// we are awaiting a retry, but we
// delete the packet and will be creating a new packet
// when we get the opportunity
delete pkt;
// note that we have now masked any requestBus and
// schedSendEvent (we will wait for a retry before
// doing anything), and this is so even if we do not
// care about this packet and might override it before
// it gets retried
return true;
} else {
// As part of the call to sendTimingReq the packet is
// forwarded to all neighbouring caches (and any caches
// above them) as a snoop. Thus at this point we know if
// any of the neighbouring caches are responding, and if
// so, we know it is dirty, and we can determine if it is
// being passed as Modified, making our MSHR the ordering
// point
bool pending_modified_resp = !pkt->hasSharers() &&
pkt->cacheResponding();
markInService(mshr, pending_modified_resp);
if (pkt->isClean() && blk && blk->isDirty()) {
// A cache clean opearation is looking for a dirty
// block. If a dirty block is encountered a WriteClean
// will update any copies to the path to the memory
// until the point of reference.
DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
__func__, pkt->print(), blk->print());
PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
pkt->id);
PacketList writebacks;
writebacks.push_back(wb_pkt);
doWritebacks(writebacks, 0);
}
return false;
}
}
bool
BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
{
assert(wq_entry);
// always a single target for write queue entries
PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
// forward as is, both for evictions and uncacheable writes
if (!memSidePort.sendTimingReq(tgt_pkt)) {
// note that we have now masked any requestBus and
// schedSendEvent (we will wait for a retry before
// doing anything), and this is so even if we do not
// care about this packet and might override it before
// it gets retried
return true;
} else {
markInService(wq_entry);
return false;
}
}
void
BaseCache::serialize(CheckpointOut &cp) const
{
bool dirty(isDirty());
if (dirty) {
warn("*** The cache still contains dirty data. ***\n");
warn(" Make sure to drain the system using the correct flags.\n");
warn(" This checkpoint will not restore correctly " \
"and dirty data in the cache will be lost!\n");
}
// Since we don't checkpoint the data in the cache, any dirty data
// will be lost when restoring from a checkpoint of a system that
// wasn't drained properly. Flag the checkpoint as invalid if the
// cache contains dirty data.
bool bad_checkpoint(dirty);
SERIALIZE_SCALAR(bad_checkpoint);
}
void
BaseCache::unserialize(CheckpointIn &cp)
{
bool bad_checkpoint;
UNSERIALIZE_SCALAR(bad_checkpoint);
if (bad_checkpoint) {
fatal("Restoring from checkpoints with dirty caches is not "
"supported in the classic memory system. Please remove any "
"caches or drain them properly before taking checkpoints.\n");
}
}
void
BaseCache::regStats()
{
MemObject::regStats();
using namespace Stats;
// Hit statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
hits[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_hits")
.desc("number of " + cstr + " hits")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
hits[access_idx].subname(i, system->getMasterName(i));
}
}
// These macros make it easier to sum the right subset of commands and
// to change the subset of commands that are considered "demand" vs
// "non-demand"
#define SUM_DEMAND(s) \
(s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
// should writebacks be included here? prior code was inconsistent...
#define SUM_NON_DEMAND(s) \
(s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
demandHits
.name(name() + ".demand_hits")
.desc("number of demand (read+write) hits")
.flags(total | nozero | nonan)
;
demandHits = SUM_DEMAND(hits);
for (int i = 0; i < system->maxMasters(); i++) {
demandHits.subname(i, system->getMasterName(i));
}
overallHits
.name(name() + ".overall_hits")
.desc("number of overall hits")
.flags(total | nozero | nonan)
;
overallHits = demandHits + SUM_NON_DEMAND(hits);
for (int i = 0; i < system->maxMasters(); i++) {
overallHits.subname(i, system->getMasterName(i));
}
// Miss statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
misses[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_misses")
.desc("number of " + cstr + " misses")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
misses[access_idx].subname(i, system->getMasterName(i));
}
}
demandMisses
.name(name() + ".demand_misses")
.desc("number of demand (read+write) misses")
.flags(total | nozero | nonan)
;
demandMisses = SUM_DEMAND(misses);
for (int i = 0; i < system->maxMasters(); i++) {
demandMisses.subname(i, system->getMasterName(i));
}
overallMisses
.name(name() + ".overall_misses")
.desc("number of overall misses")
.flags(total | nozero | nonan)
;
overallMisses = demandMisses + SUM_NON_DEMAND(misses);
for (int i = 0; i < system->maxMasters(); i++) {
overallMisses.subname(i, system->getMasterName(i));
}
// Miss latency statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
missLatency[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_miss_latency")
.desc("number of " + cstr + " miss cycles")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
missLatency[access_idx].subname(i, system->getMasterName(i));
}
}
demandMissLatency
.name(name() + ".demand_miss_latency")
.desc("number of demand (read+write) miss cycles")
.flags(total | nozero | nonan)
;
demandMissLatency = SUM_DEMAND(missLatency);
for (int i = 0; i < system->maxMasters(); i++) {
demandMissLatency.subname(i, system->getMasterName(i));
}
overallMissLatency
.name(name() + ".overall_miss_latency")
.desc("number of overall miss cycles")
.flags(total | nozero | nonan)
;
overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
for (int i = 0; i < system->maxMasters(); i++) {
overallMissLatency.subname(i, system->getMasterName(i));
}
// access formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
accesses[access_idx]
.name(name() + "." + cstr + "_accesses")
.desc("number of " + cstr + " accesses(hits+misses)")
.flags(total | nozero | nonan)
;
accesses[access_idx] = hits[access_idx] + misses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
accesses[access_idx].subname(i, system->getMasterName(i));
}
}
demandAccesses
.name(name() + ".demand_accesses")
.desc("number of demand (read+write) accesses")
.flags(total | nozero | nonan)
;
demandAccesses = demandHits + demandMisses;
for (int i = 0; i < system->maxMasters(); i++) {
demandAccesses.subname(i, system->getMasterName(i));
}
overallAccesses
.name(name() + ".overall_accesses")
.desc("number of overall (read+write) accesses")
.flags(total | nozero | nonan)
;
overallAccesses = overallHits + overallMisses;
for (int i = 0; i < system->maxMasters(); i++) {
overallAccesses.subname(i, system->getMasterName(i));
}
// miss rate formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
missRate[access_idx]
.name(name() + "." + cstr + "_miss_rate")
.desc("miss rate for " + cstr + " accesses")
.flags(total | nozero | nonan)
;
missRate[access_idx] = misses[access_idx] / accesses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
missRate[access_idx].subname(i, system->getMasterName(i));
}
}
demandMissRate
.name(name() + ".demand_miss_rate")
.desc("miss rate for demand accesses")
.flags(total | nozero | nonan)
;
demandMissRate = demandMisses / demandAccesses;
for (int i = 0; i < system->maxMasters(); i++) {
demandMissRate.subname(i, system->getMasterName(i));
}
overallMissRate
.name(name() + ".overall_miss_rate")
.desc("miss rate for overall accesses")
.flags(total | nozero | nonan)
;
overallMissRate = overallMisses / overallAccesses;
for (int i = 0; i < system->maxMasters(); i++) {
overallMissRate.subname(i, system->getMasterName(i));
}
// miss latency formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
avgMissLatency[access_idx]
.name(name() + "." + cstr + "_avg_miss_latency")
.desc("average " + cstr + " miss latency")
.flags(total | nozero | nonan)
;
avgMissLatency[access_idx] =
missLatency[access_idx] / misses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
avgMissLatency[access_idx].subname(i, system->getMasterName(i));
}
}
demandAvgMissLatency
.name(name() + ".demand_avg_miss_latency")
.desc("average overall miss latency")
.flags(total | nozero | nonan)
;
demandAvgMissLatency = demandMissLatency / demandMisses;
for (int i = 0; i < system->maxMasters(); i++) {
demandAvgMissLatency.subname(i, system->getMasterName(i));
}
overallAvgMissLatency
.name(name() + ".overall_avg_miss_latency")
.desc("average overall miss latency")
.flags(total | nozero | nonan)
;
overallAvgMissLatency = overallMissLatency / overallMisses;
for (int i = 0; i < system->maxMasters(); i++) {
overallAvgMissLatency.subname(i, system->getMasterName(i));
}
blocked_cycles.init(NUM_BLOCKED_CAUSES);
blocked_cycles
.name(name() + ".blocked_cycles")
.desc("number of cycles access was blocked")
.subname(Blocked_NoMSHRs, "no_mshrs")
.subname(Blocked_NoTargets, "no_targets")
;
blocked_causes.init(NUM_BLOCKED_CAUSES);
blocked_causes
.name(name() + ".blocked")
.desc("number of cycles access was blocked")
.subname(Blocked_NoMSHRs, "no_mshrs")
.subname(Blocked_NoTargets, "no_targets")
;
avg_blocked
.name(name() + ".avg_blocked_cycles")
.desc("average number of cycles each access was blocked")
.subname(Blocked_NoMSHRs, "no_mshrs")
.subname(Blocked_NoTargets, "no_targets")
;
avg_blocked = blocked_cycles / blocked_causes;
unusedPrefetches
.name(name() + ".unused_prefetches")
.desc("number of HardPF blocks evicted w/o reference")
.flags(nozero)
;
writebacks
.init(system->maxMasters())
.name(name() + ".writebacks")
.desc("number of writebacks")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
writebacks.subname(i, system->getMasterName(i));
}
// MSHR statistics
// MSHR hit statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_hits[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_hits")
.desc("number of " + cstr + " MSHR hits")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_hits[access_idx].subname(i, system->getMasterName(i));
}
}
demandMshrHits
.name(name() + ".demand_mshr_hits")
.desc("number of demand (read+write) MSHR hits")
.flags(total | nozero | nonan)
;
demandMshrHits = SUM_DEMAND(mshr_hits);
for (int i = 0; i < system->maxMasters(); i++) {
demandMshrHits.subname(i, system->getMasterName(i));
}
overallMshrHits
.name(name() + ".overall_mshr_hits")
.desc("number of overall MSHR hits")
.flags(total | nozero | nonan)
;
overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrHits.subname(i, system->getMasterName(i));
}
// MSHR miss statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_misses[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_misses")
.desc("number of " + cstr + " MSHR misses")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_misses[access_idx].subname(i, system->getMasterName(i));
}
}
demandMshrMisses
.name(name() + ".demand_mshr_misses")
.desc("number of demand (read+write) MSHR misses")
.flags(total | nozero | nonan)
;
demandMshrMisses = SUM_DEMAND(mshr_misses);
for (int i = 0; i < system->maxMasters(); i++) {
demandMshrMisses.subname(i, system->getMasterName(i));
}
overallMshrMisses
.name(name() + ".overall_mshr_misses")
.desc("number of overall MSHR misses")
.flags(total | nozero | nonan)
;
overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrMisses.subname(i, system->getMasterName(i));
}
// MSHR miss latency statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_miss_latency[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_miss_latency")
.desc("number of " + cstr + " MSHR miss cycles")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
}
}
demandMshrMissLatency
.name(name() + ".demand_mshr_miss_latency")
.desc("number of demand (read+write) MSHR miss cycles")
.flags(total | nozero | nonan)
;
demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
for (int i = 0; i < system->maxMasters(); i++) {
demandMshrMissLatency.subname(i, system->getMasterName(i));
}
overallMshrMissLatency
.name(name() + ".overall_mshr_miss_latency")
.desc("number of overall MSHR miss cycles")
.flags(total | nozero | nonan)
;
overallMshrMissLatency =
demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrMissLatency.subname(i, system->getMasterName(i));
}
// MSHR uncacheable statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_uncacheable[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_uncacheable")
.desc("number of " + cstr + " MSHR uncacheable")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
}
}
overallMshrUncacheable
.name(name() + ".overall_mshr_uncacheable_misses")
.desc("number of overall MSHR uncacheable misses")
.flags(total | nozero | nonan)
;
overallMshrUncacheable =
SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrUncacheable.subname(i, system->getMasterName(i));
}
// MSHR miss latency statistics
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshr_uncacheable_lat[access_idx]
.init(system->maxMasters())
.name(name() + "." + cstr + "_mshr_uncacheable_latency")
.desc("number of " + cstr + " MSHR uncacheable cycles")
.flags(total | nozero | nonan)
;
for (int i = 0; i < system->maxMasters(); i++) {
mshr_uncacheable_lat[access_idx].subname(
i, system->getMasterName(i));
}
}
overallMshrUncacheableLatency
.name(name() + ".overall_mshr_uncacheable_latency")
.desc("number of overall MSHR uncacheable cycles")
.flags(total | nozero | nonan)
;
overallMshrUncacheableLatency =
SUM_DEMAND(mshr_uncacheable_lat) +
SUM_NON_DEMAND(mshr_uncacheable_lat);
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
}
#if 0
// MSHR access formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshrAccesses[access_idx]
.name(name() + "." + cstr + "_mshr_accesses")
.desc("number of " + cstr + " mshr accesses(hits+misses)")
.flags(total | nozero | nonan)
;
mshrAccesses[access_idx] =
mshr_hits[access_idx] + mshr_misses[access_idx]
+ mshr_uncacheable[access_idx];
}
demandMshrAccesses
.name(name() + ".demand_mshr_accesses")
.desc("number of demand (read+write) mshr accesses")
.flags(total | nozero | nonan)
;
demandMshrAccesses = demandMshrHits + demandMshrMisses;
overallMshrAccesses
.name(name() + ".overall_mshr_accesses")
.desc("number of overall (read+write) mshr accesses")
.flags(total | nozero | nonan)
;
overallMshrAccesses = overallMshrHits + overallMshrMisses
+ overallMshrUncacheable;
#endif
// MSHR miss rate formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
mshrMissRate[access_idx]
.name(name() + "." + cstr + "_mshr_miss_rate")
.desc("mshr miss rate for " + cstr + " accesses")
.flags(total | nozero | nonan)
;
mshrMissRate[access_idx] =
mshr_misses[access_idx] / accesses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
mshrMissRate[access_idx].subname(i, system->getMasterName(i));
}
}
demandMshrMissRate
.name(name() + ".demand_mshr_miss_rate")
.desc("mshr miss rate for demand accesses")
.flags(total | nozero | nonan)
;
demandMshrMissRate = demandMshrMisses / demandAccesses;
for (int i = 0; i < system->maxMasters(); i++) {
demandMshrMissRate.subname(i, system->getMasterName(i));
}
overallMshrMissRate
.name(name() + ".overall_mshr_miss_rate")
.desc("mshr miss rate for overall accesses")
.flags(total | nozero | nonan)
;
overallMshrMissRate = overallMshrMisses / overallAccesses;
for (int i = 0; i < system->maxMasters(); i++) {
overallMshrMissRate.subname(i, system->getMasterName(i));
}
// mshrMiss latency formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
avgMshrMissLatency[access_idx]
.name(name() + "." + cstr + "_avg_mshr_miss_latency")
.desc("average " + cstr + " mshr miss latency")
.flags(total | nozero | nonan)
;
avgMshrMissLatency[access_idx] =
mshr_miss_latency[access_idx] / mshr_misses[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
avgMshrMissLatency[access_idx].subname(
i, system->getMasterName(i));
}
}
demandAvgMshrMissLatency
.name(name() + ".demand_avg_mshr_miss_latency")
.desc("average overall mshr miss latency")
.flags(total | nozero | nonan)
;
demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
for (int i = 0; i < system->maxMasters(); i++) {
demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
}
overallAvgMshrMissLatency
.name(name() + ".overall_avg_mshr_miss_latency")
.desc("average overall mshr miss latency")
.flags(total | nozero | nonan)
;
overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
for (int i = 0; i < system->maxMasters(); i++) {
overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
}
// mshrUncacheable latency formulas
for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
MemCmd cmd(access_idx);
const string &cstr = cmd.toString();
avgMshrUncacheableLatency[access_idx]
.name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
.desc("average " + cstr + " mshr uncacheable latency")
.flags(total | nozero | nonan)
;
avgMshrUncacheableLatency[access_idx] =
mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
for (int i = 0; i < system->maxMasters(); i++) {
avgMshrUncacheableLatency[access_idx].subname(
i, system->getMasterName(i));
}
}
overallAvgMshrUncacheableLatency
.name(name() + ".overall_avg_mshr_uncacheable_latency")
.desc("average overall mshr uncacheable latency")
.flags(total | nozero | nonan)
;
overallAvgMshrUncacheableLatency =
overallMshrUncacheableLatency / overallMshrUncacheable;
for (int i = 0; i < system->maxMasters(); i++) {
overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
}
replacements
.name(name() + ".replacements")
.desc("number of replacements")
;
}
///////////////
//
// CpuSidePort
//
///////////////
bool
BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
{
// Snoops shouldn't happen when bypassing caches
assert(!cache->system->bypassCaches());
assert(pkt->isResponse());
// Express snoop responses from master to slave, e.g., from L1 to L2
cache->recvTimingSnoopResp(pkt);
return true;
}
bool
BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
{
if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
// always let express snoop packets through even if blocked
return true;
} else if (blocked || mustSendRetry) {
// either already committed to send a retry, or blocked
mustSendRetry = true;
return false;
}
mustSendRetry = false;
return true;
}
bool
BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
{
assert(pkt->isRequest());
if (cache->system->bypassCaches()) {
// Just forward the packet if caches are disabled.
// @todo This should really enqueue the packet rather
bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
assert(success);
return true;
} else if (tryTiming(pkt)) {
cache->recvTimingReq(pkt);
return true;
}
return false;
}
Tick
BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
{
if (cache->system->bypassCaches()) {
// Forward the request if the system is in cache bypass mode.
return cache->memSidePort.sendAtomic(pkt);
} else {
return cache->recvAtomic(pkt);
}
}
void
BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
{
if (cache->system->bypassCaches()) {
// The cache should be flushed if we are in cache bypass mode,
// so we don't need to check if we need to update anything.
cache->memSidePort.sendFunctional(pkt);
return;
}
// functional request
cache->functionalAccess(pkt, true);
}
AddrRangeList
BaseCache::CpuSidePort::getAddrRanges() const
{
return cache->getAddrRanges();
}
BaseCache::
CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
const std::string &_label)
: CacheSlavePort(_name, _cache, _label), cache(_cache)
{
}
///////////////
//
// MemSidePort
//
///////////////
bool
BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
{
cache->recvTimingResp(pkt);
return true;
}
// Express snooping requests to memside port
void
BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
{
// Snoops shouldn't happen when bypassing caches
assert(!cache->system->bypassCaches());
// handle snooping requests
cache->recvTimingSnoopReq(pkt);
}
Tick
BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
{
// Snoops shouldn't happen when bypassing caches
assert(!cache->system->bypassCaches());
return cache->recvAtomicSnoop(pkt);
}
void
BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
{
// Snoops shouldn't happen when bypassing caches
assert(!cache->system->bypassCaches());
// functional snoop (note that in contrast to atomic we don't have
// a specific functionalSnoop method, as they have the same
// behaviour regardless)
cache->functionalAccess(pkt, false);
}
void
BaseCache::CacheReqPacketQueue::sendDeferredPacket()
{
// sanity check
assert(!waitingOnRetry);
// there should never be any deferred request packets in the
// queue, instead we resly on the cache to provide the packets
// from the MSHR queue or write queue
assert(deferredPacketReadyTime() == MaxTick);
// check for request packets (requests & writebacks)
QueueEntry* entry = cache.getNextQueueEntry();
if (!entry) {
// can happen if e.g. we attempt a writeback and fail, but
// before the retry, the writeback is eliminated because
// we snoop another cache's ReadEx.
} else {
// let our snoop responses go first if there are responses to
// the same addresses
if (checkConflictingSnoop(entry->blkAddr)) {
return;
}
waitingOnRetry = entry->sendPacket(cache);
}
// if we succeeded and are not waiting for a retry, schedule the
// next send considering when the next queue is ready, note that
// snoop responses have their own packet queue and thus schedule
// their own events
if (!waitingOnRetry) {
schedSendEvent(cache.nextQueueReadyTime());
}
}
BaseCache::MemSidePort::MemSidePort(const std::string &_name,
BaseCache *_cache,
const std::string &_label)
: CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
_reqQueue(*_cache, *this, _snoopRespQueue, _label),
_snoopRespQueue(*_cache, *this, _label), cache(_cache)
{
}
void
WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
Addr blk_addr)
{
// check if we are continuing where the last write ended
if (nextAddr == write_addr) {
delayCtr[blk_addr] = delayThreshold;
// stop if we have already saturated
if (mode != WriteMode::NO_ALLOCATE) {
byteCount += write_size;
// switch to streaming mode if we have passed the lower
// threshold
if (mode == WriteMode::ALLOCATE &&
byteCount > coalesceLimit) {
mode = WriteMode::COALESCE;
DPRINTF(Cache, "Switched to write coalescing\n");
} else if (mode == WriteMode::COALESCE &&
byteCount > noAllocateLimit) {
// and continue and switch to non-allocating mode if we
// pass the upper threshold
mode = WriteMode::NO_ALLOCATE;
DPRINTF(Cache, "Switched to write-no-allocate\n");
}
}
} else {
// we did not see a write matching the previous one, start
// over again
byteCount = write_size;
mode = WriteMode::ALLOCATE;
resetDelay(blk_addr);
}
nextAddr = write_addr + write_size;
}
WriteAllocator*
WriteAllocatorParams::create()
{
return new WriteAllocator(this);
}
|