1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
|
/*
* Copyright (c) 2010-2016 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
* Dave Greene
* Nathan Binkert
* Steve Reinhardt
* Ron Dreslinski
* Andreas Sandberg
*/
/**
* @file
* Cache definitions.
*/
#include "mem/cache/cache.hh"
#include "base/logging.hh"
#include "base/types.hh"
#include "debug/Cache.hh"
#include "debug/CachePort.hh"
#include "debug/CacheTags.hh"
#include "debug/CacheVerbose.hh"
#include "mem/cache/blk.hh"
#include "mem/cache/mshr.hh"
#include "mem/cache/prefetch/base.hh"
#include "sim/sim_exit.hh"
Cache::Cache(const CacheParams *p)
: BaseCache(p, p->system->cacheLineSize()),
tags(p->tags),
prefetcher(p->prefetcher),
doFastWrites(true),
prefetchOnAccess(p->prefetch_on_access),
clusivity(p->clusivity),
writebackClean(p->writeback_clean),
tempBlockWriteback(nullptr),
writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
name(), false,
EventBase::Delayed_Writeback_Pri)
{
tempBlock = new CacheBlk();
tempBlock->data = new uint8_t[blkSize];
cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
"CpuSidePort");
memSidePort = new MemSidePort(p->name + ".mem_side", this,
"MemSidePort");
tags->setCache(this);
if (prefetcher)
prefetcher->setCache(this);
}
Cache::~Cache()
{
delete [] tempBlock->data;
delete tempBlock;
delete cpuSidePort;
delete memSidePort;
}
void
Cache::regStats()
{
BaseCache::regStats();
}
void
Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
{
assert(pkt->isRequest());
uint64_t overwrite_val;
bool overwrite_mem;
uint64_t condition_val64;
uint32_t condition_val32;
int offset = tags->extractBlkOffset(pkt->getAddr());
uint8_t *blk_data = blk->data + offset;
assert(sizeof(uint64_t) >= pkt->getSize());
overwrite_mem = true;
// keep a copy of our possible write value, and copy what is at the
// memory address into the packet
pkt->writeData((uint8_t *)&overwrite_val);
pkt->setData(blk_data);
if (pkt->req->isCondSwap()) {
if (pkt->getSize() == sizeof(uint64_t)) {
condition_val64 = pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val64, blk_data,
sizeof(uint64_t));
} else if (pkt->getSize() == sizeof(uint32_t)) {
condition_val32 = (uint32_t)pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val32, blk_data,
sizeof(uint32_t));
} else
panic("Invalid size for conditional read/write\n");
}
if (overwrite_mem) {
std::memcpy(blk_data, &overwrite_val, pkt->getSize());
blk->status |= BlkDirty;
}
}
void
Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
bool deferred_response, bool pending_downgrade)
{
assert(pkt->isRequest());
assert(blk && blk->isValid());
// Occasionally this is not true... if we are a lower-level cache
// satisfying a string of Read and ReadEx requests from
// upper-level caches, a Read will mark the block as shared but we
// can satisfy a following ReadEx anyway since we can rely on the
// Read requester(s) to have buffered the ReadEx snoop and to
// invalidate their blocks after receiving them.
// assert(!pkt->needsWritable() || blk->isWritable());
assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
// Check RMW operations first since both isRead() and
// isWrite() will be true for them
if (pkt->cmd == MemCmd::SwapReq) {
cmpAndSwap(blk, pkt);
} else if (pkt->isWrite()) {
// we have the block in a writable state and can go ahead,
// note that the line may be also be considered writable in
// downstream caches along the path to memory, but always
// Exclusive, and never Modified
assert(blk->isWritable());
// Write or WriteLine at the first cache with block in writable state
if (blk->checkWrite(pkt)) {
pkt->writeDataToBlock(blk->data, blkSize);
}
// Always mark the line as dirty (and thus transition to the
// Modified state) even if we are a failed StoreCond so we
// supply data to any snoops that have appended themselves to
// this cache before knowing the store will fail.
blk->status |= BlkDirty;
DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
} else if (pkt->isRead()) {
if (pkt->isLLSC()) {
blk->trackLoadLocked(pkt);
}
// all read responses have a data payload
assert(pkt->hasRespData());
pkt->setDataFromBlock(blk->data, blkSize);
// determine if this read is from a (coherent) cache or not
if (pkt->fromCache()) {
assert(pkt->getSize() == blkSize);
// special handling for coherent block requests from
// upper-level caches
if (pkt->needsWritable()) {
// sanity check
assert(pkt->cmd == MemCmd::ReadExReq ||
pkt->cmd == MemCmd::SCUpgradeFailReq);
assert(!pkt->hasSharers());
// if we have a dirty copy, make sure the recipient
// keeps it marked dirty (in the modified state)
if (blk->isDirty()) {
pkt->setCacheResponding();
blk->status &= ~BlkDirty;
}
} else if (blk->isWritable() && !pending_downgrade &&
!pkt->hasSharers() &&
pkt->cmd != MemCmd::ReadCleanReq) {
// we can give the requester a writable copy on a read
// request if:
// - we have a writable copy at this level (& below)
// - we don't have a pending snoop from below
// signaling another read request
// - no other cache above has a copy (otherwise it
// would have set hasSharers flag when
// snooping the packet)
// - the read has explicitly asked for a clean
// copy of the line
if (blk->isDirty()) {
// special considerations if we're owner:
if (!deferred_response) {
// respond with the line in Modified state
// (cacheResponding set, hasSharers not set)
pkt->setCacheResponding();
// if this cache is mostly inclusive, we
// keep the block in the Exclusive state,
// and pass it upwards as Modified
// (writable and dirty), hence we have
// multiple caches, all on the same path
// towards memory, all considering the
// same block writable, but only one
// considering it Modified
// we get away with multiple caches (on
// the same path to memory) considering
// the block writeable as we always enter
// the cache hierarchy through a cache,
// and first snoop upwards in all other
// branches
blk->status &= ~BlkDirty;
} else {
// if we're responding after our own miss,
// there's a window where the recipient didn't
// know it was getting ownership and may not
// have responded to snoops correctly, so we
// have to respond with a shared line
pkt->setHasSharers();
}
}
} else {
// otherwise only respond with a shared copy
pkt->setHasSharers();
}
}
} else if (pkt->isUpgrade()) {
// sanity check
assert(!pkt->hasSharers());
if (blk->isDirty()) {
// we were in the Owned state, and a cache above us that
// has the line in Shared state needs to be made aware
// that the data it already has is in fact dirty
pkt->setCacheResponding();
blk->status &= ~BlkDirty;
}
} else {
assert(pkt->isInvalidate());
invalidateBlock(blk);
DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
pkt->print());
}
}
/////////////////////////////////////////////////////
//
// Access path: requests coming in from the CPU side
//
/////////////////////////////////////////////////////
bool
Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
PacketList &writebacks)
{
// sanity check
assert(pkt->isRequest());
chatty_assert(!(isReadOnly && pkt->isWrite()),
"Should never see a write in a read-only cache %s\n",
name());
DPRINTF(CacheVerbose, "%s for %s\n", __func__, pkt->print());
if (pkt->req->isUncacheable()) {
DPRINTF(Cache, "uncacheable: %s\n", pkt->print());
// flush and invalidate any existing block
CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
if (old_blk && old_blk->isValid()) {
if (old_blk->isDirty() || writebackClean)
writebacks.push_back(writebackBlk(old_blk));
else
writebacks.push_back(cleanEvictBlk(old_blk));
invalidateBlock(old_blk);
}
blk = nullptr;
// lookupLatency is the latency in case the request is uncacheable.
lat = lookupLatency;
return false;
}
// Here lat is the value passed as parameter to accessBlock() function
// that can modify its value.
blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
DPRINTF(Cache, "%s %s\n", pkt->print(),
blk ? "hit " + blk->print() : "miss");
if (pkt->isEviction()) {
// We check for presence of block in above caches before issuing
// Writeback or CleanEvict to write buffer. Therefore the only
// possible cases can be of a CleanEvict packet coming from above
// encountering a Writeback generated in this cache peer cache and
// waiting in the write buffer. Cases of upper level peer caches
// generating CleanEvict and Writeback or simply CleanEvict and
// CleanEvict almost simultaneously will be caught by snoops sent out
// by crossbar.
WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
pkt->isSecure());
if (wb_entry) {
assert(wb_entry->getNumTargets() == 1);
PacketPtr wbPkt = wb_entry->getTarget()->pkt;
assert(wbPkt->isWriteback());
if (pkt->isCleanEviction()) {
// The CleanEvict and WritebackClean snoops into other
// peer caches of the same level while traversing the
// crossbar. If a copy of the block is found, the
// packet is deleted in the crossbar. Hence, none of
// the other upper level caches connected to this
// cache have the block, so we can clear the
// BLOCK_CACHED flag in the Writeback if set and
// discard the CleanEvict by returning true.
wbPkt->clearBlockCached();
return true;
} else {
assert(pkt->cmd == MemCmd::WritebackDirty);
// Dirty writeback from above trumps our clean
// writeback... discard here
// Note: markInService will remove entry from writeback buffer.
markInService(wb_entry);
delete wbPkt;
}
}
}
// Writeback handling is special case. We can write the block into
// the cache without having a writeable copy (or any copy at all).
if (pkt->isWriteback()) {
assert(blkSize == pkt->getSize());
// we could get a clean writeback while we are having
// outstanding accesses to a block, do the simple thing for
// now and drop the clean writeback so that we do not upset
// any ordering/decisions about ownership already taken
if (pkt->cmd == MemCmd::WritebackClean &&
mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
"dropping\n", pkt->getAddr());
return true;
}
if (blk == nullptr) {
// need to do a replacement
blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
if (blk == nullptr) {
// no replaceable block available: give up, fwd to next level.
incMissCount(pkt);
return false;
}
tags->insertBlock(pkt, blk);
blk->status = (BlkValid | BlkReadable);
if (pkt->isSecure()) {
blk->status |= BlkSecure;
}
}
// only mark the block dirty if we got a writeback command,
// and leave it as is for a clean writeback
if (pkt->cmd == MemCmd::WritebackDirty) {
blk->status |= BlkDirty;
}
// if the packet does not have sharers, it is passing
// writable, and we got the writeback in Modified or Exclusive
// state, if not we are in the Owned or Shared state
if (!pkt->hasSharers()) {
blk->status |= BlkWritable;
}
// nothing else to do; writeback doesn't expect response
assert(!pkt->needsResponse());
std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
incHitCount(pkt);
return true;
} else if (pkt->cmd == MemCmd::CleanEvict) {
if (blk != nullptr) {
// Found the block in the tags, need to stop CleanEvict from
// propagating further down the hierarchy. Returning true will
// treat the CleanEvict like a satisfied write request and delete
// it.
return true;
}
// We didn't find the block here, propagate the CleanEvict further
// down the memory hierarchy. Returning false will treat the CleanEvict
// like a Writeback which could not find a replaceable block so has to
// go to next level.
return false;
} else if (pkt->cmd == MemCmd::WriteClean) {
// WriteClean handling is a special case. We can allocate a
// block directly if it doesn't exist and we can update the
// block immediately. The WriteClean transfers the ownership
// of the block as well.
assert(blkSize == pkt->getSize());
if (!blk) {
// a writeback that misses needs to allocate a new block
blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
writebacks);
if (!blk) {
// no replaceable block available: give up, fwd to
// next level.
incMissCount(pkt);
return false;
}
tags->insertBlock(pkt, blk);
blk->status = (BlkValid | BlkReadable);
if (pkt->isSecure()) {
blk->status |= BlkSecure;
}
}
// at this point either this is a writeback or a write-through
// write clean operation and the block is already in this
// cache, we need to update the data and the block flags
assert(blk);
blk->status |= BlkDirty;
// nothing else to do; writeback doesn't expect response
assert(!pkt->needsResponse());
std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
incHitCount(pkt);
// populate the time when the block will be ready to access.
blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
pkt->payloadDelay;
return true;
} else if (blk && (pkt->needsWritable() ? blk->isWritable() :
blk->isReadable())) {
// OK to satisfy access
incHitCount(pkt);
satisfyRequest(pkt, blk);
maintainClusivity(pkt->fromCache(), blk);
return true;
}
// Can't satisfy access normally... either no block (blk == nullptr)
// or have block but need writable
incMissCount(pkt);
if (blk == nullptr && pkt->isLLSC() && pkt->isWrite()) {
// complete miss on store conditional... just give up now
pkt->req->setExtraData(0);
return true;
}
return false;
}
void
Cache::maintainClusivity(bool from_cache, CacheBlk *blk)
{
if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
clusivity == Enums::mostly_excl) {
// if we have responded to a cache, and our block is still
// valid, but not dirty, and this cache is mostly exclusive
// with respect to the cache above, drop the block
invalidateBlock(blk);
}
}
void
Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
{
while (!writebacks.empty()) {
PacketPtr wbPkt = writebacks.front();
// We use forwardLatency here because we are copying writebacks to
// write buffer.
// Call isCachedAbove for Writebacks, CleanEvicts and
// WriteCleans to discover if the block is cached above.
if (isCachedAbove(wbPkt)) {
if (wbPkt->cmd == MemCmd::CleanEvict) {
// Delete CleanEvict because cached copies exist above. The
// packet destructor will delete the request object because
// this is a non-snoop request packet which does not require a
// response.
delete wbPkt;
} else if (wbPkt->cmd == MemCmd::WritebackClean) {
// clean writeback, do not send since the block is
// still cached above
assert(writebackClean);
delete wbPkt;
} else {
assert(wbPkt->cmd == MemCmd::WritebackDirty ||
wbPkt->cmd == MemCmd::WriteClean);
// Set BLOCK_CACHED flag in Writeback and send below, so that
// the Writeback does not reset the bit corresponding to this
// address in the snoop filter below.
wbPkt->setBlockCached();
allocateWriteBuffer(wbPkt, forward_time);
}
} else {
// If the block is not cached above, send packet below. Both
// CleanEvict and Writeback with BLOCK_CACHED flag cleared will
// reset the bit corresponding to this address in the snoop filter
// below.
allocateWriteBuffer(wbPkt, forward_time);
}
writebacks.pop_front();
}
}
void
Cache::doWritebacksAtomic(PacketList& writebacks)
{
while (!writebacks.empty()) {
PacketPtr wbPkt = writebacks.front();
// Call isCachedAbove for both Writebacks and CleanEvicts. If
// isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
// and discard CleanEvicts.
if (isCachedAbove(wbPkt, false)) {
if (wbPkt->cmd == MemCmd::WritebackDirty ||
wbPkt->cmd == MemCmd::WriteClean) {
// Set BLOCK_CACHED flag in Writeback and send below,
// so that the Writeback does not reset the bit
// corresponding to this address in the snoop filter
// below. We can discard CleanEvicts because cached
// copies exist above. Atomic mode isCachedAbove
// modifies packet to set BLOCK_CACHED flag
memSidePort->sendAtomic(wbPkt);
}
} else {
// If the block is not cached above, send packet below. Both
// CleanEvict and Writeback with BLOCK_CACHED flag cleared will
// reset the bit corresponding to this address in the snoop filter
// below.
memSidePort->sendAtomic(wbPkt);
}
writebacks.pop_front();
// In case of CleanEvicts, the packet destructor will delete the
// request object because this is a non-snoop request packet which
// does not require a response.
delete wbPkt;
}
}
void
Cache::recvTimingSnoopResp(PacketPtr pkt)
{
DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
assert(pkt->isResponse());
assert(!system->bypassCaches());
// determine if the response is from a snoop request we created
// (in which case it should be in the outstandingSnoop), or if we
// merely forwarded someone else's snoop request
const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
outstandingSnoop.end();
if (!forwardAsSnoop) {
// the packet came from this cache, so sink it here and do not
// forward it
assert(pkt->cmd == MemCmd::HardPFResp);
outstandingSnoop.erase(pkt->req);
DPRINTF(Cache, "Got prefetch response from above for addr "
"%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
recvTimingResp(pkt);
return;
}
// forwardLatency is set here because there is a response from an
// upper level cache.
// To pay the delay that occurs if the packet comes from the bus,
// we charge also headerDelay.
Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
// Reset the timing of the packet.
pkt->headerDelay = pkt->payloadDelay = 0;
memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
}
void
Cache::promoteWholeLineWrites(PacketPtr pkt)
{
// Cache line clearing instructions
if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
(pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
pkt->cmd = MemCmd::WriteLineReq;
DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
}
}
bool
Cache::recvTimingReq(PacketPtr pkt)
{
DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
assert(pkt->isRequest());
// Just forward the packet if caches are disabled.
if (system->bypassCaches()) {
// @todo This should really enqueue the packet rather
bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
assert(success);
return true;
}
promoteWholeLineWrites(pkt);
if (pkt->cacheResponding()) {
// a cache above us (but not where the packet came from) is
// responding to the request, in other words it has the line
// in Modified or Owned state
DPRINTF(Cache, "Cache above responding to %s: not responding\n",
pkt->print());
// if the packet needs the block to be writable, and the cache
// that has promised to respond (setting the cache responding
// flag) is not providing writable (it is in Owned rather than
// the Modified state), we know that there may be other Shared
// copies in the system; go out and invalidate them all
assert(pkt->needsWritable() && !pkt->responderHadWritable());
// an upstream cache that had the line in Owned state
// (dirty, but not writable), is responding and thus
// transferring the dirty line from one branch of the
// cache hierarchy to another
// send out an express snoop and invalidate all other
// copies (snooping a packet that needs writable is the
// same as an invalidation), thus turning the Owned line
// into a Modified line, note that we don't invalidate the
// block in the current cache or any other cache on the
// path to memory
// create a downstream express snoop with cleared packet
// flags, there is no need to allocate any data as the
// packet is merely used to co-ordinate state transitions
Packet *snoop_pkt = new Packet(pkt, true, false);
// also reset the bus time that the original packet has
// not yet paid for
snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
// make this an instantaneous express snoop, and let the
// other caches in the system know that the another cache
// is responding, because we have found the authorative
// copy (Modified or Owned) that will supply the right
// data
snoop_pkt->setExpressSnoop();
snoop_pkt->setCacheResponding();
// this express snoop travels towards the memory, and at
// every crossbar it is snooped upwards thus reaching
// every cache in the system
bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
// express snoops always succeed
assert(success);
// main memory will delete the snoop packet
// queue for deletion, as opposed to immediate deletion, as
// the sending cache is still relying on the packet
pendingDelete.reset(pkt);
// no need to take any further action in this particular cache
// as an upstram cache has already committed to responding,
// and we have already sent out any express snoops in the
// section above to ensure all other copies in the system are
// invalidated
return true;
}
// anything that is merely forwarded pays for the forward latency and
// the delay provided by the crossbar
Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
// We use lookupLatency here because it is used to specify the latency
// to access.
Cycles lat = lookupLatency;
CacheBlk *blk = nullptr;
bool satisfied = false;
{
PacketList writebacks;
// Note that lat is passed by reference here. The function
// access() calls accessBlock() which can modify lat value.
satisfied = access(pkt, blk, lat, writebacks);
// copy writebacks to write buffer here to ensure they logically
// proceed anything happening below
doWritebacks(writebacks, forward_time);
}
// Here we charge the headerDelay that takes into account the latencies
// of the bus, if the packet comes from it.
// The latency charged it is just lat that is the value of lookupLatency
// modified by access() function, or if not just lookupLatency.
// In case of a hit we are neglecting response latency.
// In case of a miss we are neglecting forward latency.
Tick request_time = clockEdge(lat) + pkt->headerDelay;
// Here we reset the timing of the packet.
pkt->headerDelay = pkt->payloadDelay = 0;
// track time of availability of next prefetch, if any
Tick next_pf_time = MaxTick;
bool needsResponse = pkt->needsResponse();
if (satisfied) {
// should never be satisfying an uncacheable access as we
// flush and invalidate any existing block as part of the
// lookup
assert(!pkt->req->isUncacheable());
// hit (for all other request types)
if (prefetcher && (prefetchOnAccess ||
(blk && blk->wasPrefetched()))) {
if (blk)
blk->status &= ~BlkHWPrefetched;
// Don't notify on SWPrefetch
if (!pkt->cmd.isSWPrefetch())
next_pf_time = prefetcher->notify(pkt);
}
if (needsResponse) {
pkt->makeTimingResponse();
// @todo: Make someone pay for this
pkt->headerDelay = pkt->payloadDelay = 0;
// In this case we are considering request_time that takes
// into account the delay of the xbar, if any, and just
// lat, neglecting responseLatency, modelling hit latency
// just as lookupLatency or or the value of lat overriden
// by access(), that calls accessBlock() function.
cpuSidePort->schedTimingResp(pkt, request_time, true);
} else {
DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
pkt->print());
// queue the packet for deletion, as the sending cache is
// still relying on it; if the block is found in access(),
// CleanEvict and Writeback messages will be deleted
// here as well
pendingDelete.reset(pkt);
}
} else {
// miss
Addr blk_addr = pkt->getBlockAddr(blkSize);
// ignore any existing MSHR if we are dealing with an
// uncacheable request
MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
mshrQueue.findMatch(blk_addr, pkt->isSecure());
// Software prefetch handling:
// To keep the core from waiting on data it won't look at
// anyway, send back a response with dummy data. Miss handling
// will continue asynchronously. Unfortunately, the core will
// insist upon freeing original Packet/Request, so we have to
// create a new pair with a different lifecycle. Note that this
// processing happens before any MSHR munging on the behalf of
// this request because this new Request will be the one stored
// into the MSHRs, not the original.
if (pkt->cmd.isSWPrefetch()) {
assert(needsResponse);
assert(pkt->req->hasPaddr());
assert(!pkt->req->isUncacheable());
// There's no reason to add a prefetch as an additional target
// to an existing MSHR. If an outstanding request is already
// in progress, there is nothing for the prefetch to do.
// If this is the case, we don't even create a request at all.
PacketPtr pf = nullptr;
if (!mshr) {
// copy the request and create a new SoftPFReq packet
RequestPtr req = new Request(pkt->req->getPaddr(),
pkt->req->getSize(),
pkt->req->getFlags(),
pkt->req->masterId());
pf = new Packet(req, pkt->cmd);
pf->allocate();
assert(pf->getAddr() == pkt->getAddr());
assert(pf->getSize() == pkt->getSize());
}
pkt->makeTimingResponse();
// request_time is used here, taking into account lat and the delay
// charged if the packet comes from the xbar.
cpuSidePort->schedTimingResp(pkt, request_time, true);
// If an outstanding request is in progress (we found an
// MSHR) this is set to null
pkt = pf;
}
if (mshr) {
/// MSHR hit
/// @note writebacks will be checked in getNextMSHR()
/// for any conflicting requests to the same block
//@todo remove hw_pf here
// Coalesce unless it was a software prefetch (see above).
if (pkt) {
assert(!pkt->isWriteback());
// CleanEvicts corresponding to blocks which have
// outstanding requests in MSHRs are simply sunk here
if (pkt->cmd == MemCmd::CleanEvict) {
pendingDelete.reset(pkt);
} else {
DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
pkt->print());
assert(pkt->req->masterId() < system->maxMasters());
mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
// We use forward_time here because it is the same
// considering new targets. We have multiple
// requests for the same address here. It
// specifies the latency to allocate an internal
// buffer and to schedule an event to the queued
// port and also takes into account the additional
// delay of the xbar.
mshr->allocateTarget(pkt, forward_time, order++,
allocOnFill(pkt->cmd));
if (mshr->getNumTargets() == numTarget) {
noTargetMSHR = mshr;
setBlocked(Blocked_NoTargets);
// need to be careful with this... if this mshr isn't
// ready yet (i.e. time > curTick()), we don't want to
// move it ahead of mshrs that are ready
// mshrQueue.moveToFront(mshr);
}
}
// We should call the prefetcher reguardless if the request is
// satisfied or not, reguardless if the request is in the MSHR
// or not. The request could be a ReadReq hit, but still not
// satisfied (potentially because of a prior write to the same
// cache line. So, even when not satisfied, tehre is an MSHR
// already allocated for this, we need to let the prefetcher
// know about the request
if (prefetcher) {
// Don't notify on SWPrefetch
if (!pkt->cmd.isSWPrefetch())
next_pf_time = prefetcher->notify(pkt);
}
}
} else {
// no MSHR
assert(pkt->req->masterId() < system->maxMasters());
if (pkt->req->isUncacheable()) {
mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
} else {
mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
}
if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
(pkt->req->isUncacheable() && pkt->isWrite())) {
// We use forward_time here because there is an
// uncached memory write, forwarded to WriteBuffer.
allocateWriteBuffer(pkt, forward_time);
} else {
if (blk && blk->isValid()) {
// should have flushed and have no valid block
assert(!pkt->req->isUncacheable());
// If we have a write miss to a valid block, we
// need to mark the block non-readable. Otherwise
// if we allow reads while there's an outstanding
// write miss, the read could return stale data
// out of the cache block... a more aggressive
// system could detect the overlap (if any) and
// forward data out of the MSHRs, but we don't do
// that yet. Note that we do need to leave the
// block valid so that it stays in the cache, in
// case we get an upgrade response (and hence no
// new data) when the write miss completes.
// As long as CPUs do proper store/load forwarding
// internally, and have a sufficiently weak memory
// model, this is probably unnecessary, but at some
// point it must have seemed like we needed it...
assert(pkt->needsWritable());
assert(!blk->isWritable());
blk->status &= ~BlkReadable;
}
// Here we are using forward_time, modelling the latency of
// a miss (outbound) just as forwardLatency, neglecting the
// lookupLatency component.
allocateMissBuffer(pkt, forward_time);
}
if (prefetcher) {
// Don't notify on SWPrefetch
if (!pkt->cmd.isSWPrefetch())
next_pf_time = prefetcher->notify(pkt);
}
}
}
if (next_pf_time != MaxTick)
schedMemSideSendEvent(next_pf_time);
return true;
}
PacketPtr
Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
bool needsWritable) const
{
// should never see evictions here
assert(!cpu_pkt->isEviction());
bool blkValid = blk && blk->isValid();
if (cpu_pkt->req->isUncacheable() ||
(!blkValid && cpu_pkt->isUpgrade()) ||
cpu_pkt->cmd == MemCmd::InvalidateReq) {
// uncacheable requests and upgrades from upper-level caches
// that missed completely just go through as is
return nullptr;
}
assert(cpu_pkt->needsResponse());
MemCmd cmd;
// @TODO make useUpgrades a parameter.
// Note that ownership protocols require upgrade, otherwise a
// write miss on a shared owned block will generate a ReadExcl,
// which will clobber the owned copy.
const bool useUpgrades = true;
if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
assert(!blkValid || !blk->isWritable());
// forward as invalidate to all other caches, this gives us
// the line in Exclusive state, and invalidates all other
// copies
cmd = MemCmd::InvalidateReq;
} else if (blkValid && useUpgrades) {
// only reason to be here is that blk is read only and we need
// it to be writable
assert(needsWritable);
assert(!blk->isWritable());
cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
} else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
// Even though this SC will fail, we still need to send out the
// request and get the data to supply it to other snoopers in the case
// where the determination the StoreCond fails is delayed due to
// all caches not being on the same local bus.
cmd = MemCmd::SCUpgradeFailReq;
} else {
// block is invalid
cmd = needsWritable ? MemCmd::ReadExReq :
(isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
}
PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
// if there are upstream caches that have already marked the
// packet as having sharers (not passing writable), pass that info
// downstream
if (cpu_pkt->hasSharers() && !needsWritable) {
// note that cpu_pkt may have spent a considerable time in the
// MSHR queue and that the information could possibly be out
// of date, however, there is no harm in conservatively
// assuming the block has sharers
pkt->setHasSharers();
DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
__func__, cpu_pkt->print(), pkt->print());
}
// the packet should be block aligned
assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
pkt->allocate();
DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
cpu_pkt->print());
return pkt;
}
Tick
Cache::recvAtomic(PacketPtr pkt)
{
// We are in atomic mode so we pay just for lookupLatency here.
Cycles lat = lookupLatency;
// Forward the request if the system is in cache bypass mode.
if (system->bypassCaches())
return ticksToCycles(memSidePort->sendAtomic(pkt));
promoteWholeLineWrites(pkt);
// follow the same flow as in recvTimingReq, and check if a cache
// above us is responding
if (pkt->cacheResponding()) {
DPRINTF(Cache, "Cache above responding to %s: not responding\n",
pkt->print());
// if a cache is responding, and it had the line in Owned
// rather than Modified state, we need to invalidate any
// copies that are not on the same path to memory
assert(pkt->needsWritable() && !pkt->responderHadWritable());
lat += ticksToCycles(memSidePort->sendAtomic(pkt));
return lat * clockPeriod();
}
// should assert here that there are no outstanding MSHRs or
// writebacks... that would mean that someone used an atomic
// access in timing mode
CacheBlk *blk = nullptr;
PacketList writebacks;
bool satisfied = access(pkt, blk, lat, writebacks);
// handle writebacks resulting from the access here to ensure they
// logically proceed anything happening below
doWritebacksAtomic(writebacks);
if (!satisfied) {
// MISS
// deal with the packets that go through the write path of
// the cache, i.e. any evictions and writes
if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
(pkt->req->isUncacheable() && pkt->isWrite())) {
lat += ticksToCycles(memSidePort->sendAtomic(pkt));
return lat * clockPeriod();
}
// only misses left
PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
bool is_forward = (bus_pkt == nullptr);
if (is_forward) {
// just forwarding the same request to the next level
// no local cache operation involved
bus_pkt = pkt;
}
DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
bus_pkt->print());
#if TRACING_ON
CacheBlk::State old_state = blk ? blk->status : 0;
#endif
lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
bool is_invalidate = bus_pkt->isInvalidate();
// We are now dealing with the response handling
DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
bus_pkt->print(), old_state);
// If packet was a forward, the response (if any) is already
// in place in the bus_pkt == pkt structure, so we don't need
// to do anything. Otherwise, use the separate bus_pkt to
// generate response to pkt and then delete it.
if (!is_forward) {
if (pkt->needsResponse()) {
assert(bus_pkt->isResponse());
if (bus_pkt->isError()) {
pkt->makeAtomicResponse();
pkt->copyError(bus_pkt);
} else if (pkt->cmd == MemCmd::WriteLineReq) {
// note the use of pkt, not bus_pkt here.
// write-line request to the cache that promoted
// the write to a whole line
blk = handleFill(pkt, blk, writebacks,
allocOnFill(pkt->cmd));
assert(blk != NULL);
is_invalidate = false;
satisfyRequest(pkt, blk);
} else if (bus_pkt->isRead() ||
bus_pkt->cmd == MemCmd::UpgradeResp) {
// we're updating cache state to allow us to
// satisfy the upstream request from the cache
blk = handleFill(bus_pkt, blk, writebacks,
allocOnFill(pkt->cmd));
satisfyRequest(pkt, blk);
maintainClusivity(pkt->fromCache(), blk);
} else {
// we're satisfying the upstream request without
// modifying cache state, e.g., a write-through
pkt->makeAtomicResponse();
}
}
delete bus_pkt;
}
if (is_invalidate && blk && blk->isValid()) {
invalidateBlock(blk);
}
}
// Note that we don't invoke the prefetcher at all in atomic mode.
// It's not clear how to do it properly, particularly for
// prefetchers that aggressively generate prefetch candidates and
// rely on bandwidth contention to throttle them; these will tend
// to pollute the cache in atomic mode since there is no bandwidth
// contention. If we ever do want to enable prefetching in atomic
// mode, though, this is the place to do it... see timingAccess()
// for an example (though we'd want to issue the prefetch(es)
// immediately rather than calling requestMemSideBus() as we do
// there).
// do any writebacks resulting from the response handling
doWritebacksAtomic(writebacks);
// if we used temp block, check to see if its valid and if so
// clear it out, but only do so after the call to recvAtomic is
// finished so that any downstream observers (such as a snoop
// filter), first see the fill, and only then see the eviction
if (blk == tempBlock && tempBlock->isValid()) {
// the atomic CPU calls recvAtomic for fetch and load/store
// sequentuially, and we may already have a tempBlock
// writeback from the fetch that we have not yet sent
if (tempBlockWriteback) {
// if that is the case, write the prevoius one back, and
// do not schedule any new event
writebackTempBlockAtomic();
} else {
// the writeback/clean eviction happens after the call to
// recvAtomic has finished (but before any successive
// calls), so that the response handling from the fill is
// allowed to happen first
schedule(writebackTempBlockAtomicEvent, curTick());
}
tempBlockWriteback = (blk->isDirty() || writebackClean) ?
writebackBlk(blk) : cleanEvictBlk(blk);
invalidateBlock(blk);
}
if (pkt->needsResponse()) {
pkt->makeAtomicResponse();
}
return lat * clockPeriod();
}
void
Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
{
if (system->bypassCaches()) {
// Packets from the memory side are snoop request and
// shouldn't happen in bypass mode.
assert(fromCpuSide);
// The cache should be flushed if we are in cache bypass mode,
// so we don't need to check if we need to update anything.
memSidePort->sendFunctional(pkt);
return;
}
Addr blk_addr = pkt->getBlockAddr(blkSize);
bool is_secure = pkt->isSecure();
CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
pkt->pushLabel(name());
CacheBlkPrintWrapper cbpw(blk);
// Note that just because an L2/L3 has valid data doesn't mean an
// L1 doesn't have a more up-to-date modified copy that still
// needs to be found. As a result we always update the request if
// we have it, but only declare it satisfied if we are the owner.
// see if we have data at all (owned or otherwise)
bool have_data = blk && blk->isValid()
&& pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
blk->data);
// data we have is dirty if marked as such or if we have an
// in-service MSHR that is pending a modified line
bool have_dirty =
have_data && (blk->isDirty() ||
(mshr && mshr->inService && mshr->isPendingModified()));
bool done = have_dirty
|| cpuSidePort->checkFunctional(pkt)
|| mshrQueue.checkFunctional(pkt, blk_addr)
|| writeBuffer.checkFunctional(pkt, blk_addr)
|| memSidePort->checkFunctional(pkt);
DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
(blk && blk->isValid()) ? "valid " : "",
have_data ? "data " : "", done ? "done " : "");
// We're leaving the cache, so pop cache->name() label
pkt->popLabel();
if (done) {
pkt->makeResponse();
} else {
// if it came as a request from the CPU side then make sure it
// continues towards the memory side
if (fromCpuSide) {
memSidePort->sendFunctional(pkt);
} else if (cpuSidePort->isSnooping()) {
// if it came from the memory side, it must be a snoop request
// and we should only forward it if we are forwarding snoops
cpuSidePort->sendFunctionalSnoop(pkt);
}
}
}
/////////////////////////////////////////////////////
//
// Response handling: responses from the memory side
//
/////////////////////////////////////////////////////
void
Cache::handleUncacheableWriteResp(PacketPtr pkt)
{
Tick completion_time = clockEdge(responseLatency) +
pkt->headerDelay + pkt->payloadDelay;
// Reset the bus additional time as it is now accounted for
pkt->headerDelay = pkt->payloadDelay = 0;
cpuSidePort->schedTimingResp(pkt, completion_time, true);
}
void
Cache::recvTimingResp(PacketPtr pkt)
{
assert(pkt->isResponse());
// all header delay should be paid for by the crossbar, unless
// this is a prefetch response from above
panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
"%s saw a non-zero packet delay\n", name());
bool is_error = pkt->isError();
if (is_error) {
DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
pkt->print());
}
DPRINTF(Cache, "%s: Handling response %s\n", __func__,
pkt->print());
// if this is a write, we should be looking at an uncacheable
// write
if (pkt->isWrite()) {
assert(pkt->req->isUncacheable());
handleUncacheableWriteResp(pkt);
return;
}
// we have dealt with any (uncacheable) writes above, from here on
// we know we are dealing with an MSHR due to a miss or a prefetch
MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
assert(mshr);
if (mshr == noTargetMSHR) {
// we always clear at least one target
clearBlocked(Blocked_NoTargets);
noTargetMSHR = nullptr;
}
// Initial target is used just for stats
MSHR::Target *initial_tgt = mshr->getTarget();
int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
Tick miss_latency = curTick() - initial_tgt->recvTime;
if (pkt->req->isUncacheable()) {
assert(pkt->req->masterId() < system->maxMasters());
mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
miss_latency;
} else {
assert(pkt->req->masterId() < system->maxMasters());
mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
miss_latency;
}
bool wasFull = mshrQueue.isFull();
PacketList writebacks;
Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
// upgrade deferred targets if the response has no sharers, and is
// thus passing writable
if (!pkt->hasSharers()) {
mshr->promoteWritable();
}
bool is_fill = !mshr->isForward &&
(pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
if (is_fill && !is_error) {
DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
pkt->getAddr());
blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
assert(blk != nullptr);
}
// allow invalidation responses originating from write-line
// requests to be discarded
bool is_invalidate = pkt->isInvalidate();
// First offset for critical word first calculations
int initial_offset = initial_tgt->pkt->getOffset(blkSize);
bool from_cache = false;
MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
for (auto &target: targets) {
Packet *tgt_pkt = target.pkt;
switch (target.source) {
case MSHR::Target::FromCPU:
Tick completion_time;
// Here we charge on completion_time the delay of the xbar if the
// packet comes from it, charged on headerDelay.
completion_time = pkt->headerDelay;
// Software prefetch handling for cache closest to core
if (tgt_pkt->cmd.isSWPrefetch()) {
// a software prefetch would have already been ack'd
// immediately with dummy data so the core would be able to
// retire it. This request completes right here, so we
// deallocate it.
delete tgt_pkt->req;
delete tgt_pkt;
break; // skip response
}
// keep track of whether we have responded to another
// cache
from_cache = from_cache || tgt_pkt->fromCache();
// unlike the other packet flows, where data is found in other
// caches or memory and brought back, write-line requests always
// have the data right away, so the above check for "is fill?"
// cannot actually be determined until examining the stored MSHR
// state. We "catch up" with that logic here, which is duplicated
// from above.
if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
assert(!is_error);
// we got the block in a writable state, so promote
// any deferred targets if possible
mshr->promoteWritable();
// NB: we use the original packet here and not the response!
blk = handleFill(tgt_pkt, blk, writebacks,
targets.allocOnFill);
assert(blk != nullptr);
// treat as a fill, and discard the invalidation
// response
is_fill = true;
is_invalidate = false;
}
if (is_fill) {
satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
// How many bytes past the first request is this one
int transfer_offset =
tgt_pkt->getOffset(blkSize) - initial_offset;
if (transfer_offset < 0) {
transfer_offset += blkSize;
}
// If not critical word (offset) return payloadDelay.
// responseLatency is the latency of the return path
// from lower level caches/memory to an upper level cache or
// the core.
completion_time += clockEdge(responseLatency) +
(transfer_offset ? pkt->payloadDelay : 0);
assert(!tgt_pkt->req->isUncacheable());
assert(tgt_pkt->req->masterId() < system->maxMasters());
missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
completion_time - target.recvTime;
} else if (pkt->cmd == MemCmd::UpgradeFailResp) {
// failed StoreCond upgrade
assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
// responseLatency is the latency of the return path
// from lower level caches/memory to an upper level cache or
// the core.
completion_time += clockEdge(responseLatency) +
pkt->payloadDelay;
tgt_pkt->req->setExtraData(0);
} else {
// We are about to send a response to a cache above
// that asked for an invalidation; we need to
// invalidate our copy immediately as the most
// up-to-date copy of the block will now be in the
// cache above. It will also prevent this cache from
// responding (if the block was previously dirty) to
// snoops as they should snoop the caches above where
// they will get the response from.
if (is_invalidate && blk && blk->isValid()) {
invalidateBlock(blk);
}
// not a cache fill, just forwarding response
// responseLatency is the latency of the return path
// from lower level cahces/memory to the core.
completion_time += clockEdge(responseLatency) +
pkt->payloadDelay;
if (pkt->isRead() && !is_error) {
// sanity check
assert(pkt->getAddr() == tgt_pkt->getAddr());
assert(pkt->getSize() >= tgt_pkt->getSize());
tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
}
}
tgt_pkt->makeTimingResponse();
// if this packet is an error copy that to the new packet
if (is_error)
tgt_pkt->copyError(pkt);
if (tgt_pkt->cmd == MemCmd::ReadResp &&
(is_invalidate || mshr->hasPostInvalidate())) {
// If intermediate cache got ReadRespWithInvalidate,
// propagate that. Response should not have
// isInvalidate() set otherwise.
tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
tgt_pkt->print());
}
// Reset the bus additional time as it is now accounted for
tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
cpuSidePort->schedTimingResp(tgt_pkt, completion_time, true);
break;
case MSHR::Target::FromPrefetcher:
assert(tgt_pkt->cmd == MemCmd::HardPFReq);
if (blk)
blk->status |= BlkHWPrefetched;
delete tgt_pkt->req;
delete tgt_pkt;
break;
case MSHR::Target::FromSnoop:
// I don't believe that a snoop can be in an error state
assert(!is_error);
// response to snoop request
DPRINTF(Cache, "processing deferred snoop...\n");
// If the response is invalidating, a snooping target can
// be satisfied if it is also invalidating. If the reponse is, not
// only invalidating, but more specifically an InvalidateResp, the
// MSHR was created due to an InvalidateReq and a cache above is
// waiting to satisfy a WriteLineReq. In this case even an
// non-invalidating snoop is added as a target here since this is
// the ordering point. When the InvalidateResp reaches this cache,
// the snooping target will snoop further the cache above with the
// WriteLineReq.
assert(!(is_invalidate &&
pkt->cmd != MemCmd::InvalidateResp &&
!mshr->hasPostInvalidate()));
handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
break;
default:
panic("Illegal target->source enum %d\n", target.source);
}
}
maintainClusivity(from_cache, blk);
if (blk && blk->isValid()) {
// an invalidate response stemming from a write line request
// should not invalidate the block, so check if the
// invalidation should be discarded
if (is_invalidate || mshr->hasPostInvalidate()) {
invalidateBlock(blk);
} else if (mshr->hasPostDowngrade()) {
blk->status &= ~BlkWritable;
}
}
if (mshr->promoteDeferredTargets()) {
// avoid later read getting stale data while write miss is
// outstanding.. see comment in timingAccess()
if (blk) {
blk->status &= ~BlkReadable;
}
mshrQueue.markPending(mshr);
schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
} else {
mshrQueue.deallocate(mshr);
if (wasFull && !mshrQueue.isFull()) {
clearBlocked(Blocked_NoMSHRs);
}
// Request the bus for a prefetch if this deallocation freed enough
// MSHRs for a prefetch to take place
if (prefetcher && mshrQueue.canPrefetch()) {
Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
clockEdge());
if (next_pf_time != MaxTick)
schedMemSideSendEvent(next_pf_time);
}
}
// reset the xbar additional timinig as it is now accounted for
pkt->headerDelay = pkt->payloadDelay = 0;
// copy writebacks to write buffer
doWritebacks(writebacks, forward_time);
// if we used temp block, check to see if its valid and then clear it out
if (blk == tempBlock && tempBlock->isValid()) {
// We use forwardLatency here because we are copying
// Writebacks/CleanEvicts to write buffer. It specifies the latency to
// allocate an internal buffer and to schedule an event to the
// queued port.
if (blk->isDirty() || writebackClean) {
PacketPtr wbPkt = writebackBlk(blk);
allocateWriteBuffer(wbPkt, forward_time);
// Set BLOCK_CACHED flag if cached above.
if (isCachedAbove(wbPkt))
wbPkt->setBlockCached();
} else {
PacketPtr wcPkt = cleanEvictBlk(blk);
// Check to see if block is cached above. If not allocate
// write buffer
if (isCachedAbove(wcPkt))
delete wcPkt;
else
allocateWriteBuffer(wcPkt, forward_time);
}
invalidateBlock(blk);
}
DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
delete pkt;
}
PacketPtr
Cache::writebackBlk(CacheBlk *blk)
{
chatty_assert(!isReadOnly || writebackClean,
"Writeback from read-only cache");
assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
writebacks[Request::wbMasterId]++;
Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
blkSize, 0, Request::wbMasterId);
if (blk->isSecure())
req->setFlags(Request::SECURE);
req->taskId(blk->task_id);
blk->task_id= ContextSwitchTaskId::Unknown;
blk->tickInserted = curTick();
PacketPtr pkt =
new Packet(req, blk->isDirty() ?
MemCmd::WritebackDirty : MemCmd::WritebackClean);
DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
pkt->print(), blk->isWritable(), blk->isDirty());
if (blk->isWritable()) {
// not asserting shared means we pass the block in modified
// state, mark our own block non-writeable
blk->status &= ~BlkWritable;
} else {
// we are in the Owned state, tell the receiver
pkt->setHasSharers();
}
// make sure the block is not marked dirty
blk->status &= ~BlkDirty;
pkt->allocate();
std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
return pkt;
}
PacketPtr
Cache::writecleanBlk(CacheBlk *blk)
{
Request *req = new Request(tags->regenerateBlkAddr(blk->tag, blk->set),
blkSize, 0, Request::wbMasterId);
if (blk->isSecure()) {
req->setFlags(Request::SECURE);
}
req->taskId(blk->task_id);
blk->task_id = ContextSwitchTaskId::Unknown;
PacketPtr pkt = new Packet(req, MemCmd::WriteClean);
DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
blk->isWritable(), blk->isDirty());
// make sure the block is not marked dirty
blk->status &= ~BlkDirty;
pkt->allocate();
// We inform the cache below that the block has sharers in the
// system as we retain our copy.
pkt->setHasSharers();
std::memcpy(pkt->getPtr<uint8_t>(), blk->data, blkSize);
return pkt;
}
PacketPtr
Cache::cleanEvictBlk(CacheBlk *blk)
{
assert(!writebackClean);
assert(blk && blk->isValid() && !blk->isDirty());
// Creating a zero sized write, a message to the snoop filter
Request *req =
new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
Request::wbMasterId);
if (blk->isSecure())
req->setFlags(Request::SECURE);
req->taskId(blk->task_id);
blk->task_id = ContextSwitchTaskId::Unknown;
blk->tickInserted = curTick();
PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
pkt->allocate();
DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
return pkt;
}
void
Cache::memWriteback()
{
CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
tags->forEachBlk(visitor);
}
void
Cache::memInvalidate()
{
CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
tags->forEachBlk(visitor);
}
bool
Cache::isDirty() const
{
CacheBlkIsDirtyVisitor visitor;
tags->forEachBlk(visitor);
return visitor.isDirty();
}
bool
Cache::writebackVisitor(CacheBlk &blk)
{
if (blk.isDirty()) {
assert(blk.isValid());
Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
blkSize, 0, Request::funcMasterId);
request.taskId(blk.task_id);
if (blk.isSecure()) {
request.setFlags(Request::SECURE);
}
Packet packet(&request, MemCmd::WriteReq);
packet.dataStatic(blk.data);
memSidePort->sendFunctional(&packet);
blk.status &= ~BlkDirty;
}
return true;
}
bool
Cache::invalidateVisitor(CacheBlk &blk)
{
if (blk.isDirty())
warn_once("Invalidating dirty cache lines. Expect things to break.\n");
if (blk.isValid()) {
assert(!blk.isDirty());
invalidateBlock(&blk);
}
return true;
}
CacheBlk*
Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
{
CacheBlk *blk = tags->findVictim(addr);
// It is valid to return nullptr if there is no victim
if (!blk)
return nullptr;
if (blk->isValid()) {
Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
if (repl_mshr) {
// must be an outstanding upgrade request
// on a block we're about to replace...
assert(!blk->isWritable() || blk->isDirty());
assert(repl_mshr->needsWritable());
// too hard to replace block with transient state
// allocation failed, block not inserted
return nullptr;
} else {
DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
"(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
addr, is_secure ? "s" : "ns",
blk->isDirty() ? "writeback" : "clean");
if (blk->wasPrefetched()) {
unusedPrefetches++;
}
// Will send up Writeback/CleanEvict snoops via isCachedAbove
// when pushing this writeback list into the write buffer.
if (blk->isDirty() || writebackClean) {
// Save writeback packet for handling by caller
writebacks.push_back(writebackBlk(blk));
} else {
writebacks.push_back(cleanEvictBlk(blk));
}
}
}
return blk;
}
void
Cache::invalidateBlock(CacheBlk *blk)
{
if (blk != tempBlock)
tags->invalidate(blk);
blk->invalidate();
}
// Note that the reason we return a list of writebacks rather than
// inserting them directly in the write buffer is that this function
// is called by both atomic and timing-mode accesses, and in atomic
// mode we don't mess with the write buffer (we just perform the
// writebacks atomically once the original request is complete).
CacheBlk*
Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
bool allocate)
{
assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
Addr addr = pkt->getAddr();
bool is_secure = pkt->isSecure();
#if TRACING_ON
CacheBlk::State old_state = blk ? blk->status : 0;
#endif
// When handling a fill, we should have no writes to this line.
assert(addr == pkt->getBlockAddr(blkSize));
assert(!writeBuffer.findMatch(addr, is_secure));
if (blk == nullptr) {
// better have read new data...
assert(pkt->hasData());
// only read responses and write-line requests have data;
// note that we don't write the data here for write-line - that
// happens in the subsequent call to satisfyRequest
assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
// need to do a replacement if allocating, otherwise we stick
// with the temporary storage
blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
if (blk == nullptr) {
// No replaceable block or a mostly exclusive
// cache... just use temporary storage to complete the
// current request and then get rid of it
assert(!tempBlock->isValid());
blk = tempBlock;
tempBlock->set = tags->extractSet(addr);
tempBlock->tag = tags->extractTag(addr);
// @todo: set security state as well...
DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
is_secure ? "s" : "ns");
} else {
tags->insertBlock(pkt, blk);
}
// we should never be overwriting a valid block
assert(!blk->isValid());
} else {
// existing block... probably an upgrade
assert(blk->tag == tags->extractTag(addr));
// either we're getting new data or the block should already be valid
assert(pkt->hasData() || blk->isValid());
// don't clear block status... if block is already dirty we
// don't want to lose that
}
if (is_secure)
blk->status |= BlkSecure;
blk->status |= BlkValid | BlkReadable;
// sanity check for whole-line writes, which should always be
// marked as writable as part of the fill, and then later marked
// dirty as part of satisfyRequest
if (pkt->cmd == MemCmd::WriteLineReq) {
assert(!pkt->hasSharers());
}
// here we deal with setting the appropriate state of the line,
// and we start by looking at the hasSharers flag, and ignore the
// cacheResponding flag (normally signalling dirty data) if the
// packet has sharers, thus the line is never allocated as Owned
// (dirty but not writable), and always ends up being either
// Shared, Exclusive or Modified, see Packet::setCacheResponding
// for more details
if (!pkt->hasSharers()) {
// we could get a writable line from memory (rather than a
// cache) even in a read-only cache, note that we set this bit
// even for a read-only cache, possibly revisit this decision
blk->status |= BlkWritable;
// check if we got this via cache-to-cache transfer (i.e., from a
// cache that had the block in Modified or Owned state)
if (pkt->cacheResponding()) {
// we got the block in Modified state, and invalidated the
// owners copy
blk->status |= BlkDirty;
chatty_assert(!isReadOnly, "Should never see dirty snoop response "
"in read-only cache %s\n", name());
}
}
DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
addr, is_secure ? "s" : "ns", old_state, blk->print());
// if we got new data, copy it in (checking for a read response
// and a response that has data is the same in the end)
if (pkt->isRead()) {
// sanity checks
assert(pkt->hasData());
assert(pkt->getSize() == blkSize);
std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
}
// We pay for fillLatency here.
blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
pkt->payloadDelay;
return blk;
}
/////////////////////////////////////////////////////
//
// Snoop path: requests coming in from the memory side
//
/////////////////////////////////////////////////////
void
Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
bool already_copied, bool pending_inval)
{
// sanity check
assert(req_pkt->isRequest());
assert(req_pkt->needsResponse());
DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
// timing-mode snoop responses require a new packet, unless we
// already made a copy...
PacketPtr pkt = req_pkt;
if (!already_copied)
// do not clear flags, and allocate space for data if the
// packet needs it (the only packets that carry data are read
// responses)
pkt = new Packet(req_pkt, false, req_pkt->isRead());
assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
pkt->hasSharers());
pkt->makeTimingResponse();
if (pkt->isRead()) {
pkt->setDataFromBlock(blk_data, blkSize);
}
if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
// Assume we defer a response to a read from a far-away cache
// A, then later defer a ReadExcl from a cache B on the same
// bus as us. We'll assert cacheResponding in both cases, but
// in the latter case cacheResponding will keep the
// invalidation from reaching cache A. This special response
// tells cache A that it gets the block to satisfy its read,
// but must immediately invalidate it.
pkt->cmd = MemCmd::ReadRespWithInvalidate;
}
// Here we consider forward_time, paying for just forward latency and
// also charging the delay provided by the xbar.
// forward_time is used as send_time in next allocateWriteBuffer().
Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
// Here we reset the timing of the packet.
pkt->headerDelay = pkt->payloadDelay = 0;
DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
pkt->print(), forward_time);
memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
}
uint32_t
Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
bool is_deferred, bool pending_inval)
{
DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
// deferred snoops can only happen in timing mode
assert(!(is_deferred && !is_timing));
// pending_inval only makes sense on deferred snoops
assert(!(pending_inval && !is_deferred));
assert(pkt->isRequest());
// the packet may get modified if we or a forwarded snooper
// responds in atomic mode, so remember a few things about the
// original packet up front
bool invalidate = pkt->isInvalidate();
bool M5_VAR_USED needs_writable = pkt->needsWritable();
// at the moment we could get an uncacheable write which does not
// have the invalidate flag, and we need a suitable way of dealing
// with this case
panic_if(invalidate && pkt->req->isUncacheable(),
"%s got an invalidating uncacheable snoop request %s",
name(), pkt->print());
uint32_t snoop_delay = 0;
if (forwardSnoops) {
// first propagate snoop upward to see if anyone above us wants to
// handle it. save & restore packet src since it will get
// rewritten to be relative to cpu-side bus (if any)
bool alreadyResponded = pkt->cacheResponding();
if (is_timing) {
// copy the packet so that we can clear any flags before
// forwarding it upwards, we also allocate data (passing
// the pointer along in case of static data), in case
// there is a snoop hit in upper levels
Packet snoopPkt(pkt, true, true);
snoopPkt.setExpressSnoop();
// the snoop packet does not need to wait any additional
// time
snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
cpuSidePort->sendTimingSnoopReq(&snoopPkt);
// add the header delay (including crossbar and snoop
// delays) of the upward snoop to the snoop delay for this
// cache
snoop_delay += snoopPkt.headerDelay;
if (snoopPkt.cacheResponding()) {
// cache-to-cache response from some upper cache
assert(!alreadyResponded);
pkt->setCacheResponding();
}
// upstream cache has the block, or has an outstanding
// MSHR, pass the flag on
if (snoopPkt.hasSharers()) {
pkt->setHasSharers();
}
// If this request is a prefetch or clean evict and an upper level
// signals block present, make sure to propagate the block
// presence to the requester.
if (snoopPkt.isBlockCached()) {
pkt->setBlockCached();
}
} else {
cpuSidePort->sendAtomicSnoop(pkt);
if (!alreadyResponded && pkt->cacheResponding()) {
// cache-to-cache response from some upper cache:
// forward response to original requester
assert(pkt->isResponse());
}
}
}
if (!blk || !blk->isValid()) {
DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
pkt->print());
if (is_deferred) {
// we no longer have the block, and will not respond, but a
// packet was allocated in MSHR::handleSnoop and we have
// to delete it
assert(pkt->needsResponse());
// we have passed the block to a cache upstream, that
// cache should be responding
assert(pkt->cacheResponding());
delete pkt;
}
return snoop_delay;
} else {
DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
pkt->print(), blk->print());
}
chatty_assert(!(isReadOnly && blk->isDirty()),
"Should never have a dirty block in a read-only cache %s\n",
name());
// We may end up modifying both the block state and the packet (if
// we respond in atomic mode), so just figure out what to do now
// and then do it later. We respond to all snoops that need
// responses provided we have the block in dirty state. The
// invalidation itself is taken care of below.
bool respond = blk->isDirty() && pkt->needsResponse();
bool have_writable = blk->isWritable();
// Invalidate any prefetch's from below that would strip write permissions
// MemCmd::HardPFReq is only observed by upstream caches. After missing
// above and in it's own cache, a new MemCmd::ReadReq is created that
// downstream caches observe.
if (pkt->mustCheckAbove()) {
DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
"from lower cache\n", pkt->getAddr(), pkt->print());
pkt->setBlockCached();
return snoop_delay;
}
if (pkt->isRead() && !invalidate) {
// reading without requiring the line in a writable state
assert(!needs_writable);
pkt->setHasSharers();
// if the requesting packet is uncacheable, retain the line in
// the current state, otherwhise unset the writable flag,
// which means we go from Modified to Owned (and will respond
// below), remain in Owned (and will respond below), from
// Exclusive to Shared, or remain in Shared
if (!pkt->req->isUncacheable())
blk->status &= ~BlkWritable;
}
if (respond) {
// prevent anyone else from responding, cache as well as
// memory, and also prevent any memory from even seeing the
// request
pkt->setCacheResponding();
if (have_writable) {
// inform the cache hierarchy that this cache had the line
// in the Modified state so that we avoid unnecessary
// invalidations (see Packet::setResponderHadWritable)
pkt->setResponderHadWritable();
// in the case of an uncacheable request there is no point
// in setting the responderHadWritable flag, but since the
// recipient does not care there is no harm in doing so
} else {
// if the packet has needsWritable set we invalidate our
// copy below and all other copies will be invalidates
// through express snoops, and if needsWritable is not set
// we already called setHasSharers above
}
// if we are returning a writable and dirty (Modified) line,
// we should be invalidating the line
panic_if(!invalidate && !pkt->hasSharers(),
"%s is passing a Modified line through %s, "
"but keeping the block", name(), pkt->print());
if (is_timing) {
doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
} else {
pkt->makeAtomicResponse();
// packets such as upgrades do not actually have any data
// payload
if (pkt->hasData())
pkt->setDataFromBlock(blk->data, blkSize);
}
}
if (!respond && is_deferred) {
assert(pkt->needsResponse());
// if we copied the deferred packet with the intention to
// respond, but are not responding, then a cache above us must
// be, and we can use this as the indication of whether this
// is a packet where we created a copy of the request or not
if (!pkt->cacheResponding()) {
delete pkt->req;
}
delete pkt;
}
// Do this last in case it deallocates block data or something
// like that
if (invalidate) {
invalidateBlock(blk);
}
DPRINTF(Cache, "new state is %s\n", blk->print());
return snoop_delay;
}
void
Cache::recvTimingSnoopReq(PacketPtr pkt)
{
DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
// Snoops shouldn't happen when bypassing caches
assert(!system->bypassCaches());
// no need to snoop requests that are not in range
if (!inRange(pkt->getAddr())) {
return;
}
bool is_secure = pkt->isSecure();
CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
Addr blk_addr = pkt->getBlockAddr(blkSize);
MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
// Update the latency cost of the snoop so that the crossbar can
// account for it. Do not overwrite what other neighbouring caches
// have already done, rather take the maximum. The update is
// tentative, for cases where we return before an upward snoop
// happens below.
pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
lookupLatency * clockPeriod());
// Inform request(Prefetch, CleanEvict or Writeback) from below of
// MSHR hit, set setBlockCached.
if (mshr && pkt->mustCheckAbove()) {
DPRINTF(Cache, "Setting block cached for %s from lower cache on "
"mshr hit\n", pkt->print());
pkt->setBlockCached();
return;
}
// Let the MSHR itself track the snoop and decide whether we want
// to go ahead and do the regular cache snoop
if (mshr && mshr->handleSnoop(pkt, order++)) {
DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
"mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
mshr->print());
if (mshr->getNumTargets() > numTarget)
warn("allocating bonus target for snoop"); //handle later
return;
}
//We also need to check the writeback buffers and handle those
WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
if (wb_entry) {
DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
pkt->getAddr(), is_secure ? "s" : "ns");
// Expect to see only Writebacks and/or CleanEvicts here, both of
// which should not be generated for uncacheable data.
assert(!wb_entry->isUncacheable());
// There should only be a single request responsible for generating
// Writebacks/CleanEvicts.
assert(wb_entry->getNumTargets() == 1);
PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
if (pkt->isEviction()) {
// if the block is found in the write queue, set the BLOCK_CACHED
// flag for Writeback/CleanEvict snoop. On return the snoop will
// propagate the BLOCK_CACHED flag in Writeback packets and prevent
// any CleanEvicts from travelling down the memory hierarchy.
pkt->setBlockCached();
DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
"hit\n", __func__, pkt->print());
return;
}
// conceptually writebacks are no different to other blocks in
// this cache, so the behaviour is modelled after handleSnoop,
// the difference being that instead of querying the block
// state to determine if it is dirty and writable, we use the
// command and fields of the writeback packet
bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
pkt->needsResponse();
bool have_writable = !wb_pkt->hasSharers();
bool invalidate = pkt->isInvalidate();
if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
assert(!pkt->needsWritable());
pkt->setHasSharers();
wb_pkt->setHasSharers();
}
if (respond) {
pkt->setCacheResponding();
if (have_writable) {
pkt->setResponderHadWritable();
}
doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
false, false);
}
if (invalidate) {
// Invalidation trumps our writeback... discard here
// Note: markInService will remove entry from writeback buffer.
markInService(wb_entry);
delete wb_pkt;
}
}
// If this was a shared writeback, there may still be
// other shared copies above that require invalidation.
// We could be more selective and return here if the
// request is non-exclusive or if the writeback is
// exclusive.
uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
// Override what we did when we first saw the snoop, as we now
// also have the cost of the upwards snoops to account for
pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
lookupLatency * clockPeriod());
}
bool
Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
{
// Express snoop responses from master to slave, e.g., from L1 to L2
cache->recvTimingSnoopResp(pkt);
return true;
}
Tick
Cache::recvAtomicSnoop(PacketPtr pkt)
{
// Snoops shouldn't happen when bypassing caches
assert(!system->bypassCaches());
// no need to snoop requests that are not in range.
if (!inRange(pkt->getAddr())) {
return 0;
}
CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
return snoop_delay + lookupLatency * clockPeriod();
}
QueueEntry*
Cache::getNextQueueEntry()
{
// Check both MSHR queue and write buffer for potential requests,
// note that null does not mean there is no request, it could
// simply be that it is not ready
MSHR *miss_mshr = mshrQueue.getNext();
WriteQueueEntry *wq_entry = writeBuffer.getNext();
// If we got a write buffer request ready, first priority is a
// full write buffer, otherwise we favour the miss requests
if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
// need to search MSHR queue for conflicting earlier miss.
MSHR *conflict_mshr =
mshrQueue.findPending(wq_entry->blkAddr,
wq_entry->isSecure);
if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
// Service misses in order until conflict is cleared.
return conflict_mshr;
// @todo Note that we ignore the ready time of the conflict here
}
// No conflicts; issue write
return wq_entry;
} else if (miss_mshr) {
// need to check for conflicting earlier writeback
WriteQueueEntry *conflict_mshr =
writeBuffer.findPending(miss_mshr->blkAddr,
miss_mshr->isSecure);
if (conflict_mshr) {
// not sure why we don't check order here... it was in the
// original code but commented out.
// The only way this happens is if we are
// doing a write and we didn't have permissions
// then subsequently saw a writeback (owned got evicted)
// We need to make sure to perform the writeback first
// To preserve the dirty data, then we can issue the write
// should we return wq_entry here instead? I.e. do we
// have to flush writes in order? I don't think so... not
// for Alpha anyway. Maybe for x86?
return conflict_mshr;
// @todo Note that we ignore the ready time of the conflict here
}
// No conflicts; issue read
return miss_mshr;
}
// fall through... no pending requests. Try a prefetch.
assert(!miss_mshr && !wq_entry);
if (prefetcher && mshrQueue.canPrefetch()) {
// If we have a miss queue slot, we can try a prefetch
PacketPtr pkt = prefetcher->getPacket();
if (pkt) {
Addr pf_addr = pkt->getBlockAddr(blkSize);
if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
!mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
!writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
// Update statistic on number of prefetches issued
// (hwpf_mshr_misses)
assert(pkt->req->masterId() < system->maxMasters());
mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
// allocate an MSHR and return it, note
// that we send the packet straight away, so do not
// schedule the send
return allocateMissBuffer(pkt, curTick(), false);
} else {
// free the request and packet
delete pkt->req;
delete pkt;
}
}
}
return nullptr;
}
bool
Cache::isCachedAbove(PacketPtr pkt, bool is_timing) const
{
if (!forwardSnoops)
return false;
// Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
// Writeback snoops into upper level caches to check for copies of the
// same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
// packet, the cache can inform the crossbar below of presence or absence
// of the block.
if (is_timing) {
Packet snoop_pkt(pkt, true, false);
snoop_pkt.setExpressSnoop();
// Assert that packet is either Writeback or CleanEvict and not a
// prefetch request because prefetch requests need an MSHR and may
// generate a snoop response.
assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
snoop_pkt.senderState = nullptr;
cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
// Writeback/CleanEvict snoops do not generate a snoop response.
assert(!(snoop_pkt.cacheResponding()));
return snoop_pkt.isBlockCached();
} else {
cpuSidePort->sendAtomicSnoop(pkt);
return pkt->isBlockCached();
}
}
Tick
Cache::nextQueueReadyTime() const
{
Tick nextReady = std::min(mshrQueue.nextReadyTime(),
writeBuffer.nextReadyTime());
// Don't signal prefetch ready time if no MSHRs available
// Will signal once enoguh MSHRs are deallocated
if (prefetcher && mshrQueue.canPrefetch()) {
nextReady = std::min(nextReady,
prefetcher->nextPrefetchReadyTime());
}
return nextReady;
}
bool
Cache::sendMSHRQueuePacket(MSHR* mshr)
{
assert(mshr);
// use request from 1st target
PacketPtr tgt_pkt = mshr->getTarget()->pkt;
DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
// we should never have hardware prefetches to allocated
// blocks
assert(blk == nullptr);
// We need to check the caches above us to verify that
// they don't have a copy of this block in the dirty state
// at the moment. Without this check we could get a stale
// copy from memory that might get used in place of the
// dirty one.
Packet snoop_pkt(tgt_pkt, true, false);
snoop_pkt.setExpressSnoop();
// We are sending this packet upwards, but if it hits we will
// get a snoop response that we end up treating just like a
// normal response, hence it needs the MSHR as its sender
// state
snoop_pkt.senderState = mshr;
cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
// Check to see if the prefetch was squashed by an upper cache (to
// prevent us from grabbing the line) or if a Check to see if a
// writeback arrived between the time the prefetch was placed in
// the MSHRs and when it was selected to be sent or if the
// prefetch was squashed by an upper cache.
// It is important to check cacheResponding before
// prefetchSquashed. If another cache has committed to
// responding, it will be sending a dirty response which will
// arrive at the MSHR allocated for this request. Checking the
// prefetchSquash first may result in the MSHR being
// prematurely deallocated.
if (snoop_pkt.cacheResponding()) {
auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
assert(r.second);
// if we are getting a snoop response with no sharers it
// will be allocated as Modified
bool pending_modified_resp = !snoop_pkt.hasSharers();
markInService(mshr, pending_modified_resp);
DPRINTF(Cache, "Upward snoop of prefetch for addr"
" %#x (%s) hit\n",
tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
return false;
}
if (snoop_pkt.isBlockCached()) {
DPRINTF(Cache, "Block present, prefetch squashed by cache. "
"Deallocating mshr target %#x.\n",
mshr->blkAddr);
// Deallocate the mshr target
if (mshrQueue.forceDeallocateTarget(mshr)) {
// Clear block if this deallocation resulted freed an
// mshr when all had previously been utilized
clearBlocked(Blocked_NoMSHRs);
}
// given that no response is expected, delete Request and Packet
delete tgt_pkt->req;
delete tgt_pkt;
return false;
}
}
// either a prefetch that is not present upstream, or a normal
// MSHR request, proceed to get the packet to send downstream
PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
mshr->isForward = (pkt == nullptr);
if (mshr->isForward) {
// not a cache block request, but a response is expected
// make copy of current packet to forward, keep current
// copy for response handling
pkt = new Packet(tgt_pkt, false, true);
assert(!pkt->isWrite());
}
// play it safe and append (rather than set) the sender state,
// as forwarded packets may already have existing state
pkt->pushSenderState(mshr);
if (!memSidePort->sendTimingReq(pkt)) {
// we are awaiting a retry, but we
// delete the packet and will be creating a new packet
// when we get the opportunity
delete pkt;
// note that we have now masked any requestBus and
// schedSendEvent (we will wait for a retry before
// doing anything), and this is so even if we do not
// care about this packet and might override it before
// it gets retried
return true;
} else {
// As part of the call to sendTimingReq the packet is
// forwarded to all neighbouring caches (and any caches
// above them) as a snoop. Thus at this point we know if
// any of the neighbouring caches are responding, and if
// so, we know it is dirty, and we can determine if it is
// being passed as Modified, making our MSHR the ordering
// point
bool pending_modified_resp = !pkt->hasSharers() &&
pkt->cacheResponding();
markInService(mshr, pending_modified_resp);
return false;
}
}
bool
Cache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
{
assert(wq_entry);
// always a single target for write queue entries
PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
// forward as is, both for evictions and uncacheable writes
if (!memSidePort->sendTimingReq(tgt_pkt)) {
// note that we have now masked any requestBus and
// schedSendEvent (we will wait for a retry before
// doing anything), and this is so even if we do not
// care about this packet and might override it before
// it gets retried
return true;
} else {
markInService(wq_entry);
return false;
}
}
void
Cache::serialize(CheckpointOut &cp) const
{
bool dirty(isDirty());
if (dirty) {
warn("*** The cache still contains dirty data. ***\n");
warn(" Make sure to drain the system using the correct flags.\n");
warn(" This checkpoint will not restore correctly and dirty data "
" in the cache will be lost!\n");
}
// Since we don't checkpoint the data in the cache, any dirty data
// will be lost when restoring from a checkpoint of a system that
// wasn't drained properly. Flag the checkpoint as invalid if the
// cache contains dirty data.
bool bad_checkpoint(dirty);
SERIALIZE_SCALAR(bad_checkpoint);
}
void
Cache::unserialize(CheckpointIn &cp)
{
bool bad_checkpoint;
UNSERIALIZE_SCALAR(bad_checkpoint);
if (bad_checkpoint) {
fatal("Restoring from checkpoints with dirty caches is not supported "
"in the classic memory system. Please remove any caches or "
" drain them properly before taking checkpoints.\n");
}
}
///////////////
//
// CpuSidePort
//
///////////////
AddrRangeList
Cache::CpuSidePort::getAddrRanges() const
{
return cache->getAddrRanges();
}
bool
Cache::CpuSidePort::tryTiming(PacketPtr pkt)
{
assert(!cache->system->bypassCaches());
// always let express snoop packets through if even if blocked
if (pkt->isExpressSnoop()) {
return true;
} else if (isBlocked() || mustSendRetry) {
// either already committed to send a retry, or blocked
mustSendRetry = true;
return false;
}
mustSendRetry = false;
return true;
}
bool
Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
{
assert(!cache->system->bypassCaches());
// always let express snoop packets through if even if blocked
if (pkt->isExpressSnoop()) {
bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
assert(bypass_success);
return true;
}
return tryTiming(pkt) && cache->recvTimingReq(pkt);
}
Tick
Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
{
return cache->recvAtomic(pkt);
}
void
Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
{
// functional request
cache->functionalAccess(pkt, true);
}
Cache::
CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
const std::string &_label)
: BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
{
}
Cache*
CacheParams::create()
{
assert(tags);
return new Cache(this);
}
///////////////
//
// MemSidePort
//
///////////////
bool
Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
{
cache->recvTimingResp(pkt);
return true;
}
// Express snooping requests to memside port
void
Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
{
// handle snooping requests
cache->recvTimingSnoopReq(pkt);
}
Tick
Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
{
return cache->recvAtomicSnoop(pkt);
}
void
Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
{
// functional snoop (note that in contrast to atomic we don't have
// a specific functionalSnoop method, as they have the same
// behaviour regardless)
cache->functionalAccess(pkt, false);
}
void
Cache::CacheReqPacketQueue::sendDeferredPacket()
{
// sanity check
assert(!waitingOnRetry);
// there should never be any deferred request packets in the
// queue, instead we resly on the cache to provide the packets
// from the MSHR queue or write queue
assert(deferredPacketReadyTime() == MaxTick);
// check for request packets (requests & writebacks)
QueueEntry* entry = cache.getNextQueueEntry();
if (!entry) {
// can happen if e.g. we attempt a writeback and fail, but
// before the retry, the writeback is eliminated because
// we snoop another cache's ReadEx.
} else {
// let our snoop responses go first if there are responses to
// the same addresses
if (checkConflictingSnoop(entry->blkAddr)) {
return;
}
waitingOnRetry = entry->sendPacket(cache);
}
// if we succeeded and are not waiting for a retry, schedule the
// next send considering when the next queue is ready, note that
// snoop responses have their own packet queue and thus schedule
// their own events
if (!waitingOnRetry) {
schedSendEvent(cache.nextQueueReadyTime());
}
}
Cache::
MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
const std::string &_label)
: BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
_reqQueue(*_cache, *this, _snoopRespQueue, _label),
_snoopRespQueue(*_cache, *this, _label), cache(_cache)
{
}
|