1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
|
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
* Dave Greene
* Nathan Binkert
* Steve Reinhardt
* Ron Dreslinski
*/
/**
* @file
* Cache definitions.
*/
#include "sim/host.hh"
#include "base/misc.hh"
#include "mem/cache/cache.hh"
#include "mem/cache/cache_blk.hh"
#include "mem/cache/miss/mshr.hh"
#include "mem/cache/prefetch/base_prefetcher.hh"
#include "sim/sim_exit.hh" // for SimExitEvent
template<class TagStore, class Coherence>
Cache<TagStore,Coherence>::Cache(const std::string &_name,
Cache<TagStore,Coherence>::Params ¶ms)
: BaseCache(_name, params.baseParams),
prefetchAccess(params.prefetchAccess),
tags(params.tags),
coherence(params.coherence), prefetcher(params.prefetcher),
doFastWrites(params.doFastWrites),
prefetchMiss(params.prefetchMiss)
{
cpuSidePort = new CpuSidePort(_name + "-cpu_side_port", this);
memSidePort = new MemSidePort(_name + "-mem_side_port", this);
cpuSidePort->setOtherPort(memSidePort);
memSidePort->setOtherPort(cpuSidePort);
tags->setCache(this);
coherence->setCache(this);
prefetcher->setCache(this);
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::regStats()
{
BaseCache::regStats();
tags->regStats(name());
coherence->regStats(name());
prefetcher->regStats(name());
}
template<class TagStore, class Coherence>
Port *
Cache<TagStore,Coherence>::getPort(const std::string &if_name, int idx)
{
if (if_name == "" || if_name == "cpu_side") {
return cpuSidePort;
} else if (if_name == "mem_side") {
return memSidePort;
} else if (if_name == "functional") {
return new CpuSidePort(name() + "-cpu_side_funcport", this);
} else {
panic("Port name %s unrecognized\n", if_name);
}
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::deletePortRefs(Port *p)
{
if (cpuSidePort == p || memSidePort == p)
panic("Can only delete functional ports\n");
delete p;
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::cmpAndSwap(BlkType *blk, PacketPtr pkt)
{
uint64_t overwrite_val;
bool overwrite_mem;
uint64_t condition_val64;
uint32_t condition_val32;
int offset = tags->extractBlkOffset(pkt->getAddr());
uint8_t *blk_data = blk->data + offset;
assert(sizeof(uint64_t) >= pkt->getSize());
overwrite_mem = true;
// keep a copy of our possible write value, and copy what is at the
// memory address into the packet
pkt->writeData((uint8_t *)&overwrite_val);
pkt->setData(blk_data);
if (pkt->req->isCondSwap()) {
if (pkt->getSize() == sizeof(uint64_t)) {
condition_val64 = pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val64, blk_data,
sizeof(uint64_t));
} else if (pkt->getSize() == sizeof(uint32_t)) {
condition_val32 = (uint32_t)pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val32, blk_data,
sizeof(uint32_t));
} else
panic("Invalid size for conditional read/write\n");
}
if (overwrite_mem)
std::memcpy(blk_data, &overwrite_val, pkt->getSize());
}
/////////////////////////////////////////////////////
//
// MSHR helper functions
//
/////////////////////////////////////////////////////
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::markInService(MSHR *mshr)
{
markInServiceInternal(mshr);
#if 0
if (mshr->originalCmd == MemCmd::HardPFReq) {
DPRINTF(HWPrefetch, "%s:Marking a HW_PF in service\n",
name());
//Also clear pending if need be
if (!prefetcher->havePending())
{
deassertMemSideBusRequest(Request_PF);
}
}
#endif
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::squash(int threadNum)
{
bool unblock = false;
BlockedCause cause = NUM_BLOCKED_CAUSES;
if (noTargetMSHR && noTargetMSHR->threadNum == threadNum) {
noTargetMSHR = NULL;
unblock = true;
cause = Blocked_NoTargets;
}
if (mshrQueue.isFull()) {
unblock = true;
cause = Blocked_NoMSHRs;
}
mshrQueue.squash(threadNum);
if (unblock && !mshrQueue.isFull()) {
clearBlocked(cause);
}
}
/////////////////////////////////////////////////////
//
// Access path: requests coming in from the CPU side
//
/////////////////////////////////////////////////////
template<class TagStore, class Coherence>
bool
Cache<TagStore,Coherence>::access(PacketPtr pkt, BlkType *&blk, int &lat)
{
if (pkt->req->isUncacheable()) {
blk = NULL;
lat = hitLatency;
return false;
}
bool satisfied = false; // assume the worst
blk = tags->findBlock(pkt->getAddr(), lat);
if (prefetchAccess) {
//We are determining prefetches on access stream, call prefetcher
prefetcher->handleMiss(pkt, curTick);
}
DPRINTF(Cache, "%s %x %s\n", pkt->cmdString(), pkt->getAddr(),
(blk) ? "hit" : "miss");
if (blk != NULL) {
// HIT
if (blk->isPrefetch()) {
//Signal that this was a hit under prefetch (no need for
//use prefetch (only can get here if true)
DPRINTF(HWPrefetch, "Hit a block that was prefetched\n");
blk->status &= ~BlkHWPrefetched;
if (prefetchMiss) {
//If we are using the miss stream, signal the
//prefetcher otherwise the access stream would have
//already signaled this hit
prefetcher->handleMiss(pkt, curTick);
}
}
if (pkt->needsExclusive() ? blk->isWritable() : blk->isValid()) {
// OK to satisfy access
hits[pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/]++;
satisfied = true;
// Check RMW operations first since both isRead() and
// isWrite() will be true for them
if (pkt->cmd == MemCmd::SwapReq) {
cmpAndSwap(blk, pkt);
} else if (pkt->isWrite()) {
if (blk->checkWrite(pkt)) {
blk->status |= BlkDirty;
pkt->writeDataToBlock(blk->data, blkSize);
}
} else if (pkt->isRead()) {
if (pkt->isLocked()) {
blk->trackLoadLocked(pkt);
}
pkt->setDataFromBlock(blk->data, blkSize);
} else {
// Not a read or write... must be an upgrade. it's OK
// to just ack those as long as we have an exclusive
// copy at this level.
assert(pkt->cmd == MemCmd::UpgradeReq);
}
} else {
// permission violation... nothing to do here, leave unsatisfied
// for statistics purposes this counts like a complete miss
incMissCount(pkt);
}
} else {
// complete miss (no matching block)
incMissCount(pkt);
if (pkt->isLocked() && pkt->isWrite()) {
// miss on store conditional... just give up now
pkt->req->setExtraData(0);
satisfied = true;
}
}
return satisfied;
}
template<class TagStore, class Coherence>
bool
Cache<TagStore,Coherence>::timingAccess(PacketPtr pkt)
{
//@todo Add back in MemDebug Calls
// MemDebug::cacheAccess(pkt);
// we charge hitLatency for doing just about anything here
Tick time = curTick + hitLatency;
if (pkt->memInhibitAsserted()) {
DPRINTF(Cache, "mem inhibited on 0x%x: not responding\n",
pkt->getAddr());
assert(!pkt->req->isUncacheable());
return true;
}
if (pkt->req->isUncacheable()) {
allocateBuffer(pkt, time, true);
assert(pkt->needsResponse()); // else we should delete it here??
return true;
}
int lat = hitLatency;
bool satisfied = false;
Addr blk_addr = pkt->getAddr() & ~(Addr(blkSize-1));
MSHR *mshr = mshrQueue.findMatch(blk_addr);
if (!mshr) {
// no outstanding access to this block, look up in cache
// (otherwise if we allow reads while there's an outstanding
// write miss, the read could return stale data out of the
// cache block... a more aggressive system could detect the
// overlap (if any) and forward data out of the MSHRs, but we
// don't do that yet)
BlkType *blk = NULL;
satisfied = access(pkt, blk, lat);
}
#if 0
PacketList writebacks;
// If this is a block size write/hint (WH64) allocate the block here
// if the coherence protocol allows it.
/** @todo make the fast write alloc (wh64) work with coherence. */
/** @todo Do we want to do fast writes for writebacks as well? */
if (!blk && pkt->getSize() >= blkSize && coherence->allowFastWrites() &&
(pkt->cmd == MemCmd::WriteReq
|| pkt->cmd == MemCmd::WriteInvalidateReq) ) {
// not outstanding misses, can do this
MSHR *outstanding_miss = mshrQueue.findMatch(pkt->getAddr());
if (pkt->cmd == MemCmd::WriteInvalidateReq || !outstanding_miss) {
if (outstanding_miss) {
warn("WriteInv doing a fastallocate"
"with an outstanding miss to the same address\n");
}
blk = handleFill(NULL, pkt, BlkValid | BlkWritable,
writebacks);
++fastWrites;
}
}
// copy writebacks to write buffer
while (!writebacks.empty()) {
PacketPtr wbPkt = writebacks.front();
allocateBuffer(wbPkt, time, true);
writebacks.pop_front();
}
#endif
bool needsResponse = pkt->needsResponse();
if (satisfied) {
assert(needsResponse);
pkt->makeTimingResponse();
cpuSidePort->respond(pkt, curTick+lat);
} else {
// miss
if (prefetchMiss)
prefetcher->handleMiss(pkt, time);
if (mshr) {
// MSHR hit
//@todo remove hw_pf here
mshr_hits[pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/]++;
if (mshr->threadNum != 0/*pkt->req->getThreadNum()*/) {
mshr->threadNum = -1;
}
mshr->allocateTarget(pkt, time, order++);
if (mshr->getNumTargets() == numTarget) {
noTargetMSHR = mshr;
setBlocked(Blocked_NoTargets);
// need to be careful with this... if this mshr isn't
// ready yet (i.e. time > curTick_, we don't want to
// move it ahead of mshrs that are ready
// mshrQueue.moveToFront(mshr);
}
} else {
// no MSHR
mshr_misses[pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/]++;
// always mark as cache fill for now... if we implement
// no-write-allocate or bypass accesses this will have to
// be changed.
allocateMissBuffer(pkt, time, true);
}
}
if (!needsResponse) {
// Need to clean up the packet on a writeback miss, but leave
// the request for the next level.
delete pkt;
}
return true;
}
template<class TagStore, class Coherence>
PacketPtr
Cache<TagStore,Coherence>::getBusPacket(PacketPtr cpu_pkt, BlkType *blk,
bool needsExclusive)
{
bool blkValid = blk && blk->isValid();
if (cpu_pkt->req->isUncacheable()) {
assert(blk == NULL);
return NULL;
}
if (!blkValid &&
(cpu_pkt->cmd == MemCmd::Writeback ||
cpu_pkt->cmd == MemCmd::UpgradeReq)) {
// For now, writebacks from upper-level caches that
// completely miss in the cache just go through. If we had
// "fast write" support (where we could write the whole
// block w/o fetching new data) we might want to allocate
// on writeback misses instead.
return NULL;
}
assert(cpu_pkt->needsResponse());
MemCmd cmd;
const bool useUpgrades = true;
if (blkValid && useUpgrades) {
// only reason to be here is that blk is shared
// (read-only) and we need exclusive
assert(needsExclusive && !blk->isWritable());
cmd = MemCmd::UpgradeReq;
} else {
// block is invalid
cmd = needsExclusive ? MemCmd::ReadExReq : MemCmd::ReadReq;
}
PacketPtr pkt = new Packet(cpu_pkt->req, cmd, Packet::Broadcast, blkSize);
pkt->allocate();
return pkt;
}
template<class TagStore, class Coherence>
Tick
Cache<TagStore,Coherence>::atomicAccess(PacketPtr pkt)
{
int lat = hitLatency;
if (pkt->memInhibitAsserted()) {
DPRINTF(Cache, "mem inhibited on 0x%x: not responding\n",
pkt->getAddr());
assert(!pkt->req->isUncacheable());
return lat;
}
// should assert here that there are no outstanding MSHRs or
// writebacks... that would mean that someone used an atomic
// access in timing mode
BlkType *blk = NULL;
if (!access(pkt, blk, lat)) {
// MISS
PacketPtr busPkt = getBusPacket(pkt, blk, pkt->needsExclusive());
bool isCacheFill = (busPkt != NULL);
if (busPkt == NULL) {
// just forwarding the same request to the next level
// no local cache operation involved
busPkt = pkt;
}
DPRINTF(Cache, "Sending an atomic %s for %x\n",
busPkt->cmdString(), busPkt->getAddr());
#if TRACING_ON
CacheBlk::State old_state = blk ? blk->status : 0;
#endif
lat += memSidePort->sendAtomic(busPkt);
DPRINTF(Cache, "Receive response: %s for addr %x in state %i\n",
busPkt->cmdString(), busPkt->getAddr(), old_state);
if (isCacheFill) {
PacketList writebacks;
blk = handleFill(busPkt, blk, writebacks);
satisfyCpuSideRequest(pkt, blk);
delete busPkt;
// Handle writebacks if needed
while (!writebacks.empty()){
PacketPtr wbPkt = writebacks.front();
memSidePort->sendAtomic(wbPkt);
writebacks.pop_front();
delete wbPkt;
}
}
}
// We now have the block one way or another (hit or completed miss)
if (pkt->needsResponse()) {
pkt->makeAtomicResponse();
pkt->result = Packet::Success;
}
return lat;
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::functionalAccess(PacketPtr pkt,
CachePort *otherSidePort)
{
Addr blk_addr = pkt->getAddr() & ~(blkSize - 1);
BlkType *blk = tags->findBlock(pkt->getAddr());
if (blk && pkt->checkFunctional(blk_addr, blkSize, blk->data)) {
// request satisfied from block
return;
}
// Need to check for outstanding misses and writes
// There can only be one matching outstanding miss.
MSHR *mshr = mshrQueue.findMatch(blk_addr);
if (mshr) {
MSHR::TargetList *targets = mshr->getTargetList();
MSHR::TargetList::iterator i = targets->begin();
MSHR::TargetList::iterator end = targets->end();
for (; i != end; ++i) {
PacketPtr targetPkt = i->pkt;
if (pkt->checkFunctional(targetPkt))
return;
}
}
// There can be many matching outstanding writes.
std::vector<MSHR*> writes;
assert(!writeBuffer.findMatches(blk_addr, writes));
/* Need to change this to iterate through targets in mshr??
for (int i = 0; i < writes.size(); ++i) {
MSHR *mshr = writes[i];
if (pkt->checkFunctional(mshr->addr, mshr->size, mshr->writeData))
return;
}
*/
otherSidePort->checkAndSendFunctional(pkt);
}
/////////////////////////////////////////////////////
//
// Response handling: responses from the memory side
//
/////////////////////////////////////////////////////
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::satisfyCpuSideRequest(PacketPtr pkt, BlkType *blk)
{
assert(blk);
assert(pkt->needsExclusive() ? blk->isWritable() : blk->isValid());
assert(pkt->isWrite() || pkt->isReadWrite() || pkt->isRead());
assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
if (pkt->isWrite()) {
if (blk->checkWrite(pkt)) {
blk->status |= BlkDirty;
pkt->writeDataToBlock(blk->data, blkSize);
}
} else if (pkt->isReadWrite()) {
cmpAndSwap(blk, pkt);
} else {
if (pkt->isLocked()) {
blk->trackLoadLocked(pkt);
}
pkt->setDataFromBlock(blk->data, blkSize);
}
}
template<class TagStore, class Coherence>
bool
Cache<TagStore,Coherence>::satisfyMSHR(MSHR *mshr, PacketPtr pkt,
BlkType *blk)
{
// respond to MSHR targets, if any
// First offset for critical word first calculations
int initial_offset = 0;
if (mshr->hasTargets()) {
initial_offset = mshr->getTarget()->pkt->getOffset(blkSize);
}
while (mshr->hasTargets()) {
MSHR::Target *target = mshr->getTarget();
if (target->isCpuSide()) {
satisfyCpuSideRequest(target->pkt, blk);
// How many bytes pass the first request is this one
int transfer_offset =
target->pkt->getOffset(blkSize) - initial_offset;
if (transfer_offset < 0) {
transfer_offset += blkSize;
}
// If critical word (no offset) return first word time
Tick completion_time = tags->getHitLatency() +
transfer_offset ? pkt->finishTime : pkt->firstWordTime;
if (!target->pkt->req->isUncacheable()) {
missLatency[target->pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/] +=
completion_time - target->time;
}
target->pkt->makeTimingResponse();
cpuSidePort->respond(target->pkt, completion_time);
} else {
// response to snoop request
DPRINTF(Cache, "processing deferred snoop...\n");
handleSnoop(target->pkt, blk, true, true);
}
mshr->popTarget();
}
if (mshr->promoteDeferredTargets()) {
MSHRQueue *mq = mshr->queue;
mq->markPending(mshr);
requestMemSideBus((RequestCause)mq->index, pkt->finishTime);
return false;
}
return true;
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::handleResponse(PacketPtr pkt)
{
Tick time = curTick + hitLatency;
MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
assert(mshr);
if (pkt->result == Packet::Nacked) {
//pkt->reinitFromRequest();
warn("NACKs from devices not connected to the same bus "
"not implemented\n");
return;
}
assert(pkt->result != Packet::BadAddress);
assert(pkt->result == Packet::Success);
DPRINTF(Cache, "Handling response to %x\n", pkt->getAddr());
MSHRQueue *mq = mshr->queue;
bool wasFull = mq->isFull();
if (mshr == noTargetMSHR) {
// we always clear at least one target
clearBlocked(Blocked_NoTargets);
noTargetMSHR = NULL;
}
// Can we deallocate MSHR when done?
bool deallocate = false;
if (mshr->isCacheFill) {
#if 0
mshr_miss_latency[mshr->originalCmd.toInt()][0/*pkt->req->getThreadNum()*/] +=
curTick - pkt->time;
#endif
DPRINTF(Cache, "Block for addr %x being updated in Cache\n",
pkt->getAddr());
BlkType *blk = tags->findBlock(pkt->getAddr());
if (!mshr->handleFill(pkt, blk)) {
mq->markPending(mshr);
requestMemSideBus((RequestCause)mq->index, pkt->finishTime);
return;
}
PacketList writebacks;
blk = handleFill(pkt, blk, writebacks);
deallocate = satisfyMSHR(mshr, pkt, blk);
// copy writebacks to write buffer
while (!writebacks.empty()) {
PacketPtr wbPkt = writebacks.front();
allocateBuffer(wbPkt, time, true);
writebacks.pop_front();
}
} else {
if (pkt->req->isUncacheable()) {
mshr_uncacheable_lat[pkt->cmd.toInt()][0/*pkt->req->getThreadNum()*/] +=
curTick - pkt->time;
}
while (mshr->hasTargets()) {
MSHR::Target *target = mshr->getTarget();
assert(target->isCpuSide());
mshr->popTarget();
if (pkt->isRead()) {
target->pkt->setData(pkt->getPtr<uint8_t>());
}
cpuSidePort->respond(target->pkt, time);
}
assert(!mshr->hasTargets());
deallocate = true;
}
if (deallocate) {
mq->deallocate(mshr);
if (wasFull && !mq->isFull()) {
clearBlocked((BlockedCause)mq->index);
}
}
}
template<class TagStore, class Coherence>
PacketPtr
Cache<TagStore,Coherence>::writebackBlk(BlkType *blk)
{
assert(blk && blk->isValid() && blk->isDirty());
writebacks[0/*pkt->req->getThreadNum()*/]++;
Request *writebackReq =
new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0);
PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback, -1);
writeback->allocate();
std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
blk->status &= ~BlkDirty;
return writeback;
}
// Note that the reason we return a list of writebacks rather than
// inserting them directly in the write buffer is that this function
// is called by both atomic and timing-mode accesses, and in atomic
// mode we don't mess with the write buffer (we just perform the
// writebacks atomically once the original request is complete).
template<class TagStore, class Coherence>
typename Cache<TagStore,Coherence>::BlkType*
Cache<TagStore,Coherence>::handleFill(PacketPtr pkt, BlkType *blk,
PacketList &writebacks)
{
Addr addr = pkt->getAddr();
if (blk == NULL) {
// better have read new data...
assert(pkt->isRead());
// need to do a replacement
blk = tags->findReplacement(addr, writebacks);
if (blk->isValid()) {
Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
MSHR *repl_mshr = mshrQueue.findMatch(repl_addr);
if (repl_mshr) {
repl_mshr->handleReplacement(blk, blkSize);
}
DPRINTF(Cache, "replacement: replacing %x with %x: %s\n",
repl_addr, addr, blk->isDirty() ? "writeback" : "clean");
if (blk->isDirty()) {
// Save writeback packet for handling by caller
writebacks.push_back(writebackBlk(blk));
}
}
blk->tag = tags->extractTag(addr);
blk->status = coherence->getNewState(pkt);
} else {
// existing block... probably an upgrade
assert(blk->tag == tags->extractTag(addr));
// either we're getting new data or the block should already be valid
assert(pkt->isRead() || blk->isValid());
CacheBlk::State old_state = blk->status;
blk->status = coherence->getNewState(pkt, old_state);
if (blk->status != old_state)
DPRINTF(Cache, "Block addr %x moving from state %i to %i\n",
addr, old_state, blk->status);
else
warn("Changing state to same value\n");
}
// if we got new data, copy it in
if (pkt->isRead()) {
std::memcpy(blk->data, pkt->getPtr<uint8_t>(), blkSize);
}
blk->whenReady = pkt->finishTime;
return blk;
}
/////////////////////////////////////////////////////
//
// Snoop path: requests coming in from the memory side
//
/////////////////////////////////////////////////////
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::doTimingSupplyResponse(PacketPtr req_pkt,
uint8_t *blk_data,
bool already_copied)
{
// timing-mode snoop responses require a new packet, unless we
// already made a copy...
PacketPtr pkt = already_copied ? req_pkt : new Packet(req_pkt);
pkt->allocate();
pkt->makeTimingResponse();
pkt->setDataFromBlock(blk_data, blkSize);
memSidePort->respond(pkt, curTick + hitLatency);
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::handleSnoop(PacketPtr pkt, BlkType *blk,
bool is_timing, bool is_deferred)
{
if (!blk || !blk->isValid()) {
return;
}
// we may end up modifying both the block state and the packet (if
// we respond in atomic mode), so just figure out what to do now
// and then do it later
bool supply = blk->isDirty() && pkt->isRead();
bool invalidate = pkt->isInvalidate();
if (pkt->isRead() && !pkt->isInvalidate()) {
assert(!pkt->needsExclusive());
pkt->assertShared();
int bits_to_clear = BlkWritable;
const bool haveOwnershipState = true; // for now
if (!haveOwnershipState) {
// if we don't support pure ownership (dirty && !writable),
// have to clear dirty bit here, assume memory snarfs data
// on cache-to-cache xfer
bits_to_clear |= BlkDirty;
}
blk->status &= ~bits_to_clear;
}
if (supply) {
assert(!pkt->memInhibitAsserted());
pkt->assertMemInhibit();
if (is_timing) {
doTimingSupplyResponse(pkt, blk->data, is_deferred);
} else {
pkt->makeAtomicResponse();
pkt->setDataFromBlock(blk->data, blkSize);
}
}
// Do this last in case it deallocates block data or something
// like that
if (invalidate) {
tags->invalidateBlk(blk);
}
DPRINTF(Cache, "snooped a %s request for addr %x, %snew state is %i\n",
pkt->cmdString(), blockAlign(pkt->getAddr()),
supply ? "supplying data, " : "", blk->status);
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::snoopTiming(PacketPtr pkt)
{
if (pkt->req->isUncacheable()) {
//Can't get a hit on an uncacheable address
//Revisit this for multi level coherence
return;
}
BlkType *blk = tags->findBlock(pkt->getAddr());
Addr blk_addr = pkt->getAddr() & ~(Addr(blkSize-1));
MSHR *mshr = mshrQueue.findMatch(blk_addr);
// better not be snooping a request that conflicts with something
// we have outstanding...
if (mshr && mshr->inService) {
DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %x\n",
blk_addr);
mshr->allocateSnoopTarget(pkt, curTick, order++);
if (mshr->getNumTargets() > numTarget)
warn("allocating bonus target for snoop"); //handle later
return;
}
//We also need to check the writeback buffers and handle those
std::vector<MSHR *> writebacks;
if (writeBuffer.findMatches(blk_addr, writebacks)) {
DPRINTF(Cache, "Snoop hit in writeback to addr: %x\n",
pkt->getAddr());
//Look through writebacks for any non-uncachable writes, use that
for (int i=0; i<writebacks.size(); i++) {
mshr = writebacks[i];
assert(!mshr->isUncacheable());
assert(mshr->getNumTargets() == 1);
PacketPtr wb_pkt = mshr->getTarget()->pkt;
assert(wb_pkt->cmd == MemCmd::Writeback);
if (pkt->isRead()) {
assert(!pkt->memInhibitAsserted());
pkt->assertMemInhibit();
if (!pkt->needsExclusive()) {
pkt->assertShared();
} else {
// if we're not asserting the shared line, we need to
// invalidate our copy. we'll do that below as long as
// the packet's invalidate flag is set...
assert(pkt->isInvalidate());
}
doTimingSupplyResponse(pkt, wb_pkt->getPtr<uint8_t>(), false);
}
if (pkt->isInvalidate()) {
// Invalidation trumps our writeback... discard here
markInService(mshr);
}
return;
}
}
handleSnoop(pkt, blk, true, false);
}
template<class TagStore, class Coherence>
Tick
Cache<TagStore,Coherence>::snoopAtomic(PacketPtr pkt)
{
if (pkt->req->isUncacheable()) {
// Can't get a hit on an uncacheable address
// Revisit this for multi level coherence
return hitLatency;
}
BlkType *blk = tags->findBlock(pkt->getAddr());
handleSnoop(pkt, blk, false, false);
return hitLatency;
}
template<class TagStore, class Coherence>
MSHR *
Cache<TagStore,Coherence>::getNextMSHR()
{
// Check both MSHR queue and write buffer for potential requests
MSHR *miss_mshr = mshrQueue.getNextMSHR();
MSHR *write_mshr = writeBuffer.getNextMSHR();
// Now figure out which one to send... some cases are easy
if (miss_mshr && !write_mshr) {
return miss_mshr;
}
if (write_mshr && !miss_mshr) {
return write_mshr;
}
if (miss_mshr && write_mshr) {
// We have one of each... normally we favor the miss request
// unless the write buffer is full
if (writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) {
// Write buffer is full, so we'd like to issue a write;
// need to search MSHR queue for conflicting earlier miss.
MSHR *conflict_mshr =
mshrQueue.findPending(write_mshr->addr, write_mshr->size);
if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
// Service misses in order until conflict is cleared.
return conflict_mshr;
}
// No conflicts; issue write
return write_mshr;
}
// Write buffer isn't full, but need to check it for
// conflicting earlier writeback
MSHR *conflict_mshr =
writeBuffer.findPending(miss_mshr->addr, miss_mshr->size);
if (conflict_mshr) {
// not sure why we don't check order here... it was in the
// original code but commented out.
// The only way this happens is if we are
// doing a write and we didn't have permissions
// then subsequently saw a writeback (owned got evicted)
// We need to make sure to perform the writeback first
// To preserve the dirty data, then we can issue the write
// should we return write_mshr here instead? I.e. do we
// have to flush writes in order? I don't think so... not
// for Alpha anyway. Maybe for x86?
return conflict_mshr;
}
// No conflicts; issue read
return miss_mshr;
}
// fall through... no pending requests. Try a prefetch.
assert(!miss_mshr && !write_mshr);
if (!mshrQueue.isFull()) {
// If we have a miss queue slot, we can try a prefetch
PacketPtr pkt = prefetcher->getPacket();
if (pkt) {
// Update statistic on number of prefetches issued
// (hwpf_mshr_misses)
mshr_misses[pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/]++;
// Don't request bus, since we already have it
return allocateMissBuffer(pkt, curTick, false);
}
}
return NULL;
}
template<class TagStore, class Coherence>
PacketPtr
Cache<TagStore,Coherence>::getTimingPacket()
{
MSHR *mshr = getNextMSHR();
if (mshr == NULL) {
return NULL;
}
// use request from 1st target
PacketPtr tgt_pkt = mshr->getTarget()->pkt;
PacketPtr pkt = NULL;
if (mshr->isSimpleForward()) {
// no response expected, just forward packet as it is
assert(tags->findBlock(mshr->addr) == NULL);
pkt = tgt_pkt;
} else {
BlkType *blk = tags->findBlock(mshr->addr);
pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive);
mshr->isCacheFill = (pkt != NULL);
if (pkt == NULL) {
// not a cache block request, but a response is expected
assert(!mshr->isSimpleForward());
// make copy of current packet to forward, keep current
// copy for response handling
pkt = new Packet(tgt_pkt);
pkt->allocate();
if (pkt->isWrite()) {
pkt->setData(tgt_pkt->getPtr<uint8_t>());
}
}
}
assert(pkt != NULL);
pkt->senderState = mshr;
return pkt;
}
///////////////
//
// CpuSidePort
//
///////////////
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::CpuSidePort::
getDeviceAddressRanges(AddrRangeList &resp, bool &snoop)
{
// CPU side port doesn't snoop; it's a target only.
bool dummy;
otherPort->getPeerAddressRanges(resp, dummy);
snoop = false;
}
template<class TagStore, class Coherence>
bool
Cache<TagStore,Coherence>::CpuSidePort::recvTiming(PacketPtr pkt)
{
if (pkt->isRequest() && blocked) {
DPRINTF(Cache,"Scheduling a retry while blocked\n");
mustSendRetry = true;
return false;
}
myCache()->timingAccess(pkt);
return true;
}
template<class TagStore, class Coherence>
Tick
Cache<TagStore,Coherence>::CpuSidePort::recvAtomic(PacketPtr pkt)
{
return myCache()->atomicAccess(pkt);
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::CpuSidePort::recvFunctional(PacketPtr pkt)
{
checkFunctional(pkt);
if (pkt->result != Packet::Success)
myCache()->functionalAccess(pkt, cache->memSidePort);
}
template<class TagStore, class Coherence>
Cache<TagStore,Coherence>::
CpuSidePort::CpuSidePort(const std::string &_name,
Cache<TagStore,Coherence> *_cache)
: BaseCache::CachePort(_name, _cache)
{
}
///////////////
//
// MemSidePort
//
///////////////
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::MemSidePort::
getDeviceAddressRanges(AddrRangeList &resp, bool &snoop)
{
otherPort->getPeerAddressRanges(resp, snoop);
// Memory-side port always snoops, so unconditionally set flag for
// caller.
snoop = true;
}
template<class TagStore, class Coherence>
bool
Cache<TagStore,Coherence>::MemSidePort::recvTiming(PacketPtr pkt)
{
// this needs to be fixed so that the cache updates the mshr and sends the
// packet back out on the link, but it probably won't happen so until this
// gets fixed, just panic when it does
if (pkt->result == Packet::Nacked)
panic("Need to implement cache resending nacked packets!\n");
if (pkt->isRequest() && blocked) {
DPRINTF(Cache,"Scheduling a retry while blocked\n");
mustSendRetry = true;
return false;
}
if (pkt->isResponse()) {
myCache()->handleResponse(pkt);
} else {
myCache()->snoopTiming(pkt);
}
return true;
}
template<class TagStore, class Coherence>
Tick
Cache<TagStore,Coherence>::MemSidePort::recvAtomic(PacketPtr pkt)
{
// in atomic mode, responses go back to the sender via the
// function return from sendAtomic(), not via a separate
// sendAtomic() from the responder. Thus we should never see a
// response packet in recvAtomic() (anywhere, not just here).
assert(!pkt->isResponse());
return myCache()->snoopAtomic(pkt);
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::MemSidePort::recvFunctional(PacketPtr pkt)
{
checkFunctional(pkt);
if (pkt->result != Packet::Success)
myCache()->functionalAccess(pkt, cache->cpuSidePort);
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::MemSidePort::sendPacket()
{
// if we have responses that are ready, they take precedence
if (deferredPacketReady()) {
bool success = sendTiming(transmitList.front().pkt);
if (success) {
//send successful, remove packet
transmitList.pop_front();
}
waitingOnRetry = !success;
} else {
// check for non-response packets (requests & writebacks)
PacketPtr pkt = myCache()->getTimingPacket();
if (pkt == NULL) {
// can happen if e.g. we attempt a writeback and fail, but
// before the retry, the writeback is eliminated because
// we snoop another cache's ReadEx.
waitingOnRetry = false;
} else {
MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
bool success = sendTiming(pkt);
DPRINTF(Cache, "Address %x was %s in sending the timing request\n",
pkt->getAddr(), success ? "successful" : "unsuccessful");
waitingOnRetry = !success;
if (waitingOnRetry) {
DPRINTF(CachePort, "now waiting on a retry\n");
} else {
myCache()->markInService(mshr);
}
}
}
// tried to send packet... if it was successful (no retry), see if
// we need to rerequest bus or not
if (!waitingOnRetry) {
Tick nextReady = std::min(deferredPacketReadyTick(),
myCache()->nextMSHRReadyTick());
// @TODO: need to facotr in prefetch requests here somehow
if (nextReady != MaxTick) {
DPRINTF(CachePort, "more packets to send @ %d\n", nextReady);
sendEvent->schedule(std::max(nextReady, curTick + 1));
} else {
// no more to send right now: if we're draining, we may be done
if (drainEvent) {
drainEvent->process();
drainEvent = NULL;
}
}
}
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::MemSidePort::recvRetry()
{
assert(waitingOnRetry);
sendPacket();
}
template<class TagStore, class Coherence>
void
Cache<TagStore,Coherence>::MemSidePort::processSendEvent()
{
assert(!waitingOnRetry);
sendPacket();
}
template<class TagStore, class Coherence>
Cache<TagStore,Coherence>::
MemSidePort::MemSidePort(const std::string &_name,
Cache<TagStore,Coherence> *_cache)
: BaseCache::CachePort(_name, _cache)
{
// override default send event from SimpleTimingPort
delete sendEvent;
sendEvent = new SendEvent(this);
}
|