1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/**
* Copyright (c) 2018 Metempsy Technology Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Javier Bueno
*/
#include "mem/cache/prefetch/signature_path.hh"
#include <cassert>
#include <climits>
#include "debug/HWPrefetch.hh"
#include "mem/cache/prefetch/associative_set_impl.hh"
#include "params/SignaturePathPrefetcher.hh"
SignaturePathPrefetcher::SignaturePathPrefetcher(
const SignaturePathPrefetcherParams *p)
: QueuedPrefetcher(p),
stridesPerPatternEntry(p->strides_per_pattern_entry),
signatureShift(p->signature_shift),
signatureBits(p->signature_bits),
prefetchConfidenceThreshold(p->prefetch_confidence_threshold),
lookaheadConfidenceThreshold(p->lookahead_confidence_threshold),
signatureTable(p->signature_table_assoc, p->signature_table_entries,
p->signature_table_indexing_policy,
p->signature_table_replacement_policy),
patternTable(p->pattern_table_assoc, p->pattern_table_entries,
p->pattern_table_indexing_policy,
p->pattern_table_replacement_policy,
PatternEntry(stridesPerPatternEntry, p->num_counter_bits))
{
fatal_if(prefetchConfidenceThreshold < 0,
"The prefetch confidence threshold must be greater than 0\n");
fatal_if(prefetchConfidenceThreshold > 1,
"The prefetch confidence threshold must be less than 1\n");
fatal_if(lookaheadConfidenceThreshold < 0,
"The lookahead confidence threshold must be greater than 0\n");
fatal_if(lookaheadConfidenceThreshold > 1,
"The lookahead confidence threshold must be less than 1\n");
}
SignaturePathPrefetcher::PatternStrideEntry &
SignaturePathPrefetcher::PatternEntry::getStrideEntry(stride_t stride)
{
PatternStrideEntry *pstride_entry = findStride(stride);
if (pstride_entry == nullptr) {
// Specific replacement algorithm for this table,
// pick the entry with the lowest counter value,
// then decrease the counter of all entries
// If all counters have the max value, this will be the pick
PatternStrideEntry *victim_pstride_entry = &(strideEntries[0]);
unsigned long current_counter = ULONG_MAX;
for (auto &entry : strideEntries) {
if (entry.counter < current_counter) {
victim_pstride_entry = &entry;
current_counter = entry.counter;
}
entry.counter--;
}
pstride_entry = victim_pstride_entry;
pstride_entry->counter.reset();
pstride_entry->stride = stride;
}
return *pstride_entry;
}
void
SignaturePathPrefetcher::addPrefetch(Addr ppn, stride_t last_block,
stride_t delta, double path_confidence, signature_t signature,
bool is_secure, std::vector<AddrPriority> &addresses)
{
stride_t block = last_block + delta;
Addr pf_ppn;
stride_t pf_block;
if (block < 0) {
stride_t num_cross_pages = 1 + (-block) / (pageBytes/blkSize);
if (num_cross_pages > ppn) {
// target address smaller than page 0, ignore this request;
return;
}
pf_ppn = ppn - num_cross_pages;
pf_block = block + (pageBytes/blkSize) * num_cross_pages;
handlePageCrossingLookahead(signature, last_block, delta,
path_confidence);
} else if (block >= (pageBytes/blkSize)) {
stride_t num_cross_pages = block / (pageBytes/blkSize);
if (MaxAddr/pageBytes < (ppn + num_cross_pages)) {
// target address goes beyond MaxAddr, ignore this request;
return;
}
pf_ppn = ppn + num_cross_pages;
pf_block = block - (pageBytes/blkSize) * num_cross_pages;
handlePageCrossingLookahead(signature, last_block, delta,
path_confidence);
} else {
pf_ppn = ppn;
pf_block = block;
}
Addr new_addr = pf_ppn * pageBytes;
new_addr += pf_block * (Addr)blkSize;
DPRINTF(HWPrefetch, "Queuing prefetch to %#x.\n", new_addr);
addresses.push_back(AddrPriority(new_addr, 0));
}
void
SignaturePathPrefetcher::handleSignatureTableMiss(stride_t current_block,
signature_t &new_signature, double &new_conf, stride_t &new_stride)
{
new_signature = current_block;
new_conf = 1.0;
new_stride = current_block;
}
void
SignaturePathPrefetcher::increasePatternEntryCounter(
PatternEntry &pattern_entry, PatternStrideEntry &pstride_entry)
{
pstride_entry.counter++;
}
void
SignaturePathPrefetcher::updatePatternTable(Addr signature, stride_t stride)
{
assert(stride != 0);
// The pattern table is indexed by signatures
PatternEntry &p_entry = getPatternEntry(signature);
PatternStrideEntry &ps_entry = p_entry.getStrideEntry(stride);
increasePatternEntryCounter(p_entry, ps_entry);
}
SignaturePathPrefetcher::SignatureEntry &
SignaturePathPrefetcher::getSignatureEntry(Addr ppn, bool is_secure,
stride_t block, bool &miss, stride_t &stride,
double &initial_confidence)
{
SignatureEntry* signature_entry = signatureTable.findEntry(ppn, is_secure);
if (signature_entry != nullptr) {
signatureTable.accessEntry(signature_entry);
miss = false;
stride = block - signature_entry->lastBlock;
} else {
signature_entry = signatureTable.findVictim(ppn);
assert(signature_entry != nullptr);
// Sets signature_entry->signature, initial_confidence, and stride
handleSignatureTableMiss(block, signature_entry->signature,
initial_confidence, stride);
signatureTable.insertEntry(ppn, is_secure, signature_entry);
miss = true;
}
signature_entry->lastBlock = block;
return *signature_entry;
}
SignaturePathPrefetcher::PatternEntry &
SignaturePathPrefetcher::getPatternEntry(Addr signature)
{
PatternEntry* pattern_entry = patternTable.findEntry(signature, false);
if (pattern_entry != nullptr) {
// Signature found
patternTable.accessEntry(pattern_entry);
} else {
// Signature not found
pattern_entry = patternTable.findVictim(signature);
assert(pattern_entry != nullptr);
patternTable.insertEntry(signature, false, pattern_entry);
}
return *pattern_entry;
}
double
SignaturePathPrefetcher::calculatePrefetchConfidence(PatternEntry const &sig,
PatternStrideEntry const &entry) const
{
return entry.counter.calcSaturation();
}
double
SignaturePathPrefetcher::calculateLookaheadConfidence(PatternEntry const &sig,
PatternStrideEntry const &lookahead) const
{
double lookahead_confidence = lookahead.counter.calcSaturation();
if (lookahead_confidence > 0.95) {
/**
* maximum confidence is 0.95, guaranteeing that
* current confidence will eventually fall beyond
* the threshold
*/
lookahead_confidence = 0.95;
}
return lookahead_confidence;
}
void
SignaturePathPrefetcher::calculatePrefetch(const PrefetchInfo &pfi,
std::vector<AddrPriority> &addresses)
{
Addr request_addr = pfi.getAddr();
Addr ppn = request_addr / pageBytes;
stride_t current_block = (request_addr % pageBytes) / blkSize;
stride_t stride;
bool is_secure = pfi.isSecure();
double initial_confidence = 1.0;
// Get the SignatureEntry of this page to:
// - compute the current stride
// - obtain the current signature of accesses
bool miss;
SignatureEntry &signature_entry = getSignatureEntry(ppn, is_secure,
current_block, miss, stride, initial_confidence);
if (miss) {
// No history for this page, can't continue
return;
}
if (stride == 0) {
// Can't continue with a stride 0
return;
}
// Update the confidence of the current signature
updatePatternTable(signature_entry.signature, stride);
// Update the current SignatureEntry signature
signature_entry.signature =
updateSignature(signature_entry.signature, stride);
signature_t current_signature = signature_entry.signature;
double current_confidence = initial_confidence;
stride_t current_stride = signature_entry.lastBlock;
// Look for prefetch candidates while the current path confidence is
// high enough
while (current_confidence > lookaheadConfidenceThreshold) {
// With the updated signature, attempt to generate prefetches
// - search the PatternTable and select all entries with enough
// confidence, these are prefetch candidates
// - select the entry with the highest counter as the "lookahead"
PatternEntry *current_pattern_entry =
patternTable.findEntry(current_signature, false);
PatternStrideEntry const *lookahead = nullptr;
if (current_pattern_entry != nullptr) {
unsigned long max_counter = 0;
for (auto const &entry : current_pattern_entry->strideEntries) {
//select the entry with the maximum counter value as lookahead
if (max_counter < entry.counter) {
max_counter = entry.counter;
lookahead = &entry;
}
double prefetch_confidence =
calculatePrefetchConfidence(*current_pattern_entry, entry);
if (prefetch_confidence >= prefetchConfidenceThreshold) {
assert(entry.stride != 0);
//prefetch candidate
addPrefetch(ppn, current_stride, entry.stride,
current_confidence, current_signature,
is_secure, addresses);
}
}
}
if (lookahead != nullptr) {
current_confidence *= calculateLookaheadConfidence(
*current_pattern_entry, *lookahead);
current_signature =
updateSignature(current_signature, lookahead->stride);
current_stride += lookahead->stride;
} else {
current_confidence = 0.0;
}
}
auxiliaryPrefetcher(ppn, current_block, is_secure, addresses);
}
void
SignaturePathPrefetcher::auxiliaryPrefetcher(Addr ppn, stride_t current_block,
bool is_secure, std::vector<AddrPriority> &addresses)
{
if (addresses.empty()) {
// Enable the next line prefetcher if no prefetch candidates are found
addPrefetch(ppn, current_block, 1, 0.0 /* unused*/, 0 /* unused */,
is_secure, addresses);
}
}
SignaturePathPrefetcher*
SignaturePathPrefetcherParams::create()
{
return new SignaturePathPrefetcher(this);
}
|