summaryrefslogtreecommitdiff
path: root/src/mem/coherent_xbar.cc
blob: 713c6421b011c996ffd132665bb0a96d63062995 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
/*
 * Copyright (c) 2011-2019 ARM Limited
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2006 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Ali Saidi
 *          Andreas Hansson
 *          William Wang
 *          Nikos Nikoleris
 */

/**
 * @file
 * Definition of a crossbar object.
 */

#include "mem/coherent_xbar.hh"

#include "base/logging.hh"
#include "base/trace.hh"
#include "debug/AddrRanges.hh"
#include "debug/CoherentXBar.hh"
#include "sim/system.hh"

CoherentXBar::CoherentXBar(const CoherentXBarParams *p)
    : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter),
      snoopResponseLatency(p->snoop_response_latency),
      maxOutstandingSnoopCheck(p->max_outstanding_snoops),
      maxRoutingTableSizeCheck(p->max_routing_table_size),
      pointOfCoherency(p->point_of_coherency),
      pointOfUnification(p->point_of_unification),

      snoops(this, "snoops", "Total snoops (count)"),
      snoopTraffic(this, "snoopTraffic", "Total snoop traffic (bytes)"),
      snoopFanout(this, "snoop_fanout", "Request fanout histogram")
{
    // create the ports based on the size of the master and slave
    // vector ports, and the presence of the default port, the ports
    // are enumerated starting from zero
    for (int i = 0; i < p->port_master_connection_count; ++i) {
        std::string portName = csprintf("%s.master[%d]", name(), i);
        MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i);
        masterPorts.push_back(bp);
        reqLayers.push_back(new ReqLayer(*bp, *this,
                                         csprintf("reqLayer%d", i)));
        snoopLayers.push_back(
                new SnoopRespLayer(*bp, *this, csprintf("snoopLayer%d", i)));
    }

    // see if we have a default slave device connected and if so add
    // our corresponding master port
    if (p->port_default_connection_count) {
        defaultPortID = masterPorts.size();
        std::string portName = name() + ".default";
        MasterPort* bp = new CoherentXBarMasterPort(portName, *this,
                                                    defaultPortID);
        masterPorts.push_back(bp);
        reqLayers.push_back(new ReqLayer(*bp, *this, csprintf("reqLayer%d",
                                         defaultPortID)));
        snoopLayers.push_back(new SnoopRespLayer(*bp, *this,
                                                 csprintf("snoopLayer%d",
                                                          defaultPortID)));
    }

    // create the slave ports, once again starting at zero
    for (int i = 0; i < p->port_slave_connection_count; ++i) {
        std::string portName = csprintf("%s.slave[%d]", name(), i);
        QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i);
        slavePorts.push_back(bp);
        respLayers.push_back(new RespLayer(*bp, *this,
                                           csprintf("respLayer%d", i)));
        snoopRespPorts.push_back(new SnoopRespPort(*bp, *this));
    }
}

CoherentXBar::~CoherentXBar()
{
    for (auto l: reqLayers)
        delete l;
    for (auto l: respLayers)
        delete l;
    for (auto l: snoopLayers)
        delete l;
    for (auto p: snoopRespPorts)
        delete p;
}

void
CoherentXBar::init()
{
    BaseXBar::init();

    // iterate over our slave ports and determine which of our
    // neighbouring master ports are snooping and add them as snoopers
    for (const auto& p: slavePorts) {
        // check if the connected master port is snooping
        if (p->isSnooping()) {
            DPRINTF(AddrRanges, "Adding snooping master %s\n", p->getPeer());
            snoopPorts.push_back(p);
        }
    }

    if (snoopPorts.empty())
        warn("CoherentXBar %s has no snooping ports attached!\n", name());

    // inform the snoop filter about the slave ports so it can create
    // its own internal representation
    if (snoopFilter)
        snoopFilter->setSlavePorts(slavePorts);
}

bool
CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
{
    // determine the source port based on the id
    SlavePort *src_port = slavePorts[slave_port_id];

    // remember if the packet is an express snoop
    bool is_express_snoop = pkt->isExpressSnoop();
    bool cache_responding = pkt->cacheResponding();
    // for normal requests, going downstream, the express snoop flag
    // and the cache responding flag should always be the same
    assert(is_express_snoop == cache_responding);

    // determine the destination based on the destination address range
    PortID master_port_id = findPort(pkt->getAddrRange());

    // test if the crossbar should be considered occupied for the current
    // port, and exclude express snoops from the check
    if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) {
        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
                src_port->name(), pkt->print());
        return false;
    }

    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
            src_port->name(), pkt->print());

    // store size and command as they might be modified when
    // forwarding the packet
    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
    unsigned int pkt_cmd = pkt->cmdToIndex();

    // store the old header delay so we can restore it if needed
    Tick old_header_delay = pkt->headerDelay;

    // a request sees the frontend and forward latency
    Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();

    // set the packet header and payload delay
    calcPacketTiming(pkt, xbar_delay);

    // determine how long to be crossbar layer is busy
    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;

    // is this the destination point for this packet? (e.g. true if
    // this xbar is the PoC for a cache maintenance operation to the
    // PoC) otherwise the destination is any cache that can satisfy
    // the request
    const bool is_destination = isDestination(pkt);

    const bool snoop_caches = !system->bypassCaches() &&
        pkt->cmd != MemCmd::WriteClean;
    if (snoop_caches) {
        assert(pkt->snoopDelay == 0);

        if (pkt->isClean() && !is_destination) {
            // before snooping we need to make sure that the memory
            // below is not busy and the cache clean request can be
            // forwarded to it
            if (!masterPorts[master_port_id]->tryTiming(pkt)) {
                DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
                        src_port->name(), pkt->print());

                // update the layer state and schedule an idle event
                reqLayers[master_port_id]->failedTiming(src_port,
                                                        clockEdge(Cycles(1)));
                return false;
            }
        }


        // the packet is a memory-mapped request and should be
        // broadcasted to our snoopers but the source
        if (snoopFilter) {
            // check with the snoop filter where to forward this packet
            auto sf_res = snoopFilter->lookupRequest(pkt, *src_port);
            // the time required by a packet to be delivered through
            // the xbar has to be charged also with to lookup latency
            // of the snoop filter
            pkt->headerDelay += sf_res.second * clockPeriod();
            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
                    __func__, src_port->name(), pkt->print(),
                    sf_res.first.size(), sf_res.second);

            if (pkt->isEviction()) {
                // for block-evicting packets, i.e. writebacks and
                // clean evictions, there is no need to snoop up, as
                // all we do is determine if the block is cached or
                // not, instead just set it here based on the snoop
                // filter result
                if (!sf_res.first.empty())
                    pkt->setBlockCached();
            } else {
                forwardTiming(pkt, slave_port_id, sf_res.first);
            }
        } else {
            forwardTiming(pkt, slave_port_id);
        }

        // add the snoop delay to our header delay, and then reset it
        pkt->headerDelay += pkt->snoopDelay;
        pkt->snoopDelay = 0;
    }

    // set up a sensible starting point
    bool success = true;

    // remember if the packet will generate a snoop response by
    // checking if a cache set the cacheResponding flag during the
    // snooping above
    const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding();
    bool expect_response = pkt->needsResponse() && !pkt->cacheResponding();

    const bool sink_packet = sinkPacket(pkt);

    // in certain cases the crossbar is responsible for responding
    bool respond_directly = false;
    // store the original address as an address mapper could possibly
    // modify the address upon a sendTimingRequest
    const Addr addr(pkt->getAddr());
    if (sink_packet) {
        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
                pkt->print());
    } else {
        // determine if we are forwarding the packet, or responding to
        // it
        if (forwardPacket(pkt)) {
            // if we are passing on, rather than sinking, a packet to
            // which an upstream cache has committed to responding,
            // the line was needs writable, and the responding only
            // had an Owned copy, so we need to immidiately let the
            // downstream caches know, bypass any flow control
            if (pkt->cacheResponding()) {
                pkt->setExpressSnoop();
            }

            // make sure that the write request (e.g., WriteClean)
            // will stop at the memory below if this crossbar is its
            // destination
            if (pkt->isWrite() && is_destination) {
                pkt->clearWriteThrough();
            }

            // since it is a normal request, attempt to send the packet
            success = masterPorts[master_port_id]->sendTimingReq(pkt);
        } else {
            // no need to forward, turn this packet around and respond
            // directly
            assert(pkt->needsResponse());

            respond_directly = true;
            assert(!expect_snoop_resp);
            expect_response = false;
        }
    }

    if (snoopFilter && snoop_caches) {
        // Let the snoop filter know about the success of the send operation
        snoopFilter->finishRequest(!success, addr, pkt->isSecure());
    }

    // check if we were successful in sending the packet onwards
    if (!success)  {
        // express snoops should never be forced to retry
        assert(!is_express_snoop);

        // restore the header delay
        pkt->headerDelay = old_header_delay;

        DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__,
                src_port->name(), pkt->print());

        // update the layer state and schedule an idle event
        reqLayers[master_port_id]->failedTiming(src_port,
                                                clockEdge(Cycles(1)));
    } else {
        // express snoops currently bypass the crossbar state entirely
        if (!is_express_snoop) {
            // if this particular request will generate a snoop
            // response
            if (expect_snoop_resp) {
                // we should never have an exsiting request outstanding
                assert(outstandingSnoop.find(pkt->req) ==
                       outstandingSnoop.end());
                outstandingSnoop.insert(pkt->req);

                // basic sanity check on the outstanding snoops
                panic_if(outstandingSnoop.size() > maxOutstandingSnoopCheck,
                         "%s: Outstanding snoop requests exceeded %d\n",
                         name(), maxOutstandingSnoopCheck);
            }

            // remember where to route the normal response to
            if (expect_response || expect_snoop_resp) {
                assert(routeTo.find(pkt->req) == routeTo.end());
                routeTo[pkt->req] = slave_port_id;

                panic_if(routeTo.size() > maxRoutingTableSizeCheck,
                         "%s: Routing table exceeds %d packets\n",
                         name(), maxRoutingTableSizeCheck);
            }

            // update the layer state and schedule an idle event
            reqLayers[master_port_id]->succeededTiming(packetFinishTime);
        }

        // stats updates only consider packets that were successfully sent
        pktCount[slave_port_id][master_port_id]++;
        pktSize[slave_port_id][master_port_id] += pkt_size;
        transDist[pkt_cmd]++;

        if (is_express_snoop) {
            snoops++;
            snoopTraffic += pkt_size;
        }
    }

    if (sink_packet)
        // queue the packet for deletion
        pendingDelete.reset(pkt);

    // normally we respond to the packet we just received if we need to
    PacketPtr rsp_pkt = pkt;
    PortID rsp_port_id = slave_port_id;

    // If this is the destination of the cache clean operation the
    // crossbar is responsible for responding. This crossbar will
    // respond when the cache clean is complete. A cache clean
    // is complete either:
    // * direcly, if no cache above had a dirty copy of the block
    //   as indicated by the satisfied flag of the packet, or
    // * when the crossbar has seen both the cache clean request
    //   (CleanSharedReq, CleanInvalidReq) and the corresponding
    //   write (WriteClean) which updates the block in the memory
    //   below.
    if (success &&
        ((pkt->isClean() && pkt->satisfied()) ||
         pkt->cmd == MemCmd::WriteClean) &&
        is_destination) {
        PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt;
        auto cmo_lookup = outstandingCMO.find(pkt->id);
        if (cmo_lookup != outstandingCMO.end()) {
            // the cache clean request has already reached this xbar
            respond_directly = true;
            if (pkt->isWrite()) {
                rsp_pkt = cmo_lookup->second;
                assert(rsp_pkt);

                // determine the destination
                const auto route_lookup = routeTo.find(rsp_pkt->req);
                assert(route_lookup != routeTo.end());
                rsp_port_id = route_lookup->second;
                assert(rsp_port_id != InvalidPortID);
                assert(rsp_port_id < respLayers.size());
                // remove the request from the routing table
                routeTo.erase(route_lookup);
            }
            outstandingCMO.erase(cmo_lookup);
        } else {
            respond_directly = false;
            outstandingCMO.emplace(pkt->id, deferred_rsp);
            if (!pkt->isWrite()) {
                assert(routeTo.find(pkt->req) == routeTo.end());
                routeTo[pkt->req] = slave_port_id;

                panic_if(routeTo.size() > maxRoutingTableSizeCheck,
                         "%s: Routing table exceeds %d packets\n",
                         name(), maxRoutingTableSizeCheck);
            }
        }
    }


    if (respond_directly) {
        assert(rsp_pkt->needsResponse());
        assert(success);

        rsp_pkt->makeResponse();

        if (snoopFilter && !system->bypassCaches()) {
            // let the snoop filter inspect the response and update its state
            snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]);
        }

        // we send the response after the current packet, even if the
        // response is not for this packet (e.g. cache clean operation
        // where both the request and the write packet have to cross
        // the destination xbar before the response is sent.)
        Tick response_time = clockEdge() + pkt->headerDelay;
        rsp_pkt->headerDelay = 0;

        slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time);
    }

    return success;
}

bool
CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
{
    // determine the source port based on the id
    MasterPort *src_port = masterPorts[master_port_id];

    // determine the destination
    const auto route_lookup = routeTo.find(pkt->req);
    assert(route_lookup != routeTo.end());
    const PortID slave_port_id = route_lookup->second;
    assert(slave_port_id != InvalidPortID);
    assert(slave_port_id < respLayers.size());

    // test if the crossbar should be considered occupied for the
    // current port
    if (!respLayers[slave_port_id]->tryTiming(src_port)) {
        DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
                src_port->name(), pkt->print());
        return false;
    }

    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
            src_port->name(), pkt->print());

    // store size and command as they might be modified when
    // forwarding the packet
    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
    unsigned int pkt_cmd = pkt->cmdToIndex();

    // a response sees the response latency
    Tick xbar_delay = responseLatency * clockPeriod();

    // set the packet header and payload delay
    calcPacketTiming(pkt, xbar_delay);

    // determine how long to be crossbar layer is busy
    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;

    if (snoopFilter && !system->bypassCaches()) {
        // let the snoop filter inspect the response and update its state
        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
    }

    // send the packet through the destination slave port and pay for
    // any outstanding header delay
    Tick latency = pkt->headerDelay;
    pkt->headerDelay = 0;
    slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);

    // remove the request from the routing table
    routeTo.erase(route_lookup);

    respLayers[slave_port_id]->succeededTiming(packetFinishTime);

    // stats updates
    pktCount[slave_port_id][master_port_id]++;
    pktSize[slave_port_id][master_port_id] += pkt_size;
    transDist[pkt_cmd]++;

    return true;
}

void
CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id)
{
    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
            masterPorts[master_port_id]->name(), pkt->print());

    // update stats here as we know the forwarding will succeed
    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
    transDist[pkt->cmdToIndex()]++;
    snoops++;
    snoopTraffic += pkt_size;

    // we should only see express snoops from caches
    assert(pkt->isExpressSnoop());

    // set the packet header and payload delay, for now use forward latency
    // @todo Assess the choice of latency further
    calcPacketTiming(pkt, forwardLatency * clockPeriod());

    // remember if a cache has already committed to responding so we
    // can see if it changes during the snooping
    const bool cache_responding = pkt->cacheResponding();

    assert(pkt->snoopDelay == 0);

    if (snoopFilter) {
        // let the Snoop Filter work its magic and guide probing
        auto sf_res = snoopFilter->lookupSnoop(pkt);
        // the time required by a packet to be delivered through
        // the xbar has to be charged also with to lookup latency
        // of the snoop filter
        pkt->headerDelay += sf_res.second * clockPeriod();
        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
                __func__, masterPorts[master_port_id]->name(), pkt->print(),
                sf_res.first.size(), sf_res.second);

        // forward to all snoopers
        forwardTiming(pkt, InvalidPortID, sf_res.first);
    } else {
        forwardTiming(pkt, InvalidPortID);
    }

    // add the snoop delay to our header delay, and then reset it
    pkt->headerDelay += pkt->snoopDelay;
    pkt->snoopDelay = 0;

    // if we can expect a response, remember how to route it
    if (!cache_responding && pkt->cacheResponding()) {
        assert(routeTo.find(pkt->req) == routeTo.end());
        routeTo[pkt->req] = master_port_id;
    }

    // a snoop request came from a connected slave device (one of
    // our master ports), and if it is not coming from the slave
    // device responsible for the address range something is
    // wrong, hence there is nothing further to do as the packet
    // would be going back to where it came from
    assert(findPort(pkt->getAddrRange()) == master_port_id);
}

bool
CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id)
{
    // determine the source port based on the id
    SlavePort* src_port = slavePorts[slave_port_id];

    // get the destination
    const auto route_lookup = routeTo.find(pkt->req);
    assert(route_lookup != routeTo.end());
    const PortID dest_port_id = route_lookup->second;
    assert(dest_port_id != InvalidPortID);

    // determine if the response is from a snoop request we
    // created as the result of a normal request (in which case it
    // should be in the outstandingSnoop), or if we merely forwarded
    // someone else's snoop request
    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
        outstandingSnoop.end();

    // test if the crossbar should be considered occupied for the
    // current port, note that the check is bypassed if the response
    // is being passed on as a normal response since this is occupying
    // the response layer rather than the snoop response layer
    if (forwardAsSnoop) {
        assert(dest_port_id < snoopLayers.size());
        if (!snoopLayers[dest_port_id]->tryTiming(src_port)) {
            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
                    src_port->name(), pkt->print());
            return false;
        }
    } else {
        // get the master port that mirrors this slave port internally
        MasterPort* snoop_port = snoopRespPorts[slave_port_id];
        assert(dest_port_id < respLayers.size());
        if (!respLayers[dest_port_id]->tryTiming(snoop_port)) {
            DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__,
                    snoop_port->name(), pkt->print());
            return false;
        }
    }

    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
            src_port->name(), pkt->print());

    // store size and command as they might be modified when
    // forwarding the packet
    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
    unsigned int pkt_cmd = pkt->cmdToIndex();

    // responses are never express snoops
    assert(!pkt->isExpressSnoop());

    // a snoop response sees the snoop response latency, and if it is
    // forwarded as a normal response, the response latency
    Tick xbar_delay =
        (forwardAsSnoop ? snoopResponseLatency : responseLatency) *
        clockPeriod();

    // set the packet header and payload delay
    calcPacketTiming(pkt, xbar_delay);

    // determine how long to be crossbar layer is busy
    Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;

    // forward it either as a snoop response or a normal response
    if (forwardAsSnoop) {
        // this is a snoop response to a snoop request we forwarded,
        // e.g. coming from the L1 and going to the L2, and it should
        // be forwarded as a snoop response

        if (snoopFilter) {
            // update the probe filter so that it can properly track the line
            snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id],
                                            *masterPorts[dest_port_id]);
        }

        bool success M5_VAR_USED =
            masterPorts[dest_port_id]->sendTimingSnoopResp(pkt);
        pktCount[slave_port_id][dest_port_id]++;
        pktSize[slave_port_id][dest_port_id] += pkt_size;
        assert(success);

        snoopLayers[dest_port_id]->succeededTiming(packetFinishTime);
    } else {
        // we got a snoop response on one of our slave ports,
        // i.e. from a coherent master connected to the crossbar, and
        // since we created the snoop request as part of recvTiming,
        // this should now be a normal response again
        outstandingSnoop.erase(pkt->req);

        // this is a snoop response from a coherent master, hence it
        // should never go back to where the snoop response came from,
        // but instead to where the original request came from
        assert(slave_port_id != dest_port_id);

        if (snoopFilter) {
            // update the probe filter so that it can properly track the line
            snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id],
                                    *slavePorts[dest_port_id]);
        }

        DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__,
                src_port->name(), pkt->print());

        // as a normal response, it should go back to a master through
        // one of our slave ports, we also pay for any outstanding
        // header latency
        Tick latency = pkt->headerDelay;
        pkt->headerDelay = 0;
        slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency);

        respLayers[dest_port_id]->succeededTiming(packetFinishTime);
    }

    // remove the request from the routing table
    routeTo.erase(route_lookup);

    // stats updates
    transDist[pkt_cmd]++;
    snoops++;
    snoopTraffic += pkt_size;

    return true;
}


void
CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id,
                           const std::vector<QueuedSlavePort*>& dests)
{
    DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print());

    // snoops should only happen if the system isn't bypassing caches
    assert(!system->bypassCaches());

    unsigned fanout = 0;

    for (const auto& p: dests) {
        // we could have gotten this request from a snooping master
        // (corresponding to our own slave port that is also in
        // snoopPorts) and should not send it back to where it came
        // from
        if (exclude_slave_port_id == InvalidPortID ||
            p->getId() != exclude_slave_port_id) {
            // cache is not allowed to refuse snoop
            p->sendTimingSnoopReq(pkt);
            fanout++;
        }
    }

    // Stats for fanout of this forward operation
    snoopFanout.sample(fanout);
}

void
CoherentXBar::recvReqRetry(PortID master_port_id)
{
    // responses and snoop responses never block on forwarding them,
    // so the retry will always be coming from a port to which we
    // tried to forward a request
    reqLayers[master_port_id]->recvRetry();
}

Tick
CoherentXBar::recvAtomicBackdoor(PacketPtr pkt, PortID slave_port_id,
                                 MemBackdoorPtr *backdoor)
{
    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
            slavePorts[slave_port_id]->name(), pkt->print());

    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
    unsigned int pkt_cmd = pkt->cmdToIndex();

    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
    Tick snoop_response_latency = 0;

    // is this the destination point for this packet? (e.g. true if
    // this xbar is the PoC for a cache maintenance operation to the
    // PoC) otherwise the destination is any cache that can satisfy
    // the request
    const bool is_destination = isDestination(pkt);

    const bool snoop_caches = !system->bypassCaches() &&
        pkt->cmd != MemCmd::WriteClean;
    if (snoop_caches) {
        // forward to all snoopers but the source
        std::pair<MemCmd, Tick> snoop_result;
        if (snoopFilter) {
            // check with the snoop filter where to forward this packet
            auto sf_res =
                snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]);
            snoop_response_latency += sf_res.second * clockPeriod();
            DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
                    __func__, slavePorts[slave_port_id]->name(), pkt->print(),
                    sf_res.first.size(), sf_res.second);

            // let the snoop filter know about the success of the send
            // operation, and do it even before sending it onwards to
            // avoid situations where atomic upward snoops sneak in
            // between and change the filter state
            snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure());

            if (pkt->isEviction()) {
                // for block-evicting packets, i.e. writebacks and
                // clean evictions, there is no need to snoop up, as
                // all we do is determine if the block is cached or
                // not, instead just set it here based on the snoop
                // filter result
                if (!sf_res.first.empty())
                    pkt->setBlockCached();
            } else {
                snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID,
                                             sf_res.first);
            }
        } else {
            snoop_result = forwardAtomic(pkt, slave_port_id);
        }
        snoop_response_cmd = snoop_result.first;
        snoop_response_latency += snoop_result.second;
    }

    // set up a sensible default value
    Tick response_latency = 0;

    const bool sink_packet = sinkPacket(pkt);

    // even if we had a snoop response, we must continue and also
    // perform the actual request at the destination
    PortID master_port_id = findPort(pkt->getAddrRange());

    if (sink_packet) {
        DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__,
                pkt->print());
    } else {
        if (forwardPacket(pkt)) {
            // make sure that the write request (e.g., WriteClean)
            // will stop at the memory below if this crossbar is its
            // destination
            if (pkt->isWrite() && is_destination) {
                pkt->clearWriteThrough();
            }

            // forward the request to the appropriate destination
            auto master = masterPorts[master_port_id];
            response_latency = backdoor ?
                master->sendAtomicBackdoor(pkt, *backdoor) :
                master->sendAtomic(pkt);
        } else {
            // if it does not need a response we sink the packet above
            assert(pkt->needsResponse());

            pkt->makeResponse();
        }
    }

    // stats updates for the request
    pktCount[slave_port_id][master_port_id]++;
    pktSize[slave_port_id][master_port_id] += pkt_size;
    transDist[pkt_cmd]++;


    // if lower levels have replied, tell the snoop filter
    if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) {
        snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]);
    }

    // if we got a response from a snooper, restore it here
    if (snoop_response_cmd != MemCmd::InvalidCmd) {
        // no one else should have responded
        assert(!pkt->isResponse());
        pkt->cmd = snoop_response_cmd;
        response_latency = snoop_response_latency;
    }

    // If this is the destination of the cache clean operation the
    // crossbar is responsible for responding. This crossbar will
    // respond when the cache clean is complete. An atomic cache clean
    // is complete when the crossbars receives the cache clean
    // request (CleanSharedReq, CleanInvalidReq), as either:
    // * no cache above had a dirty copy of the block as indicated by
    //   the satisfied flag of the packet, or
    // * the crossbar has already seen the corresponding write
    //   (WriteClean) which updates the block in the memory below.
    if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) {
        auto it = outstandingCMO.find(pkt->id);
        assert(it != outstandingCMO.end());
        // we are responding right away
        outstandingCMO.erase(it);
    } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) {
        // if this is the destination of the operation, the xbar
        // sends the responce to the cache clean operation only
        // after having encountered the cache clean request
        auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr);
        // in atomic mode we know that the WriteClean packet should
        // precede the clean request
        assert(ret.second);
    }

    // add the response data
    if (pkt->isResponse()) {
        pkt_size = pkt->hasData() ? pkt->getSize() : 0;
        pkt_cmd = pkt->cmdToIndex();

        // stats updates
        pktCount[slave_port_id][master_port_id]++;
        pktSize[slave_port_id][master_port_id] += pkt_size;
        transDist[pkt_cmd]++;
    }

    // @todo: Not setting header time
    pkt->payloadDelay = response_latency;
    return response_latency;
}

Tick
CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id)
{
    DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
            masterPorts[master_port_id]->name(), pkt->print());

    // add the request snoop data
    unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
    snoops++;
    snoopTraffic += pkt_size;

    // forward to all snoopers
    std::pair<MemCmd, Tick> snoop_result;
    Tick snoop_response_latency = 0;
    if (snoopFilter) {
        auto sf_res = snoopFilter->lookupSnoop(pkt);
        snoop_response_latency += sf_res.second * clockPeriod();
        DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n",
                __func__, masterPorts[master_port_id]->name(), pkt->print(),
                sf_res.first.size(), sf_res.second);
        snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id,
                                     sf_res.first);
    } else {
        snoop_result = forwardAtomic(pkt, InvalidPortID);
    }
    MemCmd snoop_response_cmd = snoop_result.first;
    snoop_response_latency += snoop_result.second;

    if (snoop_response_cmd != MemCmd::InvalidCmd)
        pkt->cmd = snoop_response_cmd;

    // add the response snoop data
    if (pkt->isResponse()) {
        snoops++;
    }

    // @todo: Not setting header time
    pkt->payloadDelay = snoop_response_latency;
    return snoop_response_latency;
}

std::pair<MemCmd, Tick>
CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id,
                           PortID source_master_port_id,
                           const std::vector<QueuedSlavePort*>& dests)
{
    // the packet may be changed on snoops, record the original
    // command to enable us to restore it between snoops so that
    // additional snoops can take place properly
    MemCmd orig_cmd = pkt->cmd;
    MemCmd snoop_response_cmd = MemCmd::InvalidCmd;
    Tick snoop_response_latency = 0;

    // snoops should only happen if the system isn't bypassing caches
    assert(!system->bypassCaches());

    unsigned fanout = 0;

    for (const auto& p: dests) {
        // we could have gotten this request from a snooping master
        // (corresponding to our own slave port that is also in
        // snoopPorts) and should not send it back to where it came
        // from
        if (exclude_slave_port_id != InvalidPortID &&
            p->getId() == exclude_slave_port_id)
            continue;

        Tick latency = p->sendAtomicSnoop(pkt);
        fanout++;

        // in contrast to a functional access, we have to keep on
        // going as all snoopers must be updated even if we get a
        // response
        if (!pkt->isResponse())
            continue;

        // response from snoop agent
        assert(pkt->cmd != orig_cmd);
        assert(pkt->cacheResponding());
        // should only happen once
        assert(snoop_response_cmd == MemCmd::InvalidCmd);
        // save response state
        snoop_response_cmd = pkt->cmd;
        snoop_response_latency = latency;

        if (snoopFilter) {
            // Handle responses by the snoopers and differentiate between
            // responses to requests from above and snoops from below
            if (source_master_port_id != InvalidPortID) {
                // Getting a response for a snoop from below
                assert(exclude_slave_port_id == InvalidPortID);
                snoopFilter->updateSnoopForward(pkt, *p,
                             *masterPorts[source_master_port_id]);
            } else {
                // Getting a response for a request from above
                assert(source_master_port_id == InvalidPortID);
                snoopFilter->updateSnoopResponse(pkt, *p,
                             *slavePorts[exclude_slave_port_id]);
            }
        }
        // restore original packet state for remaining snoopers
        pkt->cmd = orig_cmd;
    }

    // Stats for fanout
    snoopFanout.sample(fanout);

    // the packet is restored as part of the loop and any potential
    // snoop response is part of the returned pair
    return std::make_pair(snoop_response_cmd, snoop_response_latency);
}

void
CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
{
    if (!pkt->isPrint()) {
        // don't do DPRINTFs on PrintReq as it clutters up the output
        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
                slavePorts[slave_port_id]->name(), pkt->print());
    }

    if (!system->bypassCaches()) {
        // forward to all snoopers but the source
        forwardFunctional(pkt, slave_port_id);
    }

    // there is no need to continue if the snooping has found what we
    // were looking for and the packet is already a response
    if (!pkt->isResponse()) {
        // since our slave ports are queued ports we need to check them as well
        for (const auto& p : slavePorts) {
            // if we find a response that has the data, then the
            // downstream caches/memories may be out of date, so simply stop
            // here
            if (p->trySatisfyFunctional(pkt)) {
                if (pkt->needsResponse())
                    pkt->makeResponse();
                return;
            }
        }

        PortID dest_id = findPort(pkt->getAddrRange());

        masterPorts[dest_id]->sendFunctional(pkt);
    }
}

void
CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id)
{
    if (!pkt->isPrint()) {
        // don't do DPRINTFs on PrintReq as it clutters up the output
        DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__,
                masterPorts[master_port_id]->name(), pkt->print());
    }

    for (const auto& p : slavePorts) {
        if (p->trySatisfyFunctional(pkt)) {
            if (pkt->needsResponse())
                pkt->makeResponse();
            return;
        }
    }

    // forward to all snoopers
    forwardFunctional(pkt, InvalidPortID);
}

void
CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
{
    // snoops should only happen if the system isn't bypassing caches
    assert(!system->bypassCaches());

    for (const auto& p: snoopPorts) {
        // we could have gotten this request from a snooping master
        // (corresponding to our own slave port that is also in
        // snoopPorts) and should not send it back to where it came
        // from
        if (exclude_slave_port_id == InvalidPortID ||
            p->getId() != exclude_slave_port_id)
            p->sendFunctionalSnoop(pkt);

        // if we get a response we are done
        if (pkt->isResponse()) {
            break;
        }
    }
}

bool
CoherentXBar::sinkPacket(const PacketPtr pkt) const
{
    // we can sink the packet if:
    // 1) the crossbar is the point of coherency, and a cache is
    //    responding after being snooped
    // 2) the crossbar is the point of coherency, and the packet is a
    //    coherency packet (not a read or a write) that does not
    //    require a response
    // 3) this is a clean evict or clean writeback, but the packet is
    //    found in a cache above this crossbar
    // 4) a cache is responding after being snooped, and the packet
    //    either does not need the block to be writable, or the cache
    //    that has promised to respond (setting the cache responding
    //    flag) is providing writable and thus had a Modified block,
    //    and no further action is needed
    return (pointOfCoherency && pkt->cacheResponding()) ||
        (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) &&
         !pkt->needsResponse()) ||
        (pkt->isCleanEviction() && pkt->isBlockCached()) ||
        (pkt->cacheResponding() &&
         (!pkt->needsWritable() || pkt->responderHadWritable()));
}

bool
CoherentXBar::forwardPacket(const PacketPtr pkt)
{
    // we are forwarding the packet if:
    // 1) this is a cache clean request to the PoU/PoC and this
    //    crossbar is above the PoU/PoC
    // 2) this is a read or a write
    // 3) this crossbar is above the point of coherency
    if (pkt->isClean()) {
        return !isDestination(pkt);
    }
    return pkt->isRead() || pkt->isWrite() || !pointOfCoherency;
}


void
CoherentXBar::regStats()
{
    BaseXBar::regStats();

    snoopFanout.init(0, snoopPorts.size(), 1);
}

CoherentXBar *
CoherentXBarParams::create()
{
    return new CoherentXBar(this);
}