1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
|
/*
* Copyright (c) 2010-2018 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2013 Amin Farmahini-Farahani
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andreas Hansson
* Ani Udipi
* Neha Agarwal
* Omar Naji
* Wendy Elsasser
* Radhika Jagtap
*/
#include "mem/dram_ctrl.hh"
#include "base/bitfield.hh"
#include "base/trace.hh"
#include "debug/DRAM.hh"
#include "debug/DRAMPower.hh"
#include "debug/DRAMState.hh"
#include "debug/Drain.hh"
#include "debug/QOS.hh"
#include "sim/system.hh"
using namespace std;
using namespace Data;
DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
QoS::MemCtrl(p),
port(name() + ".port", *this), isTimingMode(false),
retryRdReq(false), retryWrReq(false),
nextReqEvent([this]{ processNextReqEvent(); }, name()),
respondEvent([this]{ processRespondEvent(); }, name()),
deviceSize(p->device_size),
deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
deviceRowBufferSize(p->device_rowbuffer_size),
devicesPerRank(p->devices_per_rank),
burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
rowBufferSize(devicesPerRank * deviceRowBufferSize),
columnsPerRowBuffer(rowBufferSize / burstSize),
columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
ranksPerChannel(p->ranks_per_channel),
bankGroupsPerRank(p->bank_groups_per_rank),
bankGroupArch(p->bank_groups_per_rank > 0),
banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
readBufferSize(p->read_buffer_size),
writeBufferSize(p->write_buffer_size),
writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
minWritesPerSwitch(p->min_writes_per_switch),
writesThisTime(0), readsThisTime(0),
tCK(p->tCK), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
tCCD_L_WR(p->tCCD_L_WR),
tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS),
activationLimit(p->activation_limit), rankToRankDly(tCS + tBURST),
wrToRdDly(tCL + tBURST + p->tWTR), rdToWrDly(tRTW + tBURST),
memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
pageMgmt(p->page_policy),
maxAccessesPerRow(p->max_accesses_per_row),
frontendLatency(p->static_frontend_latency),
backendLatency(p->static_backend_latency),
nextBurstAt(0), prevArrival(0),
nextReqTime(0), activeRank(0), timeStampOffset(0),
lastStatsResetTick(0)
{
// sanity check the ranks since we rely on bit slicing for the
// address decoding
fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
"allowed, must be a power of two\n", ranksPerChannel);
fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
"must be a power of two\n", burstSize);
readQueue.resize(p->qos_priorities);
writeQueue.resize(p->qos_priorities);
for (int i = 0; i < ranksPerChannel; i++) {
Rank* rank = new Rank(*this, p, i);
ranks.push_back(rank);
}
// perform a basic check of the write thresholds
if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
fatal("Write buffer low threshold %d must be smaller than the "
"high threshold %d\n", p->write_low_thresh_perc,
p->write_high_thresh_perc);
// determine the rows per bank by looking at the total capacity
uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
// determine the dram actual capacity from the DRAM config in Mbytes
uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
ranksPerChannel;
// if actual DRAM size does not match memory capacity in system warn!
if (deviceCapacity != capacity / (1024 * 1024))
warn("DRAM device capacity (%d Mbytes) does not match the "
"address range assigned (%d Mbytes)\n", deviceCapacity,
capacity / (1024 * 1024));
DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
AbstractMemory::size());
DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
rowBufferSize, columnsPerRowBuffer);
rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
// some basic sanity checks
if (tREFI <= tRP || tREFI <= tRFC) {
fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
tREFI, tRP, tRFC);
}
// basic bank group architecture checks ->
if (bankGroupArch) {
// must have at least one bank per bank group
if (bankGroupsPerRank > banksPerRank) {
fatal("banks per rank (%d) must be equal to or larger than "
"banks groups per rank (%d)\n",
banksPerRank, bankGroupsPerRank);
}
// must have same number of banks in each bank group
if ((banksPerRank % bankGroupsPerRank) != 0) {
fatal("Banks per rank (%d) must be evenly divisible by bank groups "
"per rank (%d) for equal banks per bank group\n",
banksPerRank, bankGroupsPerRank);
}
// tCCD_L should be greater than minimal, back-to-back burst delay
if (tCCD_L <= tBURST) {
fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
"bank groups per rank (%d) is greater than 1\n",
tCCD_L, tBURST, bankGroupsPerRank);
}
// tCCD_L_WR should be greater than minimal, back-to-back burst delay
if (tCCD_L_WR <= tBURST) {
fatal("tCCD_L_WR (%d) should be larger than tBURST (%d) when "
"bank groups per rank (%d) is greater than 1\n",
tCCD_L_WR, tBURST, bankGroupsPerRank);
}
// tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
// some datasheets might specify it equal to tRRD
if (tRRD_L < tRRD) {
fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
"bank groups per rank (%d) is greater than 1\n",
tRRD_L, tRRD, bankGroupsPerRank);
}
}
}
void
DRAMCtrl::init()
{
MemCtrl::init();
if (!port.isConnected()) {
fatal("DRAMCtrl %s is unconnected!\n", name());
} else {
port.sendRangeChange();
}
// a bit of sanity checks on the interleaving, save it for here to
// ensure that the system pointer is initialised
if (range.interleaved()) {
if (channels != range.stripes())
fatal("%s has %d interleaved address stripes but %d channel(s)\n",
name(), range.stripes(), channels);
if (addrMapping == Enums::RoRaBaChCo) {
if (rowBufferSize != range.granularity()) {
fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
"address map\n", name());
}
} else if (addrMapping == Enums::RoRaBaCoCh ||
addrMapping == Enums::RoCoRaBaCh) {
// for the interleavings with channel bits in the bottom,
// if the system uses a channel striping granularity that
// is larger than the DRAM burst size, then map the
// sequential accesses within a stripe to a number of
// columns in the DRAM, effectively placing some of the
// lower-order column bits as the least-significant bits
// of the address (above the ones denoting the burst size)
assert(columnsPerStripe >= 1);
// channel striping has to be done at a granularity that
// is equal or larger to a cache line
if (system()->cacheLineSize() > range.granularity()) {
fatal("Channel interleaving of %s must be at least as large "
"as the cache line size\n", name());
}
// ...and equal or smaller than the row-buffer size
if (rowBufferSize < range.granularity()) {
fatal("Channel interleaving of %s must be at most as large "
"as the row-buffer size\n", name());
}
// this is essentially the check above, so just to be sure
assert(columnsPerStripe <= columnsPerRowBuffer);
}
}
}
void
DRAMCtrl::startup()
{
// remember the memory system mode of operation
isTimingMode = system()->isTimingMode();
if (isTimingMode) {
// timestamp offset should be in clock cycles for DRAMPower
timeStampOffset = divCeil(curTick(), tCK);
// update the start tick for the precharge accounting to the
// current tick
for (auto r : ranks) {
r->startup(curTick() + tREFI - tRP);
}
// shift the bus busy time sufficiently far ahead that we never
// have to worry about negative values when computing the time for
// the next request, this will add an insignificant bubble at the
// start of simulation
nextBurstAt = curTick() + tRP + tRCD;
}
}
Tick
DRAMCtrl::recvAtomic(PacketPtr pkt)
{
DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
panic_if(pkt->cacheResponding(), "Should not see packets where cache "
"is responding");
// do the actual memory access and turn the packet into a response
access(pkt);
Tick latency = 0;
if (pkt->hasData()) {
// this value is not supposed to be accurate, just enough to
// keep things going, mimic a closed page
latency = tRP + tRCD + tCL;
}
return latency;
}
bool
DRAMCtrl::readQueueFull(unsigned int neededEntries) const
{
DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
readBufferSize, totalReadQueueSize + respQueue.size(),
neededEntries);
auto rdsize_new = totalReadQueueSize + respQueue.size() + neededEntries;
return rdsize_new > readBufferSize;
}
bool
DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
{
DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
writeBufferSize, totalWriteQueueSize, neededEntries);
auto wrsize_new = (totalWriteQueueSize + neededEntries);
return wrsize_new > writeBufferSize;
}
DRAMCtrl::DRAMPacket*
DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
bool isRead)
{
// decode the address based on the address mapping scheme, with
// Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
// channel, respectively
uint8_t rank;
uint8_t bank;
// use a 64-bit unsigned during the computations as the row is
// always the top bits, and check before creating the DRAMPacket
uint64_t row;
// truncate the address to a DRAM burst, which makes it unique to
// a specific column, row, bank, rank and channel
Addr addr = dramPktAddr / burstSize;
// we have removed the lowest order address bits that denote the
// position within the column
if (addrMapping == Enums::RoRaBaChCo) {
// the lowest order bits denote the column to ensure that
// sequential cache lines occupy the same row
addr = addr / columnsPerRowBuffer;
// take out the channel part of the address
addr = addr / channels;
// after the channel bits, get the bank bits to interleave
// over the banks
bank = addr % banksPerRank;
addr = addr / banksPerRank;
// after the bank, we get the rank bits which thus interleaves
// over the ranks
rank = addr % ranksPerChannel;
addr = addr / ranksPerChannel;
// lastly, get the row bits, no need to remove them from addr
row = addr % rowsPerBank;
} else if (addrMapping == Enums::RoRaBaCoCh) {
// take out the lower-order column bits
addr = addr / columnsPerStripe;
// take out the channel part of the address
addr = addr / channels;
// next, the higher-order column bites
addr = addr / (columnsPerRowBuffer / columnsPerStripe);
// after the column bits, we get the bank bits to interleave
// over the banks
bank = addr % banksPerRank;
addr = addr / banksPerRank;
// after the bank, we get the rank bits which thus interleaves
// over the ranks
rank = addr % ranksPerChannel;
addr = addr / ranksPerChannel;
// lastly, get the row bits, no need to remove them from addr
row = addr % rowsPerBank;
} else if (addrMapping == Enums::RoCoRaBaCh) {
// optimise for closed page mode and utilise maximum
// parallelism of the DRAM (at the cost of power)
// take out the lower-order column bits
addr = addr / columnsPerStripe;
// take out the channel part of the address, not that this has
// to match with how accesses are interleaved between the
// controllers in the address mapping
addr = addr / channels;
// start with the bank bits, as this provides the maximum
// opportunity for parallelism between requests
bank = addr % banksPerRank;
addr = addr / banksPerRank;
// next get the rank bits
rank = addr % ranksPerChannel;
addr = addr / ranksPerChannel;
// next, the higher-order column bites
addr = addr / (columnsPerRowBuffer / columnsPerStripe);
// lastly, get the row bits, no need to remove them from addr
row = addr % rowsPerBank;
} else
panic("Unknown address mapping policy chosen!");
assert(rank < ranksPerChannel);
assert(bank < banksPerRank);
assert(row < rowsPerBank);
assert(row < Bank::NO_ROW);
DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
dramPktAddr, rank, bank, row);
// create the corresponding DRAM packet with the entry time and
// ready time set to the current tick, the latter will be updated
// later
uint16_t bank_id = banksPerRank * rank + bank;
return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
size, ranks[rank]->banks[bank], *ranks[rank]);
}
void
DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
{
// only add to the read queue here. whenever the request is
// eventually done, set the readyTime, and call schedule()
assert(!pkt->isWrite());
assert(pktCount != 0);
// if the request size is larger than burst size, the pkt is split into
// multiple DRAM packets
// Note if the pkt starting address is not aligened to burst size, the
// address of first DRAM packet is kept unaliged. Subsequent DRAM packets
// are aligned to burst size boundaries. This is to ensure we accurately
// check read packets against packets in write queue.
Addr addr = pkt->getAddr();
unsigned pktsServicedByWrQ = 0;
BurstHelper* burst_helper = NULL;
for (int cnt = 0; cnt < pktCount; ++cnt) {
unsigned size = std::min((addr | (burstSize - 1)) + 1,
pkt->getAddr() + pkt->getSize()) - addr;
readPktSize[ceilLog2(size)]++;
readBursts++;
masterReadAccesses[pkt->masterId()]++;
// First check write buffer to see if the data is already at
// the controller
bool foundInWrQ = false;
Addr burst_addr = burstAlign(addr);
// if the burst address is not present then there is no need
// looking any further
if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
for (const auto& vec : writeQueue) {
for (const auto& p : vec) {
// check if the read is subsumed in the write queue
// packet we are looking at
if (p->addr <= addr &&
((addr + size) <= (p->addr + p->size))) {
foundInWrQ = true;
servicedByWrQ++;
pktsServicedByWrQ++;
DPRINTF(DRAM,
"Read to addr %lld with size %d serviced by "
"write queue\n",
addr, size);
bytesReadWrQ += burstSize;
break;
}
}
}
}
// If not found in the write q, make a DRAM packet and
// push it onto the read queue
if (!foundInWrQ) {
// Make the burst helper for split packets
if (pktCount > 1 && burst_helper == NULL) {
DPRINTF(DRAM, "Read to addr %lld translates to %d "
"dram requests\n", pkt->getAddr(), pktCount);
burst_helper = new BurstHelper(pktCount);
}
DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
dram_pkt->burstHelper = burst_helper;
assert(!readQueueFull(1));
rdQLenPdf[totalReadQueueSize + respQueue.size()]++;
DPRINTF(DRAM, "Adding to read queue\n");
readQueue[dram_pkt->qosValue()].push_back(dram_pkt);
++dram_pkt->rankRef.readEntries;
// log packet
logRequest(MemCtrl::READ, pkt->masterId(), pkt->qosValue(),
dram_pkt->addr, 1);
// Update stats
avgRdQLen = totalReadQueueSize + respQueue.size();
}
// Starting address of next dram pkt (aligend to burstSize boundary)
addr = (addr | (burstSize - 1)) + 1;
}
// If all packets are serviced by write queue, we send the repsonse back
if (pktsServicedByWrQ == pktCount) {
accessAndRespond(pkt, frontendLatency);
return;
}
// Update how many split packets are serviced by write queue
if (burst_helper != NULL)
burst_helper->burstsServiced = pktsServicedByWrQ;
// If we are not already scheduled to get a request out of the
// queue, do so now
if (!nextReqEvent.scheduled()) {
DPRINTF(DRAM, "Request scheduled immediately\n");
schedule(nextReqEvent, curTick());
}
}
void
DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
{
// only add to the write queue here. whenever the request is
// eventually done, set the readyTime, and call schedule()
assert(pkt->isWrite());
// if the request size is larger than burst size, the pkt is split into
// multiple DRAM packets
Addr addr = pkt->getAddr();
for (int cnt = 0; cnt < pktCount; ++cnt) {
unsigned size = std::min((addr | (burstSize - 1)) + 1,
pkt->getAddr() + pkt->getSize()) - addr;
writePktSize[ceilLog2(size)]++;
writeBursts++;
masterWriteAccesses[pkt->masterId()]++;
// see if we can merge with an existing item in the write
// queue and keep track of whether we have merged or not
bool merged = isInWriteQueue.find(burstAlign(addr)) !=
isInWriteQueue.end();
// if the item was not merged we need to create a new write
// and enqueue it
if (!merged) {
DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
assert(totalWriteQueueSize < writeBufferSize);
wrQLenPdf[totalWriteQueueSize]++;
DPRINTF(DRAM, "Adding to write queue\n");
writeQueue[dram_pkt->qosValue()].push_back(dram_pkt);
isInWriteQueue.insert(burstAlign(addr));
// log packet
logRequest(MemCtrl::WRITE, pkt->masterId(), pkt->qosValue(),
dram_pkt->addr, 1);
assert(totalWriteQueueSize == isInWriteQueue.size());
// Update stats
avgWrQLen = totalWriteQueueSize;
// increment write entries of the rank
++dram_pkt->rankRef.writeEntries;
} else {
DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
// keep track of the fact that this burst effectively
// disappeared as it was merged with an existing one
mergedWrBursts++;
}
// Starting address of next dram pkt (aligend to burstSize boundary)
addr = (addr | (burstSize - 1)) + 1;
}
// we do not wait for the writes to be send to the actual memory,
// but instead take responsibility for the consistency here and
// snoop the write queue for any upcoming reads
// @todo, if a pkt size is larger than burst size, we might need a
// different front end latency
accessAndRespond(pkt, frontendLatency);
// If we are not already scheduled to get a request out of the
// queue, do so now
if (!nextReqEvent.scheduled()) {
DPRINTF(DRAM, "Request scheduled immediately\n");
schedule(nextReqEvent, curTick());
}
}
void
DRAMCtrl::printQs() const
{
#if TRACING_ON
DPRINTF(DRAM, "===READ QUEUE===\n\n");
for (const auto& queue : readQueue) {
for (const auto& packet : queue) {
DPRINTF(DRAM, "Read %lu\n", packet->addr);
}
}
DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
for (const auto& packet : respQueue) {
DPRINTF(DRAM, "Response %lu\n", packet->addr);
}
DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
for (const auto& queue : writeQueue) {
for (const auto& packet : queue) {
DPRINTF(DRAM, "Write %lu\n", packet->addr);
}
}
#endif // TRACING_ON
}
bool
DRAMCtrl::recvTimingReq(PacketPtr pkt)
{
// This is where we enter from the outside world
DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
pkt->cmdString(), pkt->getAddr(), pkt->getSize());
panic_if(pkt->cacheResponding(), "Should not see packets where cache "
"is responding");
panic_if(!(pkt->isRead() || pkt->isWrite()),
"Should only see read and writes at memory controller\n");
// Calc avg gap between requests
if (prevArrival != 0) {
totGap += curTick() - prevArrival;
}
prevArrival = curTick();
// Find out how many dram packets a pkt translates to
// If the burst size is equal or larger than the pkt size, then a pkt
// translates to only one dram packet. Otherwise, a pkt translates to
// multiple dram packets
unsigned size = pkt->getSize();
unsigned offset = pkt->getAddr() & (burstSize - 1);
unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
// run the QoS scheduler and assign a QoS priority value to the packet
qosSchedule( { &readQueue, &writeQueue }, burstSize, pkt);
// check local buffers and do not accept if full
if (pkt->isRead()) {
assert(size != 0);
if (readQueueFull(dram_pkt_count)) {
DPRINTF(DRAM, "Read queue full, not accepting\n");
// remember that we have to retry this port
retryRdReq = true;
numRdRetry++;
return false;
} else {
addToReadQueue(pkt, dram_pkt_count);
readReqs++;
bytesReadSys += size;
}
} else {
assert(pkt->isWrite());
assert(size != 0);
if (writeQueueFull(dram_pkt_count)) {
DPRINTF(DRAM, "Write queue full, not accepting\n");
// remember that we have to retry this port
retryWrReq = true;
numWrRetry++;
return false;
} else {
addToWriteQueue(pkt, dram_pkt_count);
writeReqs++;
bytesWrittenSys += size;
}
}
return true;
}
void
DRAMCtrl::processRespondEvent()
{
DPRINTF(DRAM,
"processRespondEvent(): Some req has reached its readyTime\n");
DRAMPacket* dram_pkt = respQueue.front();
// if a read has reached its ready-time, decrement the number of reads
// At this point the packet has been handled and there is a possibility
// to switch to low-power mode if no other packet is available
--dram_pkt->rankRef.readEntries;
DPRINTF(DRAM, "number of read entries for rank %d is %d\n",
dram_pkt->rank, dram_pkt->rankRef.readEntries);
// counter should at least indicate one outstanding request
// for this read
assert(dram_pkt->rankRef.outstandingEvents > 0);
// read response received, decrement count
--dram_pkt->rankRef.outstandingEvents;
// at this moment should not have transitioned to a low-power state
assert((dram_pkt->rankRef.pwrState != PWR_SREF) &&
(dram_pkt->rankRef.pwrState != PWR_PRE_PDN) &&
(dram_pkt->rankRef.pwrState != PWR_ACT_PDN));
// track if this is the last packet before idling
// and that there are no outstanding commands to this rank
if (dram_pkt->rankRef.isQueueEmpty() &&
dram_pkt->rankRef.outstandingEvents == 0) {
// verify that there are no events scheduled
assert(!dram_pkt->rankRef.activateEvent.scheduled());
assert(!dram_pkt->rankRef.prechargeEvent.scheduled());
// if coming from active state, schedule power event to
// active power-down else go to precharge power-down
DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is "
"%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState);
// default to ACT power-down unless already in IDLE state
// could be in IDLE if PRE issued before data returned
PowerState next_pwr_state = PWR_ACT_PDN;
if (dram_pkt->rankRef.pwrState == PWR_IDLE) {
next_pwr_state = PWR_PRE_PDN;
}
dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick());
}
if (dram_pkt->burstHelper) {
// it is a split packet
dram_pkt->burstHelper->burstsServiced++;
if (dram_pkt->burstHelper->burstsServiced ==
dram_pkt->burstHelper->burstCount) {
// we have now serviced all children packets of a system packet
// so we can now respond to the requester
// @todo we probably want to have a different front end and back
// end latency for split packets
accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
delete dram_pkt->burstHelper;
dram_pkt->burstHelper = NULL;
}
} else {
// it is not a split packet
accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
}
delete respQueue.front();
respQueue.pop_front();
if (!respQueue.empty()) {
assert(respQueue.front()->readyTime >= curTick());
assert(!respondEvent.scheduled());
schedule(respondEvent, respQueue.front()->readyTime);
} else {
// if there is nothing left in any queue, signal a drain
if (drainState() == DrainState::Draining &&
!totalWriteQueueSize && !totalReadQueueSize && allRanksDrained()) {
DPRINTF(Drain, "DRAM controller done draining\n");
signalDrainDone();
}
}
// We have made a location in the queue available at this point,
// so if there is a read that was forced to wait, retry now
if (retryRdReq) {
retryRdReq = false;
port.sendRetryReq();
}
}
DRAMCtrl::DRAMPacketQueue::iterator
DRAMCtrl::chooseNext(DRAMPacketQueue& queue, Tick extra_col_delay)
{
// This method does the arbitration between requests.
DRAMCtrl::DRAMPacketQueue::iterator ret = queue.end();
if (!queue.empty()) {
if (queue.size() == 1) {
// available rank corresponds to state refresh idle
DRAMPacket* dram_pkt = *(queue.begin());
if (ranks[dram_pkt->rank]->inRefIdleState()) {
ret = queue.begin();
DPRINTF(DRAM, "Single request, going to a free rank\n");
} else {
DPRINTF(DRAM, "Single request, going to a busy rank\n");
}
} else if (memSchedPolicy == Enums::fcfs) {
// check if there is a packet going to a free rank
for (auto i = queue.begin(); i != queue.end(); ++i) {
DRAMPacket* dram_pkt = *i;
if (ranks[dram_pkt->rank]->inRefIdleState()) {
ret = i;
break;
}
}
} else if (memSchedPolicy == Enums::frfcfs) {
ret = chooseNextFRFCFS(queue, extra_col_delay);
} else {
panic("No scheduling policy chosen\n");
}
}
return ret;
}
DRAMCtrl::DRAMPacketQueue::iterator
DRAMCtrl::chooseNextFRFCFS(DRAMPacketQueue& queue, Tick extra_col_delay)
{
// Only determine this if needed
vector<uint32_t> earliest_banks(ranksPerChannel, 0);
// Has minBankPrep been called to populate earliest_banks?
bool filled_earliest_banks = false;
// can the PRE/ACT sequence be done without impacting utlization?
bool hidden_bank_prep = false;
// search for seamless row hits first, if no seamless row hit is
// found then determine if there are other packets that can be issued
// without incurring additional bus delay due to bank timing
// Will select closed rows first to enable more open row possibilies
// in future selections
bool found_hidden_bank = false;
// remember if we found a row hit, not seamless, but bank prepped
// and ready
bool found_prepped_pkt = false;
// if we have no row hit, prepped or not, and no seamless packet,
// just go for the earliest possible
bool found_earliest_pkt = false;
auto selected_pkt_it = queue.end();
// time we need to issue a column command to be seamless
const Tick min_col_at = std::max(nextBurstAt + extra_col_delay, curTick());
for (auto i = queue.begin(); i != queue.end() ; ++i) {
DRAMPacket* dram_pkt = *i;
const Bank& bank = dram_pkt->bankRef;
const Tick col_allowed_at = dram_pkt->isRead() ? bank.rdAllowedAt :
bank.wrAllowedAt;
DPRINTF(DRAM, "%s checking packet in bank %d\n",
__func__, dram_pkt->bankRef.bank);
// check if rank is not doing a refresh and thus is available, if not,
// jump to the next packet
if (dram_pkt->rankRef.inRefIdleState()) {
DPRINTF(DRAM,
"%s bank %d - Rank %d available\n", __func__,
dram_pkt->bankRef.bank, dram_pkt->rankRef.rank);
// check if it is a row hit
if (bank.openRow == dram_pkt->row) {
// no additional rank-to-rank or same bank-group
// delays, or we switched read/write and might as well
// go for the row hit
if (col_allowed_at <= min_col_at) {
// FCFS within the hits, giving priority to
// commands that can issue seamlessly, without
// additional delay, such as same rank accesses
// and/or different bank-group accesses
DPRINTF(DRAM, "%s Seamless row buffer hit\n", __func__);
selected_pkt_it = i;
// no need to look through the remaining queue entries
break;
} else if (!found_hidden_bank && !found_prepped_pkt) {
// if we did not find a packet to a closed row that can
// issue the bank commands without incurring delay, and
// did not yet find a packet to a prepped row, remember
// the current one
selected_pkt_it = i;
found_prepped_pkt = true;
DPRINTF(DRAM, "%s Prepped row buffer hit\n", __func__);
}
} else if (!found_earliest_pkt) {
// if we have not initialised the bank status, do it
// now, and only once per scheduling decisions
if (!filled_earliest_banks) {
// determine entries with earliest bank delay
std::tie(earliest_banks, hidden_bank_prep) =
minBankPrep(queue, min_col_at);
filled_earliest_banks = true;
}
// bank is amongst first available banks
// minBankPrep will give priority to packets that can
// issue seamlessly
if (bits(earliest_banks[dram_pkt->rank],
dram_pkt->bank, dram_pkt->bank)) {
found_earliest_pkt = true;
found_hidden_bank = hidden_bank_prep;
// give priority to packets that can issue
// bank commands 'behind the scenes'
// any additional delay if any will be due to
// col-to-col command requirements
if (hidden_bank_prep || !found_prepped_pkt)
selected_pkt_it = i;
}
}
} else {
DPRINTF(DRAM, "%s bank %d - Rank %d not available\n", __func__,
dram_pkt->bankRef.bank, dram_pkt->rankRef.rank);
}
}
if (selected_pkt_it == queue.end()) {
DPRINTF(DRAM, "%s no available ranks found\n", __func__);
}
return selected_pkt_it;
}
void
DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
{
DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
bool needsResponse = pkt->needsResponse();
// do the actual memory access which also turns the packet into a
// response
access(pkt);
// turn packet around to go back to requester if response expected
if (needsResponse) {
// access already turned the packet into a response
assert(pkt->isResponse());
// response_time consumes the static latency and is charged also
// with headerDelay that takes into account the delay provided by
// the xbar and also the payloadDelay that takes into account the
// number of data beats.
Tick response_time = curTick() + static_latency + pkt->headerDelay +
pkt->payloadDelay;
// Here we reset the timing of the packet before sending it out.
pkt->headerDelay = pkt->payloadDelay = 0;
// queue the packet in the response queue to be sent out after
// the static latency has passed
port.schedTimingResp(pkt, response_time);
} else {
// @todo the packet is going to be deleted, and the DRAMPacket
// is still having a pointer to it
pendingDelete.reset(pkt);
}
DPRINTF(DRAM, "Done\n");
return;
}
void
DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
Tick act_tick, uint32_t row)
{
assert(rank_ref.actTicks.size() == activationLimit);
DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
// update the open row
assert(bank_ref.openRow == Bank::NO_ROW);
bank_ref.openRow = row;
// start counting anew, this covers both the case when we
// auto-precharged, and when this access is forced to
// precharge
bank_ref.bytesAccessed = 0;
bank_ref.rowAccesses = 0;
++rank_ref.numBanksActive;
assert(rank_ref.numBanksActive <= banksPerRank);
DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
bank_ref.bank, rank_ref.rank, act_tick,
ranks[rank_ref.rank]->numBanksActive);
rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank,
act_tick));
DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
timeStampOffset, bank_ref.bank, rank_ref.rank);
// The next access has to respect tRAS for this bank
bank_ref.preAllowedAt = act_tick + tRAS;
// Respect the row-to-column command delay for both read and write cmds
bank_ref.rdAllowedAt = std::max(act_tick + tRCD, bank_ref.rdAllowedAt);
bank_ref.wrAllowedAt = std::max(act_tick + tRCD, bank_ref.wrAllowedAt);
// start by enforcing tRRD
for (int i = 0; i < banksPerRank; i++) {
// next activate to any bank in this rank must not happen
// before tRRD
if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
// bank group architecture requires longer delays between
// ACT commands within the same bank group. Use tRRD_L
// in this case
rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
rank_ref.banks[i].actAllowedAt);
} else {
// use shorter tRRD value when either
// 1) bank group architecture is not supportted
// 2) bank is in a different bank group
rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
rank_ref.banks[i].actAllowedAt);
}
}
// next, we deal with tXAW, if the activation limit is disabled
// then we directly schedule an activate power event
if (!rank_ref.actTicks.empty()) {
// sanity check
if (rank_ref.actTicks.back() &&
(act_tick - rank_ref.actTicks.back()) < tXAW) {
panic("Got %d activates in window %d (%llu - %llu) which "
"is smaller than %llu\n", activationLimit, act_tick -
rank_ref.actTicks.back(), act_tick,
rank_ref.actTicks.back(), tXAW);
}
// shift the times used for the book keeping, the last element
// (highest index) is the oldest one and hence the lowest value
rank_ref.actTicks.pop_back();
// record an new activation (in the future)
rank_ref.actTicks.push_front(act_tick);
// cannot activate more than X times in time window tXAW, push the
// next one (the X + 1'st activate) to be tXAW away from the
// oldest in our window of X
if (rank_ref.actTicks.back() &&
(act_tick - rank_ref.actTicks.back()) < tXAW) {
DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
"no earlier than %llu\n", activationLimit,
rank_ref.actTicks.back() + tXAW);
for (int j = 0; j < banksPerRank; j++)
// next activate must not happen before end of window
rank_ref.banks[j].actAllowedAt =
std::max(rank_ref.actTicks.back() + tXAW,
rank_ref.banks[j].actAllowedAt);
}
}
// at the point when this activate takes place, make sure we
// transition to the active power state
if (!rank_ref.activateEvent.scheduled())
schedule(rank_ref.activateEvent, act_tick);
else if (rank_ref.activateEvent.when() > act_tick)
// move it sooner in time
reschedule(rank_ref.activateEvent, act_tick);
}
void
DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
{
// make sure the bank has an open row
assert(bank.openRow != Bank::NO_ROW);
// sample the bytes per activate here since we are closing
// the page
bytesPerActivate.sample(bank.bytesAccessed);
bank.openRow = Bank::NO_ROW;
// no precharge allowed before this one
bank.preAllowedAt = pre_at;
Tick pre_done_at = pre_at + tRP;
bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
assert(rank_ref.numBanksActive != 0);
--rank_ref.numBanksActive;
DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
"%d active\n", bank.bank, rank_ref.rank, pre_at,
rank_ref.numBanksActive);
if (trace) {
rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank,
pre_at));
DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
timeStampOffset, bank.bank, rank_ref.rank);
}
// if we look at the current number of active banks we might be
// tempted to think the DRAM is now idle, however this can be
// undone by an activate that is scheduled to happen before we
// would have reached the idle state, so schedule an event and
// rather check once we actually make it to the point in time when
// the (last) precharge takes place
if (!rank_ref.prechargeEvent.scheduled()) {
schedule(rank_ref.prechargeEvent, pre_done_at);
// New event, increment count
++rank_ref.outstandingEvents;
} else if (rank_ref.prechargeEvent.when() < pre_done_at) {
reschedule(rank_ref.prechargeEvent, pre_done_at);
}
}
void
DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
{
DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
// get the rank
Rank& rank = dram_pkt->rankRef;
// are we in or transitioning to a low-power state and have not scheduled
// a power-up event?
// if so, wake up from power down to issue RD/WR burst
if (rank.inLowPowerState) {
assert(rank.pwrState != PWR_SREF);
rank.scheduleWakeUpEvent(tXP);
}
// get the bank
Bank& bank = dram_pkt->bankRef;
// for the state we need to track if it is a row hit or not
bool row_hit = true;
// Determine the access latency and update the bank state
if (bank.openRow == dram_pkt->row) {
// nothing to do
} else {
row_hit = false;
// If there is a page open, precharge it.
if (bank.openRow != Bank::NO_ROW) {
prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
}
// next we need to account for the delay in activating the
// page
Tick act_tick = std::max(bank.actAllowedAt, curTick());
// Record the activation and deal with all the global timing
// constraints caused be a new activation (tRRD and tXAW)
activateBank(rank, bank, act_tick, dram_pkt->row);
}
// respect any constraints on the command (e.g. tRCD or tCCD)
const Tick col_allowed_at = dram_pkt->isRead() ?
bank.rdAllowedAt : bank.wrAllowedAt;
// we need to wait until the bus is available before we can issue
// the command; need minimum of tBURST between commands
Tick cmd_at = std::max({col_allowed_at, nextBurstAt, curTick()});
// update the packet ready time
dram_pkt->readyTime = cmd_at + tCL + tBURST;
// update the time for the next read/write burst for each
// bank (add a max with tCCD/tCCD_L/tCCD_L_WR here)
Tick dly_to_rd_cmd;
Tick dly_to_wr_cmd;
for (int j = 0; j < ranksPerChannel; j++) {
for (int i = 0; i < banksPerRank; i++) {
// next burst to same bank group in this rank must not happen
// before tCCD_L. Different bank group timing requirement is
// tBURST; Add tCS for different ranks
if (dram_pkt->rank == j) {
if (bankGroupArch &&
(bank.bankgr == ranks[j]->banks[i].bankgr)) {
// bank group architecture requires longer delays between
// RD/WR burst commands to the same bank group.
// tCCD_L is default requirement for same BG timing
// tCCD_L_WR is required for write-to-write
// Need to also take bus turnaround delays into account
dly_to_rd_cmd = dram_pkt->isRead() ?
tCCD_L : std::max(tCCD_L, wrToRdDly);
dly_to_wr_cmd = dram_pkt->isRead() ?
std::max(tCCD_L, rdToWrDly) : tCCD_L_WR;
} else {
// tBURST is default requirement for diff BG timing
// Need to also take bus turnaround delays into account
dly_to_rd_cmd = dram_pkt->isRead() ? tBURST : wrToRdDly;
dly_to_wr_cmd = dram_pkt->isRead() ? rdToWrDly : tBURST;
}
} else {
// different rank is by default in a different bank group and
// doesn't require longer tCCD or additional RTW, WTR delays
// Need to account for rank-to-rank switching with tCS
dly_to_wr_cmd = rankToRankDly;
dly_to_rd_cmd = rankToRankDly;
}
ranks[j]->banks[i].rdAllowedAt = std::max(cmd_at + dly_to_rd_cmd,
ranks[j]->banks[i].rdAllowedAt);
ranks[j]->banks[i].wrAllowedAt = std::max(cmd_at + dly_to_wr_cmd,
ranks[j]->banks[i].wrAllowedAt);
}
}
// Save rank of current access
activeRank = dram_pkt->rank;
// If this is a write, we also need to respect the write recovery
// time before a precharge, in the case of a read, respect the
// read to precharge constraint
bank.preAllowedAt = std::max(bank.preAllowedAt,
dram_pkt->isRead() ? cmd_at + tRTP :
dram_pkt->readyTime + tWR);
// increment the bytes accessed and the accesses per row
bank.bytesAccessed += burstSize;
++bank.rowAccesses;
// if we reached the max, then issue with an auto-precharge
bool auto_precharge = pageMgmt == Enums::close ||
bank.rowAccesses == maxAccessesPerRow;
// if we did not hit the limit, we might still want to
// auto-precharge
if (!auto_precharge &&
(pageMgmt == Enums::open_adaptive ||
pageMgmt == Enums::close_adaptive)) {
// a twist on the open and close page policies:
// 1) open_adaptive page policy does not blindly keep the
// page open, but close it if there are no row hits, and there
// are bank conflicts in the queue
// 2) close_adaptive page policy does not blindly close the
// page, but closes it only if there are no row hits in the queue.
// In this case, only force an auto precharge when there
// are no same page hits in the queue
bool got_more_hits = false;
bool got_bank_conflict = false;
// either look at the read queue or write queue
const std::vector<DRAMPacketQueue>& queue =
dram_pkt->isRead() ? readQueue : writeQueue;
for (uint8_t i = 0; i < numPriorities(); ++i) {
auto p = queue[i].begin();
// keep on looking until we find a hit or reach the end of the queue
// 1) if a hit is found, then both open and close adaptive policies keep
// the page open
// 2) if no hit is found, got_bank_conflict is set to true if a bank
// conflict request is waiting in the queue
// 3) make sure we are not considering the packet that we are
// currently dealing with
while (!got_more_hits && p != queue[i].end()) {
if (dram_pkt != (*p)) {
bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
(dram_pkt->bank == (*p)->bank);
bool same_row = dram_pkt->row == (*p)->row;
got_more_hits |= same_rank_bank && same_row;
got_bank_conflict |= same_rank_bank && !same_row;
}
++p;
}
if (got_more_hits)
break;
}
// auto pre-charge when either
// 1) open_adaptive policy, we have not got any more hits, and
// have a bank conflict
// 2) close_adaptive policy and we have not got any more hits
auto_precharge = !got_more_hits &&
(got_bank_conflict || pageMgmt == Enums::close_adaptive);
}
// DRAMPower trace command to be written
std::string mem_cmd = dram_pkt->isRead() ? "RD" : "WR";
// MemCommand required for DRAMPower library
MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
MemCommand::WR;
// Update bus state to reflect when previous command was issued
nextBurstAt = cmd_at + tBURST;
DPRINTF(DRAM, "Access to %lld, ready at %lld next burst at %lld.\n",
dram_pkt->addr, dram_pkt->readyTime, nextBurstAt);
dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank,
cmd_at));
DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
// if this access should use auto-precharge, then we are
// closing the row after the read/write burst
if (auto_precharge) {
// if auto-precharge push a PRE command at the correct tick to the
// list used by DRAMPower library to calculate power
prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
}
// Update the minimum timing between the requests, this is a
// conservative estimate of when we have to schedule the next
// request to not introduce any unecessary bubbles. In most cases
// we will wake up sooner than we have to.
nextReqTime = nextBurstAt - (tRP + tRCD);
// Update the stats and schedule the next request
if (dram_pkt->isRead()) {
++readsThisTime;
if (row_hit)
readRowHits++;
bytesReadDRAM += burstSize;
perBankRdBursts[dram_pkt->bankId]++;
// Update latency stats
totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
masterReadTotalLat[dram_pkt->masterId()] +=
dram_pkt->readyTime - dram_pkt->entryTime;
totBusLat += tBURST;
totQLat += cmd_at - dram_pkt->entryTime;
masterReadBytes[dram_pkt->masterId()] += dram_pkt->size;
} else {
++writesThisTime;
if (row_hit)
writeRowHits++;
bytesWritten += burstSize;
perBankWrBursts[dram_pkt->bankId]++;
masterWriteBytes[dram_pkt->masterId()] += dram_pkt->size;
masterWriteTotalLat[dram_pkt->masterId()] +=
dram_pkt->readyTime - dram_pkt->entryTime;
}
}
void
DRAMCtrl::processNextReqEvent()
{
// transition is handled by QoS algorithm if enabled
if (turnPolicy) {
// select bus state - only done if QoS algorithms are in use
busStateNext = selectNextBusState();
}
// detect bus state change
bool switched_cmd_type = (busState != busStateNext);
// record stats
recordTurnaroundStats();
DPRINTF(DRAM, "QoS Turnarounds selected state %s %s\n",
(busState==MemCtrl::READ)?"READ":"WRITE",
switched_cmd_type?"[turnaround triggered]":"");
if (switched_cmd_type) {
if (busState == READ) {
DPRINTF(DRAM,
"Switching to writes after %d reads with %d reads "
"waiting\n", readsThisTime, totalReadQueueSize);
rdPerTurnAround.sample(readsThisTime);
readsThisTime = 0;
} else {
DPRINTF(DRAM,
"Switching to reads after %d writes with %d writes "
"waiting\n", writesThisTime, totalWriteQueueSize);
wrPerTurnAround.sample(writesThisTime);
writesThisTime = 0;
}
}
// updates current state
busState = busStateNext;
// check ranks for refresh/wakeup - uses busStateNext, so done after turnaround
// decisions
int busyRanks = 0;
for (auto r : ranks) {
if (!r->inRefIdleState()) {
if (r->pwrState != PWR_SREF) {
// rank is busy refreshing
DPRINTF(DRAMState, "Rank %d is not available\n", r->rank);
busyRanks++;
// let the rank know that if it was waiting to drain, it
// is now done and ready to proceed
r->checkDrainDone();
}
// check if we were in self-refresh and haven't started
// to transition out
if ((r->pwrState == PWR_SREF) && r->inLowPowerState) {
DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank);
// if we have commands queued to this rank and we don't have
// a minimum number of active commands enqueued,
// exit self-refresh
if (r->forceSelfRefreshExit()) {
DPRINTF(DRAMState, "rank %d was in self refresh and"
" should wake up\n", r->rank);
//wake up from self-refresh
r->scheduleWakeUpEvent(tXS);
// things are brought back into action once a refresh is
// performed after self-refresh
// continue with selection for other ranks
}
}
}
}
if (busyRanks == ranksPerChannel) {
// if all ranks are refreshing wait for them to finish
// and stall this state machine without taking any further
// action, and do not schedule a new nextReqEvent
return;
}
// when we get here it is either a read or a write
if (busState == READ) {
// track if we should switch or not
bool switch_to_writes = false;
if (totalReadQueueSize == 0) {
// In the case there is no read request to go next,
// trigger writes if we have passed the low threshold (or
// if we are draining)
if (!(totalWriteQueueSize == 0) &&
(drainState() == DrainState::Draining ||
totalWriteQueueSize > writeLowThreshold)) {
DPRINTF(DRAM, "Switching to writes due to read queue empty\n");
switch_to_writes = true;
} else {
// check if we are drained
// not done draining until in PWR_IDLE state
// ensuring all banks are closed and
// have exited low power states
if (drainState() == DrainState::Draining &&
respQueue.empty() && allRanksDrained()) {
DPRINTF(Drain, "DRAM controller done draining\n");
signalDrainDone();
}
// nothing to do, not even any point in scheduling an
// event for the next request
return;
}
} else {
bool read_found = false;
DRAMPacketQueue::iterator to_read;
uint8_t prio = numPriorities();
for (auto queue = readQueue.rbegin();
queue != readQueue.rend(); ++queue) {
prio--;
DPRINTF(QOS,
"DRAM controller checking READ queue [%d] priority [%d elements]\n",
prio, queue->size());
// Figure out which read request goes next
// If we are changing command type, incorporate the minimum
// bus turnaround delay which will be tCS (different rank) case
to_read = chooseNext((*queue), switched_cmd_type ? tCS : 0);
if (to_read != queue->end()) {
// candidate read found
read_found = true;
break;
}
}
// if no read to an available rank is found then return
// at this point. There could be writes to the available ranks
// which are above the required threshold. However, to
// avoid adding more complexity to the code, return and wait
// for a refresh event to kick things into action again.
if (!read_found) {
DPRINTF(DRAM, "No Reads Found - exiting\n");
return;
}
auto dram_pkt = *to_read;
assert(dram_pkt->rankRef.inRefIdleState());
doDRAMAccess(dram_pkt);
// Every respQueue which will generate an event, increment count
++dram_pkt->rankRef.outstandingEvents;
// sanity check
assert(dram_pkt->size <= burstSize);
assert(dram_pkt->readyTime >= curTick());
// log the response
logResponse(MemCtrl::READ, (*to_read)->masterId(),
dram_pkt->qosValue(), dram_pkt->getAddr(), 1,
dram_pkt->readyTime - dram_pkt->entryTime);
// Insert into response queue. It will be sent back to the
// requester at its readyTime
if (respQueue.empty()) {
assert(!respondEvent.scheduled());
schedule(respondEvent, dram_pkt->readyTime);
} else {
assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
assert(respondEvent.scheduled());
}
respQueue.push_back(dram_pkt);
// we have so many writes that we have to transition
if (totalWriteQueueSize > writeHighThreshold) {
switch_to_writes = true;
}
// remove the request from the queue - the iterator is no longer valid .
readQueue[dram_pkt->qosValue()].erase(to_read);
}
// switching to writes, either because the read queue is empty
// and the writes have passed the low threshold (or we are
// draining), or because the writes hit the hight threshold
if (switch_to_writes) {
// transition to writing
busStateNext = WRITE;
}
} else {
bool write_found = false;
DRAMPacketQueue::iterator to_write;
uint8_t prio = numPriorities();
for (auto queue = writeQueue.rbegin();
queue != writeQueue.rend(); ++queue) {
prio--;
DPRINTF(QOS,
"DRAM controller checking WRITE queue [%d] priority [%d elements]\n",
prio, queue->size());
// If we are changing command type, incorporate the minimum
// bus turnaround delay
to_write = chooseNext((*queue),
switched_cmd_type ? std::min(tRTW, tCS) : 0);
if (to_write != queue->end()) {
write_found = true;
break;
}
}
// if there are no writes to a rank that is available to service
// requests (i.e. rank is in refresh idle state) are found then
// return. There could be reads to the available ranks. However, to
// avoid adding more complexity to the code, return at this point and
// wait for a refresh event to kick things into action again.
if (!write_found) {
DPRINTF(DRAM, "No Writes Found - exiting\n");
return;
}
auto dram_pkt = *to_write;
assert(dram_pkt->rankRef.inRefIdleState());
// sanity check
assert(dram_pkt->size <= burstSize);
doDRAMAccess(dram_pkt);
// removed write from queue, decrement count
--dram_pkt->rankRef.writeEntries;
// Schedule write done event to decrement event count
// after the readyTime has been reached
// Only schedule latest write event to minimize events
// required; only need to ensure that final event scheduled covers
// the time that writes are outstanding and bus is active
// to holdoff power-down entry events
if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) {
schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
// New event, increment count
++dram_pkt->rankRef.outstandingEvents;
} else if (dram_pkt->rankRef.writeDoneEvent.when() <
dram_pkt->readyTime) {
reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
}
isInWriteQueue.erase(burstAlign(dram_pkt->addr));
// log the response
logResponse(MemCtrl::WRITE, dram_pkt->masterId(),
dram_pkt->qosValue(), dram_pkt->getAddr(), 1,
dram_pkt->readyTime - dram_pkt->entryTime);
// remove the request from the queue - the iterator is no longer valid
writeQueue[dram_pkt->qosValue()].erase(to_write);
delete dram_pkt;
// If we emptied the write queue, or got sufficiently below the
// threshold (using the minWritesPerSwitch as the hysteresis) and
// are not draining, or we have reads waiting and have done enough
// writes, then switch to reads.
bool below_threshold =
totalWriteQueueSize + minWritesPerSwitch < writeLowThreshold;
if (totalWriteQueueSize == 0 ||
(below_threshold && drainState() != DrainState::Draining) ||
(totalReadQueueSize && writesThisTime >= minWritesPerSwitch)) {
// turn the bus back around for reads again
busStateNext = READ;
// note that the we switch back to reads also in the idle
// case, which eventually will check for any draining and
// also pause any further scheduling if there is really
// nothing to do
}
}
// It is possible that a refresh to another rank kicks things back into
// action before reaching this point.
if (!nextReqEvent.scheduled())
schedule(nextReqEvent, std::max(nextReqTime, curTick()));
// If there is space available and we have writes waiting then let
// them retry. This is done here to ensure that the retry does not
// cause a nextReqEvent to be scheduled before we do so as part of
// the next request processing
if (retryWrReq && totalWriteQueueSize < writeBufferSize) {
retryWrReq = false;
port.sendRetryReq();
}
}
pair<vector<uint32_t>, bool>
DRAMCtrl::minBankPrep(const DRAMPacketQueue& queue,
Tick min_col_at) const
{
Tick min_act_at = MaxTick;
vector<uint32_t> bank_mask(ranksPerChannel, 0);
// latest Tick for which ACT can occur without incurring additoinal
// delay on the data bus
const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
// Flag condition when burst can issue back-to-back with previous burst
bool found_seamless_bank = false;
// Flag condition when bank can be opened without incurring additional
// delay on the data bus
bool hidden_bank_prep = false;
// determine if we have queued transactions targetting the
// bank in question
vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
for (const auto& p : queue) {
if (p->rankRef.inRefIdleState())
got_waiting[p->bankId] = true;
}
// Find command with optimal bank timing
// Will prioritize commands that can issue seamlessly.
for (int i = 0; i < ranksPerChannel; i++) {
for (int j = 0; j < banksPerRank; j++) {
uint16_t bank_id = i * banksPerRank + j;
// if we have waiting requests for the bank, and it is
// amongst the first available, update the mask
if (got_waiting[bank_id]) {
// make sure this rank is not currently refreshing.
assert(ranks[i]->inRefIdleState());
// simplistic approximation of when the bank can issue
// an activate, ignoring any rank-to-rank switching
// cost in this calculation
Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
// When is the earliest the R/W burst can issue?
const Tick col_allowed_at = (busState == READ) ?
ranks[i]->banks[j].rdAllowedAt :
ranks[i]->banks[j].wrAllowedAt;
Tick col_at = std::max(col_allowed_at, act_at + tRCD);
// bank can issue burst back-to-back (seamlessly) with
// previous burst
bool new_seamless_bank = col_at <= min_col_at;
// if we found a new seamless bank or we have no
// seamless banks, and got a bank with an earlier
// activate time, it should be added to the bit mask
if (new_seamless_bank ||
(!found_seamless_bank && act_at <= min_act_at)) {
// if we did not have a seamless bank before, and
// we do now, reset the bank mask, also reset it
// if we have not yet found a seamless bank and
// the activate time is smaller than what we have
// seen so far
if (!found_seamless_bank &&
(new_seamless_bank || act_at < min_act_at)) {
std::fill(bank_mask.begin(), bank_mask.end(), 0);
}
found_seamless_bank |= new_seamless_bank;
// ACT can occur 'behind the scenes'
hidden_bank_prep = act_at <= hidden_act_max;
// set the bit corresponding to the available bank
replaceBits(bank_mask[i], j, j, 1);
min_act_at = act_at;
}
}
}
}
return make_pair(bank_mask, hidden_bank_prep);
}
DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank)
: EventManager(&_memory), memory(_memory),
pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE),
pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE),
refreshState(REF_IDLE), inLowPowerState(false), rank(rank),
readEntries(0), writeEntries(0), outstandingEvents(0),
wakeUpAllowedAt(0), power(_p, false), banks(_p->banks_per_rank),
numBanksActive(0), actTicks(_p->activation_limit, 0),
writeDoneEvent([this]{ processWriteDoneEvent(); }, name()),
activateEvent([this]{ processActivateEvent(); }, name()),
prechargeEvent([this]{ processPrechargeEvent(); }, name()),
refreshEvent([this]{ processRefreshEvent(); }, name()),
powerEvent([this]{ processPowerEvent(); }, name()),
wakeUpEvent([this]{ processWakeUpEvent(); }, name())
{
for (int b = 0; b < _p->banks_per_rank; b++) {
banks[b].bank = b;
// GDDR addressing of banks to BG is linear.
// Here we assume that all DRAM generations address bank groups as
// follows:
if (_p->bank_groups_per_rank > 0) {
// Simply assign lower bits to bank group in order to
// rotate across bank groups as banks are incremented
// e.g. with 4 banks per bank group and 16 banks total:
// banks 0,4,8,12 are in bank group 0
// banks 1,5,9,13 are in bank group 1
// banks 2,6,10,14 are in bank group 2
// banks 3,7,11,15 are in bank group 3
banks[b].bankgr = b % _p->bank_groups_per_rank;
} else {
// No bank groups; simply assign to bank number
banks[b].bankgr = b;
}
}
}
void
DRAMCtrl::Rank::startup(Tick ref_tick)
{
assert(ref_tick > curTick());
pwrStateTick = curTick();
// kick off the refresh, and give ourselves enough time to
// precharge
schedule(refreshEvent, ref_tick);
}
void
DRAMCtrl::Rank::suspend()
{
deschedule(refreshEvent);
// Update the stats
updatePowerStats();
// don't automatically transition back to LP state after next REF
pwrStatePostRefresh = PWR_IDLE;
}
bool
DRAMCtrl::Rank::isQueueEmpty() const
{
// check commmands in Q based on current bus direction
bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0))
|| ((memory.busStateNext == WRITE) &&
(writeEntries == 0));
return no_queued_cmds;
}
void
DRAMCtrl::Rank::checkDrainDone()
{
// if this rank was waiting to drain it is now able to proceed to
// precharge
if (refreshState == REF_DRAIN) {
DPRINTF(DRAM, "Refresh drain done, now precharging\n");
refreshState = REF_PD_EXIT;
// hand control back to the refresh event loop
schedule(refreshEvent, curTick());
}
}
void
DRAMCtrl::Rank::flushCmdList()
{
// at the moment sort the list of commands and update the counters
// for DRAMPower libray when doing a refresh
sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime);
auto next_iter = cmdList.begin();
// push to commands to DRAMPower
for ( ; next_iter != cmdList.end() ; ++next_iter) {
Command cmd = *next_iter;
if (cmd.timeStamp <= curTick()) {
// Move all commands at or before curTick to DRAMPower
power.powerlib.doCommand(cmd.type, cmd.bank,
divCeil(cmd.timeStamp, memory.tCK) -
memory.timeStampOffset);
} else {
// done - found all commands at or before curTick()
// next_iter references the 1st command after curTick
break;
}
}
// reset cmdList to only contain commands after curTick
// if there are no commands after curTick, updated cmdList will be empty
// in this case, next_iter is cmdList.end()
cmdList.assign(next_iter, cmdList.end());
}
void
DRAMCtrl::Rank::processActivateEvent()
{
// we should transition to the active state as soon as any bank is active
if (pwrState != PWR_ACT)
// note that at this point numBanksActive could be back at
// zero again due to a precharge scheduled in the future
schedulePowerEvent(PWR_ACT, curTick());
}
void
DRAMCtrl::Rank::processPrechargeEvent()
{
// counter should at least indicate one outstanding request
// for this precharge
assert(outstandingEvents > 0);
// precharge complete, decrement count
--outstandingEvents;
// if we reached zero, then special conditions apply as we track
// if all banks are precharged for the power models
if (numBanksActive == 0) {
// no reads to this rank in the Q and no pending
// RD/WR or refresh commands
if (isQueueEmpty() && outstandingEvents == 0) {
// should still be in ACT state since bank still open
assert(pwrState == PWR_ACT);
// All banks closed - switch to precharge power down state.
DPRINTF(DRAMState, "Rank %d sleep at tick %d\n",
rank, curTick());
powerDownSleep(PWR_PRE_PDN, curTick());
} else {
// we should transition to the idle state when the last bank
// is precharged
schedulePowerEvent(PWR_IDLE, curTick());
}
}
}
void
DRAMCtrl::Rank::processWriteDoneEvent()
{
// counter should at least indicate one outstanding request
// for this write
assert(outstandingEvents > 0);
// Write transfer on bus has completed
// decrement per rank counter
--outstandingEvents;
}
void
DRAMCtrl::Rank::processRefreshEvent()
{
// when first preparing the refresh, remember when it was due
if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) {
// remember when the refresh is due
refreshDueAt = curTick();
// proceed to drain
refreshState = REF_DRAIN;
// make nonzero while refresh is pending to ensure
// power down and self-refresh are not entered
++outstandingEvents;
DPRINTF(DRAM, "Refresh due\n");
}
// let any scheduled read or write to the same rank go ahead,
// after which it will
// hand control back to this event loop
if (refreshState == REF_DRAIN) {
// if a request is at the moment being handled and this request is
// accessing the current rank then wait for it to finish
if ((rank == memory.activeRank)
&& (memory.nextReqEvent.scheduled())) {
// hand control over to the request loop until it is
// evaluated next
DPRINTF(DRAM, "Refresh awaiting draining\n");
return;
} else {
refreshState = REF_PD_EXIT;
}
}
// at this point, ensure that rank is not in a power-down state
if (refreshState == REF_PD_EXIT) {
// if rank was sleeping and we have't started exit process,
// wake-up for refresh
if (inLowPowerState) {
DPRINTF(DRAM, "Wake Up for refresh\n");
// save state and return after refresh completes
scheduleWakeUpEvent(memory.tXP);
return;
} else {
refreshState = REF_PRE;
}
}
// at this point, ensure that all banks are precharged
if (refreshState == REF_PRE) {
// precharge any active bank
if (numBanksActive != 0) {
// at the moment, we use a precharge all even if there is
// only a single bank open
DPRINTF(DRAM, "Precharging all\n");
// first determine when we can precharge
Tick pre_at = curTick();
for (auto &b : banks) {
// respect both causality and any existing bank
// constraints, some banks could already have a
// (auto) precharge scheduled
pre_at = std::max(b.preAllowedAt, pre_at);
}
// make sure all banks per rank are precharged, and for those that
// already are, update their availability
Tick act_allowed_at = pre_at + memory.tRP;
for (auto &b : banks) {
if (b.openRow != Bank::NO_ROW) {
memory.prechargeBank(*this, b, pre_at, false);
} else {
b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
}
}
// precharge all banks in rank
cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
divCeil(pre_at, memory.tCK) -
memory.timeStampOffset, rank);
} else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1)) {
// Banks are closed, have transitioned to IDLE state, and
// no outstanding ACT,RD/WR,Auto-PRE sequence scheduled
DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
// go ahead and kick the power state machine into gear since
// we are already idle
schedulePowerEvent(PWR_REF, curTick());
} else {
// banks state is closed but haven't transitioned pwrState to IDLE
// or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled
// should have outstanding precharge event in this case
assert(prechargeEvent.scheduled());
// will start refresh when pwrState transitions to IDLE
}
assert(numBanksActive == 0);
// wait for all banks to be precharged, at which point the
// power state machine will transition to the idle state, and
// automatically move to a refresh, at that point it will also
// call this method to get the refresh event loop going again
return;
}
// last but not least we perform the actual refresh
if (refreshState == REF_START) {
// should never get here with any banks active
assert(numBanksActive == 0);
assert(pwrState == PWR_REF);
Tick ref_done_at = curTick() + memory.tRFC;
for (auto &b : banks) {
b.actAllowedAt = ref_done_at;
}
// at the moment this affects all ranks
cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
// Update the stats
updatePowerStats();
DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
memory.timeStampOffset, rank);
// Update for next refresh
refreshDueAt += memory.tREFI;
// make sure we did not wait so long that we cannot make up
// for it
if (refreshDueAt < ref_done_at) {
fatal("Refresh was delayed so long we cannot catch up\n");
}
// Run the refresh and schedule event to transition power states
// when refresh completes
refreshState = REF_RUN;
schedule(refreshEvent, ref_done_at);
return;
}
if (refreshState == REF_RUN) {
// should never get here with any banks active
assert(numBanksActive == 0);
assert(pwrState == PWR_REF);
assert(!powerEvent.scheduled());
if ((memory.drainState() == DrainState::Draining) ||
(memory.drainState() == DrainState::Drained)) {
// if draining, do not re-enter low-power mode.
// simply go to IDLE and wait
schedulePowerEvent(PWR_IDLE, curTick());
} else {
// At the moment, we sleep when the refresh ends and wait to be
// woken up again if previously in a low-power state.
if (pwrStatePostRefresh != PWR_IDLE) {
// power State should be power Refresh
assert(pwrState == PWR_REF);
DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in "
"power state %d before refreshing\n", rank,
pwrStatePostRefresh);
powerDownSleep(pwrState, curTick());
// Force PRE power-down if there are no outstanding commands
// in Q after refresh.
} else if (isQueueEmpty()) {
// still have refresh event outstanding but there should
// be no other events outstanding
assert(outstandingEvents == 1);
DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT"
" in a low power state before refreshing\n", rank);
powerDownSleep(PWR_PRE_PDN, curTick());
} else {
// move to the idle power state once the refresh is done, this
// will also move the refresh state machine to the refresh
// idle state
schedulePowerEvent(PWR_IDLE, curTick());
}
}
// At this point, we have completed the current refresh.
// In the SREF bypass case, we do not get to this state in the
// refresh STM and therefore can always schedule next event.
// Compensate for the delay in actually performing the refresh
// when scheduling the next one
schedule(refreshEvent, refreshDueAt - memory.tRP);
DPRINTF(DRAMState, "Refresh done at %llu and next refresh"
" at %llu\n", curTick(), refreshDueAt);
}
}
void
DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
{
// respect causality
assert(tick >= curTick());
if (!powerEvent.scheduled()) {
DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
tick, pwr_state);
// insert the new transition
pwrStateTrans = pwr_state;
schedule(powerEvent, tick);
} else {
panic("Scheduled power event at %llu to state %d, "
"with scheduled event at %llu to %d\n", tick, pwr_state,
powerEvent.when(), pwrStateTrans);
}
}
void
DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick)
{
// if low power state is active low, schedule to active low power state.
// in reality tCKE is needed to enter active low power. This is neglected
// here and could be added in the future.
if (pwr_state == PWR_ACT_PDN) {
schedulePowerEvent(pwr_state, tick);
// push command to DRAMPower
cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick));
DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick,
memory.tCK) - memory.timeStampOffset, rank);
} else if (pwr_state == PWR_PRE_PDN) {
// if low power state is precharge low, schedule to precharge low
// power state. In reality tCKE is needed to enter active low power.
// This is neglected here.
schedulePowerEvent(pwr_state, tick);
//push Command to DRAMPower
cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
memory.tCK) - memory.timeStampOffset, rank);
} else if (pwr_state == PWR_REF) {
// if a refresh just occurred
// transition to PRE_PDN now that all banks are closed
// precharge power down requires tCKE to enter. For simplicity
// this is not considered.
schedulePowerEvent(PWR_PRE_PDN, tick);
//push Command to DRAMPower
cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
memory.tCK) - memory.timeStampOffset, rank);
} else if (pwr_state == PWR_SREF) {
// should only enter SREF after PRE-PD wakeup to do a refresh
assert(pwrStatePostRefresh == PWR_PRE_PDN);
// self refresh requires time tCKESR to enter. For simplicity,
// this is not considered.
schedulePowerEvent(PWR_SREF, tick);
// push Command to DRAMPower
cmdList.push_back(Command(MemCommand::SREN, 0, tick));
DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick,
memory.tCK) - memory.timeStampOffset, rank);
}
// Ensure that we don't power-down and back up in same tick
// Once we commit to PD entry, do it and wait for at least 1tCK
// This could be replaced with tCKE if/when that is added to the model
wakeUpAllowedAt = tick + memory.tCK;
// Transitioning to a low power state, set flag
inLowPowerState = true;
}
void
DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay)
{
Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt);
DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n",
rank, wake_up_tick);
// if waking for refresh, hold previous state
// else reset state back to IDLE
if (refreshState == REF_PD_EXIT) {
pwrStatePostRefresh = pwrState;
} else {
// don't automatically transition back to LP state after next REF
pwrStatePostRefresh = PWR_IDLE;
}
// schedule wake-up with event to ensure entry has completed before
// we try to wake-up
schedule(wakeUpEvent, wake_up_tick);
for (auto &b : banks) {
// respect both causality and any existing bank
// constraints, some banks could already have a
// (auto) precharge scheduled
b.wrAllowedAt = std::max(wake_up_tick + exit_delay, b.wrAllowedAt);
b.rdAllowedAt = std::max(wake_up_tick + exit_delay, b.rdAllowedAt);
b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt);
b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt);
}
// Transitioning out of low power state, clear flag
inLowPowerState = false;
// push to DRAMPower
// use pwrStateTrans for cases where we have a power event scheduled
// to enter low power that has not yet been processed
if (pwrStateTrans == PWR_ACT_PDN) {
cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick));
DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick,
memory.tCK) - memory.timeStampOffset, rank);
} else if (pwrStateTrans == PWR_PRE_PDN) {
cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick));
DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick,
memory.tCK) - memory.timeStampOffset, rank);
} else if (pwrStateTrans == PWR_SREF) {
cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick));
DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick,
memory.tCK) - memory.timeStampOffset, rank);
}
}
void
DRAMCtrl::Rank::processWakeUpEvent()
{
// Should be in a power-down or self-refresh state
assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) ||
(pwrState == PWR_SREF));
// Check current state to determine transition state
if (pwrState == PWR_ACT_PDN) {
// banks still open, transition to PWR_ACT
schedulePowerEvent(PWR_ACT, curTick());
} else {
// transitioning from a precharge power-down or self-refresh state
// banks are closed - transition to PWR_IDLE
schedulePowerEvent(PWR_IDLE, curTick());
}
}
void
DRAMCtrl::Rank::processPowerEvent()
{
assert(curTick() >= pwrStateTick);
// remember where we were, and for how long
Tick duration = curTick() - pwrStateTick;
PowerState prev_state = pwrState;
// update the accounting
pwrStateTime[prev_state] += duration;
// track to total idle time
if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) ||
(prev_state == PWR_SREF)) {
totalIdleTime += duration;
}
pwrState = pwrStateTrans;
pwrStateTick = curTick();
// if rank was refreshing, make sure to start scheduling requests again
if (prev_state == PWR_REF) {
// bus IDLED prior to REF
// counter should be one for refresh command only
assert(outstandingEvents == 1);
// REF complete, decrement count and go back to IDLE
--outstandingEvents;
refreshState = REF_IDLE;
DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
// if moving back to power-down after refresh
if (pwrState != PWR_IDLE) {
assert(pwrState == PWR_PRE_PDN);
DPRINTF(DRAMState, "Switching to power down state after refreshing"
" rank %d at %llu tick\n", rank, curTick());
}
// completed refresh event, ensure next request is scheduled
if (!memory.nextReqEvent.scheduled()) {
DPRINTF(DRAM, "Scheduling next request after refreshing"
" rank %d\n", rank);
schedule(memory.nextReqEvent, curTick());
}
}
if ((pwrState == PWR_ACT) && (refreshState == REF_PD_EXIT)) {
// have exited ACT PD
assert(prev_state == PWR_ACT_PDN);
// go back to REF event and close banks
refreshState = REF_PRE;
schedule(refreshEvent, curTick());
} else if (pwrState == PWR_IDLE) {
DPRINTF(DRAMState, "All banks precharged\n");
if (prev_state == PWR_SREF) {
// set refresh state to REF_SREF_EXIT, ensuring inRefIdleState
// continues to return false during tXS after SREF exit
// Schedule a refresh which kicks things back into action
// when it finishes
refreshState = REF_SREF_EXIT;
schedule(refreshEvent, curTick() + memory.tXS);
} else {
// if we have a pending refresh, and are now moving to
// the idle state, directly transition to, or schedule refresh
if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) {
// ensure refresh is restarted only after final PRE command.
// do not restart refresh if controller is in an intermediate
// state, after PRE_PDN exit, when banks are IDLE but an
// ACT is scheduled.
if (!activateEvent.scheduled()) {
// there should be nothing waiting at this point
assert(!powerEvent.scheduled());
if (refreshState == REF_PD_EXIT) {
// exiting PRE PD, will be in IDLE until tXP expires
// and then should transition to PWR_REF state
assert(prev_state == PWR_PRE_PDN);
schedulePowerEvent(PWR_REF, curTick() + memory.tXP);
} else if (refreshState == REF_PRE) {
// can directly move to PWR_REF state and proceed below
pwrState = PWR_REF;
}
} else {
// must have PRE scheduled to transition back to IDLE
// and re-kick off refresh
assert(prechargeEvent.scheduled());
}
}
}
}
// transition to the refresh state and re-start refresh process
// refresh state machine will schedule the next power state transition
if (pwrState == PWR_REF) {
// completed final PRE for refresh or exiting power-down
assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT);
// exited PRE PD for refresh, with no pending commands
// bypass auto-refresh and go straight to SREF, where memory
// will issue refresh immediately upon entry
if (pwrStatePostRefresh == PWR_PRE_PDN && isQueueEmpty() &&
(memory.drainState() != DrainState::Draining) &&
(memory.drainState() != DrainState::Drained)) {
DPRINTF(DRAMState, "Rank %d bypassing refresh and transitioning "
"to self refresh at %11u tick\n", rank, curTick());
powerDownSleep(PWR_SREF, curTick());
// Since refresh was bypassed, remove event by decrementing count
assert(outstandingEvents == 1);
--outstandingEvents;
// reset state back to IDLE temporarily until SREF is entered
pwrState = PWR_IDLE;
// Not bypassing refresh for SREF entry
} else {
DPRINTF(DRAMState, "Refreshing\n");
// there should be nothing waiting at this point
assert(!powerEvent.scheduled());
// kick the refresh event loop into action again, and that
// in turn will schedule a transition to the idle power
// state once the refresh is done
schedule(refreshEvent, curTick());
// Banks transitioned to IDLE, start REF
refreshState = REF_START;
}
}
}
void
DRAMCtrl::Rank::updatePowerStats()
{
// All commands up to refresh have completed
// flush cmdList to DRAMPower
flushCmdList();
// Call the function that calculates window energy at intermediate update
// events like at refresh, stats dump as well as at simulation exit.
// Window starts at the last time the calcWindowEnergy function was called
// and is upto current time.
power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
memory.timeStampOffset);
// Get the energy from DRAMPower
Data::MemoryPowerModel::Energy energy = power.powerlib.getEnergy();
// The energy components inside the power lib are calculated over
// the window so accumulate into the corresponding gem5 stat
actEnergy += energy.act_energy * memory.devicesPerRank;
preEnergy += energy.pre_energy * memory.devicesPerRank;
readEnergy += energy.read_energy * memory.devicesPerRank;
writeEnergy += energy.write_energy * memory.devicesPerRank;
refreshEnergy += energy.ref_energy * memory.devicesPerRank;
actBackEnergy += energy.act_stdby_energy * memory.devicesPerRank;
preBackEnergy += energy.pre_stdby_energy * memory.devicesPerRank;
actPowerDownEnergy += energy.f_act_pd_energy * memory.devicesPerRank;
prePowerDownEnergy += energy.f_pre_pd_energy * memory.devicesPerRank;
selfRefreshEnergy += energy.sref_energy * memory.devicesPerRank;
// Accumulate window energy into the total energy.
totalEnergy += energy.window_energy * memory.devicesPerRank;
// Average power must not be accumulated but calculated over the time
// since last stats reset. SimClock::Frequency is tick period not tick
// frequency.
// energy (pJ) 1e-9
// power (mW) = ----------- * ----------
// time (tick) tick_frequency
averagePower = (totalEnergy.value() /
(curTick() - memory.lastStatsResetTick)) *
(SimClock::Frequency / 1000000000.0);
}
void
DRAMCtrl::Rank::computeStats()
{
DPRINTF(DRAM,"Computing stats due to a dump callback\n");
// Update the stats
updatePowerStats();
// final update of power state times
pwrStateTime[pwrState] += (curTick() - pwrStateTick);
pwrStateTick = curTick();
}
void
DRAMCtrl::Rank::resetStats() {
// The only way to clear the counters in DRAMPower is to call
// calcWindowEnergy function as that then calls clearCounters. The
// clearCounters method itself is private.
power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
memory.timeStampOffset);
}
void
DRAMCtrl::Rank::regStats()
{
pwrStateTime
.init(6)
.name(name() + ".memoryStateTime")
.desc("Time in different power states");
pwrStateTime.subname(0, "IDLE");
pwrStateTime.subname(1, "REF");
pwrStateTime.subname(2, "SREF");
pwrStateTime.subname(3, "PRE_PDN");
pwrStateTime.subname(4, "ACT");
pwrStateTime.subname(5, "ACT_PDN");
actEnergy
.name(name() + ".actEnergy")
.desc("Energy for activate commands per rank (pJ)");
preEnergy
.name(name() + ".preEnergy")
.desc("Energy for precharge commands per rank (pJ)");
readEnergy
.name(name() + ".readEnergy")
.desc("Energy for read commands per rank (pJ)");
writeEnergy
.name(name() + ".writeEnergy")
.desc("Energy for write commands per rank (pJ)");
refreshEnergy
.name(name() + ".refreshEnergy")
.desc("Energy for refresh commands per rank (pJ)");
actBackEnergy
.name(name() + ".actBackEnergy")
.desc("Energy for active background per rank (pJ)");
preBackEnergy
.name(name() + ".preBackEnergy")
.desc("Energy for precharge background per rank (pJ)");
actPowerDownEnergy
.name(name() + ".actPowerDownEnergy")
.desc("Energy for active power-down per rank (pJ)");
prePowerDownEnergy
.name(name() + ".prePowerDownEnergy")
.desc("Energy for precharge power-down per rank (pJ)");
selfRefreshEnergy
.name(name() + ".selfRefreshEnergy")
.desc("Energy for self refresh per rank (pJ)");
totalEnergy
.name(name() + ".totalEnergy")
.desc("Total energy per rank (pJ)");
averagePower
.name(name() + ".averagePower")
.desc("Core power per rank (mW)");
totalIdleTime
.name(name() + ".totalIdleTime")
.desc("Total Idle time Per DRAM Rank");
Stats::registerDumpCallback(new RankDumpCallback(this));
Stats::registerResetCallback(new RankResetCallback(this));
}
void
DRAMCtrl::regStats()
{
using namespace Stats;
MemCtrl::regStats();
for (auto r : ranks) {
r->regStats();
}
registerResetCallback(new MemResetCallback(this));
readReqs
.name(name() + ".readReqs")
.desc("Number of read requests accepted");
writeReqs
.name(name() + ".writeReqs")
.desc("Number of write requests accepted");
readBursts
.name(name() + ".readBursts")
.desc("Number of DRAM read bursts, "
"including those serviced by the write queue");
writeBursts
.name(name() + ".writeBursts")
.desc("Number of DRAM write bursts, "
"including those merged in the write queue");
servicedByWrQ
.name(name() + ".servicedByWrQ")
.desc("Number of DRAM read bursts serviced by the write queue");
mergedWrBursts
.name(name() + ".mergedWrBursts")
.desc("Number of DRAM write bursts merged with an existing one");
neitherReadNorWrite
.name(name() + ".neitherReadNorWriteReqs")
.desc("Number of requests that are neither read nor write");
perBankRdBursts
.init(banksPerRank * ranksPerChannel)
.name(name() + ".perBankRdBursts")
.desc("Per bank write bursts");
perBankWrBursts
.init(banksPerRank * ranksPerChannel)
.name(name() + ".perBankWrBursts")
.desc("Per bank write bursts");
avgRdQLen
.name(name() + ".avgRdQLen")
.desc("Average read queue length when enqueuing")
.precision(2);
avgWrQLen
.name(name() + ".avgWrQLen")
.desc("Average write queue length when enqueuing")
.precision(2);
totQLat
.name(name() + ".totQLat")
.desc("Total ticks spent queuing");
totBusLat
.name(name() + ".totBusLat")
.desc("Total ticks spent in databus transfers");
totMemAccLat
.name(name() + ".totMemAccLat")
.desc("Total ticks spent from burst creation until serviced "
"by the DRAM");
avgQLat
.name(name() + ".avgQLat")
.desc("Average queueing delay per DRAM burst")
.precision(2);
avgQLat = totQLat / (readBursts - servicedByWrQ);
avgBusLat
.name(name() + ".avgBusLat")
.desc("Average bus latency per DRAM burst")
.precision(2);
avgBusLat = totBusLat / (readBursts - servicedByWrQ);
avgMemAccLat
.name(name() + ".avgMemAccLat")
.desc("Average memory access latency per DRAM burst")
.precision(2);
avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
numRdRetry
.name(name() + ".numRdRetry")
.desc("Number of times read queue was full causing retry");
numWrRetry
.name(name() + ".numWrRetry")
.desc("Number of times write queue was full causing retry");
readRowHits
.name(name() + ".readRowHits")
.desc("Number of row buffer hits during reads");
writeRowHits
.name(name() + ".writeRowHits")
.desc("Number of row buffer hits during writes");
readRowHitRate
.name(name() + ".readRowHitRate")
.desc("Row buffer hit rate for reads")
.precision(2);
readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
writeRowHitRate
.name(name() + ".writeRowHitRate")
.desc("Row buffer hit rate for writes")
.precision(2);
writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
readPktSize
.init(ceilLog2(burstSize) + 1)
.name(name() + ".readPktSize")
.desc("Read request sizes (log2)");
writePktSize
.init(ceilLog2(burstSize) + 1)
.name(name() + ".writePktSize")
.desc("Write request sizes (log2)");
rdQLenPdf
.init(readBufferSize)
.name(name() + ".rdQLenPdf")
.desc("What read queue length does an incoming req see");
wrQLenPdf
.init(writeBufferSize)
.name(name() + ".wrQLenPdf")
.desc("What write queue length does an incoming req see");
bytesPerActivate
.init(maxAccessesPerRow ? maxAccessesPerRow : rowBufferSize)
.name(name() + ".bytesPerActivate")
.desc("Bytes accessed per row activation")
.flags(nozero);
rdPerTurnAround
.init(readBufferSize)
.name(name() + ".rdPerTurnAround")
.desc("Reads before turning the bus around for writes")
.flags(nozero);
wrPerTurnAround
.init(writeBufferSize)
.name(name() + ".wrPerTurnAround")
.desc("Writes before turning the bus around for reads")
.flags(nozero);
bytesReadDRAM
.name(name() + ".bytesReadDRAM")
.desc("Total number of bytes read from DRAM");
bytesReadWrQ
.name(name() + ".bytesReadWrQ")
.desc("Total number of bytes read from write queue");
bytesWritten
.name(name() + ".bytesWritten")
.desc("Total number of bytes written to DRAM");
bytesReadSys
.name(name() + ".bytesReadSys")
.desc("Total read bytes from the system interface side");
bytesWrittenSys
.name(name() + ".bytesWrittenSys")
.desc("Total written bytes from the system interface side");
avgRdBW
.name(name() + ".avgRdBW")
.desc("Average DRAM read bandwidth in MiByte/s")
.precision(2);
avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
avgWrBW
.name(name() + ".avgWrBW")
.desc("Average achieved write bandwidth in MiByte/s")
.precision(2);
avgWrBW = (bytesWritten / 1000000) / simSeconds;
avgRdBWSys
.name(name() + ".avgRdBWSys")
.desc("Average system read bandwidth in MiByte/s")
.precision(2);
avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
avgWrBWSys
.name(name() + ".avgWrBWSys")
.desc("Average system write bandwidth in MiByte/s")
.precision(2);
avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
peakBW
.name(name() + ".peakBW")
.desc("Theoretical peak bandwidth in MiByte/s")
.precision(2);
peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
busUtil
.name(name() + ".busUtil")
.desc("Data bus utilization in percentage")
.precision(2);
busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
totGap
.name(name() + ".totGap")
.desc("Total gap between requests");
avgGap
.name(name() + ".avgGap")
.desc("Average gap between requests")
.precision(2);
avgGap = totGap / (readReqs + writeReqs);
// Stats for DRAM Power calculation based on Micron datasheet
busUtilRead
.name(name() + ".busUtilRead")
.desc("Data bus utilization in percentage for reads")
.precision(2);
busUtilRead = avgRdBW / peakBW * 100;
busUtilWrite
.name(name() + ".busUtilWrite")
.desc("Data bus utilization in percentage for writes")
.precision(2);
busUtilWrite = avgWrBW / peakBW * 100;
pageHitRate
.name(name() + ".pageHitRate")
.desc("Row buffer hit rate, read and write combined")
.precision(2);
pageHitRate = (writeRowHits + readRowHits) /
(writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
// per-master bytes read and written to memory
masterReadBytes
.init(_system->maxMasters())
.name(name() + ".masterReadBytes")
.desc("Per-master bytes read from memory")
.flags(nozero | nonan);
masterWriteBytes
.init(_system->maxMasters())
.name(name() + ".masterWriteBytes")
.desc("Per-master bytes write to memory")
.flags(nozero | nonan);
// per-master bytes read and written to memory rate
masterReadRate.name(name() + ".masterReadRate")
.desc("Per-master bytes read from memory rate (Bytes/sec)")
.flags(nozero | nonan)
.precision(12);
masterReadRate = masterReadBytes/simSeconds;
masterWriteRate
.name(name() + ".masterWriteRate")
.desc("Per-master bytes write to memory rate (Bytes/sec)")
.flags(nozero | nonan)
.precision(12);
masterWriteRate = masterWriteBytes/simSeconds;
masterReadAccesses
.init(_system->maxMasters())
.name(name() + ".masterReadAccesses")
.desc("Per-master read serviced memory accesses")
.flags(nozero);
masterWriteAccesses
.init(_system->maxMasters())
.name(name() + ".masterWriteAccesses")
.desc("Per-master write serviced memory accesses")
.flags(nozero);
masterReadTotalLat
.init(_system->maxMasters())
.name(name() + ".masterReadTotalLat")
.desc("Per-master read total memory access latency")
.flags(nozero | nonan);
masterReadAvgLat.name(name() + ".masterReadAvgLat")
.desc("Per-master read average memory access latency")
.flags(nonan)
.precision(2);
masterReadAvgLat = masterReadTotalLat/masterReadAccesses;
masterWriteTotalLat
.init(_system->maxMasters())
.name(name() + ".masterWriteTotalLat")
.desc("Per-master write total memory access latency")
.flags(nozero | nonan);
masterWriteAvgLat.name(name() + ".masterWriteAvgLat")
.desc("Per-master write average memory access latency")
.flags(nonan)
.precision(2);
masterWriteAvgLat = masterWriteTotalLat/masterWriteAccesses;
for (int i = 0; i < _system->maxMasters(); i++) {
const std::string master = _system->getMasterName(i);
masterReadBytes.subname(i, master);
masterReadRate.subname(i, master);
masterWriteBytes.subname(i, master);
masterWriteRate.subname(i, master);
masterReadAccesses.subname(i, master);
masterWriteAccesses.subname(i, master);
masterReadTotalLat.subname(i, master);
masterReadAvgLat.subname(i, master);
masterWriteTotalLat.subname(i, master);
masterWriteAvgLat.subname(i, master);
}
}
void
DRAMCtrl::recvFunctional(PacketPtr pkt)
{
// rely on the abstract memory
functionalAccess(pkt);
}
BaseSlavePort&
DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
{
if (if_name != "port") {
return MemObject::getSlavePort(if_name, idx);
} else {
return port;
}
}
DrainState
DRAMCtrl::drain()
{
// if there is anything in any of our internal queues, keep track
// of that as well
if (!(!totalWriteQueueSize && !totalReadQueueSize && respQueue.empty() &&
allRanksDrained())) {
DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
" resp: %d\n", totalWriteQueueSize, totalReadQueueSize,
respQueue.size());
// the only queue that is not drained automatically over time
// is the write queue, thus kick things into action if needed
if (!totalWriteQueueSize && !nextReqEvent.scheduled()) {
schedule(nextReqEvent, curTick());
}
// also need to kick off events to exit self-refresh
for (auto r : ranks) {
// force self-refresh exit, which in turn will issue auto-refresh
if (r->pwrState == PWR_SREF) {
DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n",
r->rank);
r->scheduleWakeUpEvent(tXS);
}
}
return DrainState::Draining;
} else {
return DrainState::Drained;
}
}
bool
DRAMCtrl::allRanksDrained() const
{
// true until proven false
bool all_ranks_drained = true;
for (auto r : ranks) {
// then verify that the power state is IDLE ensuring all banks are
// closed and rank is not in a low power state. Also verify that rank
// is idle from a refresh point of view.
all_ranks_drained = r->inPwrIdleState() && r->inRefIdleState() &&
all_ranks_drained;
}
return all_ranks_drained;
}
void
DRAMCtrl::drainResume()
{
if (!isTimingMode && system()->isTimingMode()) {
// if we switched to timing mode, kick things into action,
// and behave as if we restored from a checkpoint
startup();
} else if (isTimingMode && !system()->isTimingMode()) {
// if we switch from timing mode, stop the refresh events to
// not cause issues with KVM
for (auto r : ranks) {
r->suspend();
}
}
// update the mode
isTimingMode = system()->isTimingMode();
}
DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
: QueuedSlavePort(name, &_memory, queue), queue(_memory, *this, true),
memory(_memory)
{ }
AddrRangeList
DRAMCtrl::MemoryPort::getAddrRanges() const
{
AddrRangeList ranges;
ranges.push_back(memory.getAddrRange());
return ranges;
}
void
DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(memory.name());
if (!queue.trySatisfyFunctional(pkt)) {
// Default implementation of SimpleTimingPort::recvFunctional()
// calls recvAtomic() and throws away the latency; we can save a
// little here by just not calculating the latency.
memory.recvFunctional(pkt);
}
pkt->popLabel();
}
Tick
DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
{
return memory.recvAtomic(pkt);
}
bool
DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
{
// pass it to the memory controller
return memory.recvTimingReq(pkt);
}
DRAMCtrl*
DRAMCtrlParams::create()
{
return new DRAMCtrl(this);
}
|