summaryrefslogtreecommitdiff
path: root/src/mem/dram_ctrl.hh
blob: 1883041ccc4e4bb5256d0b64caec7901466dfba8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
/*
 * Copyright (c) 2012-2016 ARM Limited
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2013 Amin Farmahini-Farahani
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Andreas Hansson
 *          Ani Udipi
 *          Neha Agarwal
 *          Omar Naji
 *          Matthias Jung
 *          Wendy Elsasser
 */

/**
 * @file
 * DRAMCtrl declaration
 */

#ifndef __MEM_DRAM_CTRL_HH__
#define __MEM_DRAM_CTRL_HH__

#include <deque>
#include <string>
#include <unordered_set>

#include "base/callback.hh"
#include "base/statistics.hh"
#include "enums/AddrMap.hh"
#include "enums/MemSched.hh"
#include "enums/PageManage.hh"
#include "mem/abstract_mem.hh"
#include "mem/qport.hh"
#include "params/DRAMCtrl.hh"
#include "sim/eventq.hh"
#include "mem/drampower.hh"

/**
 * The DRAM controller is a single-channel memory controller capturing
 * the most important timing constraints associated with a
 * contemporary DRAM. For multi-channel memory systems, the controller
 * is combined with a crossbar model, with the channel address
 * interleaving taking part in the crossbar.
 *
 * As a basic design principle, this controller
 * model is not cycle callable, but instead uses events to: 1) decide
 * when new decisions can be made, 2) when resources become available,
 * 3) when things are to be considered done, and 4) when to send
 * things back. Through these simple principles, the model delivers
 * high performance, and lots of flexibility, allowing users to
 * evaluate the system impact of a wide range of memory technologies,
 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
 *
 * For more details, please see Hansson et al, "Simulating DRAM
 * controllers for future system architecture exploration",
 * Proc. ISPASS, 2014. If you use this model as part of your research
 * please cite the paper.
 *
 * The low-power functionality implements a staggered powerdown
 * similar to that described in "Optimized Active and Power-Down Mode
 * Refresh Control in 3D-DRAMs" by Jung et al, VLSI-SoC, 2014.
 */
class DRAMCtrl : public AbstractMemory
{

  private:

    // For now, make use of a queued slave port to avoid dealing with
    // flow control for the responses being sent back
    class MemoryPort : public QueuedSlavePort
    {

        RespPacketQueue queue;
        DRAMCtrl& memory;

      public:

        MemoryPort(const std::string& name, DRAMCtrl& _memory);

      protected:

        Tick recvAtomic(PacketPtr pkt);

        void recvFunctional(PacketPtr pkt);

        bool recvTimingReq(PacketPtr);

        virtual AddrRangeList getAddrRanges() const;

    };

    /**
     * Our incoming port, for a multi-ported controller add a crossbar
     * in front of it
     */
    MemoryPort port;

    /**
     * Remeber if the memory system is in timing mode
     */
    bool isTimingMode;

    /**
     * Remember if we have to retry a request when available.
     */
    bool retryRdReq;
    bool retryWrReq;

    /**
     * Bus state used to control the read/write switching and drive
     * the scheduling of the next request.
     */
    enum BusState {
        READ = 0,
        WRITE,
    };

    BusState busState;

    /* bus state for next request event triggered */
    BusState busStateNext;

    /**
     * Simple structure to hold the values needed to keep track of
     * commands for DRAMPower
     */
    struct Command {
       Data::MemCommand::cmds type;
       uint8_t bank;
       Tick timeStamp;

       constexpr Command(Data::MemCommand::cmds _type, uint8_t _bank,
                         Tick time_stamp)
            : type(_type), bank(_bank), timeStamp(time_stamp)
        { }
    };

    /**
     * A basic class to track the bank state, i.e. what row is
     * currently open (if any), when is the bank free to accept a new
     * column (read/write) command, when can it be precharged, and
     * when can it be activated.
     *
     * The bank also keeps track of how many bytes have been accessed
     * in the open row since it was opened.
     */
    class Bank
    {

      public:

        static const uint32_t NO_ROW = -1;

        uint32_t openRow;
        uint8_t bank;
        uint8_t bankgr;

        Tick colAllowedAt;
        Tick preAllowedAt;
        Tick actAllowedAt;

        uint32_t rowAccesses;
        uint32_t bytesAccessed;

        Bank() :
            openRow(NO_ROW), bank(0), bankgr(0),
            colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
            rowAccesses(0), bytesAccessed(0)
        { }
    };


    /**
     * The power state captures the different operational states of
     * the DRAM and interacts with the bus read/write state machine,
     * and the refresh state machine.
     *
     * PWR_IDLE      : The idle state in which all banks are closed
     *                 From here can transition to:  PWR_REF, PWR_ACT,
     *                 PWR_PRE_PDN
     *
     * PWR_REF       : Auto-refresh state.  Will transition when refresh is
     *                 complete based on power state prior to PWR_REF
     *                 From here can transition to:  PWR_IDLE, PWR_PRE_PDN,
     *                 PWR_SREF
     *
     * PWR_SREF      : Self-refresh state.  Entered after refresh if
     *                 previous state was PWR_PRE_PDN
     *                 From here can transition to:  PWR_IDLE
     *
     * PWR_PRE_PDN   : Precharge power down state
     *                 From here can transition to:  PWR_REF, PWR_IDLE
     *
     * PWR_ACT       : Activate state in which one or more banks are open
     *                 From here can transition to:  PWR_IDLE, PWR_ACT_PDN
     *
     * PWR_ACT_PDN   : Activate power down state
     *                 From here can transition to:  PWR_ACT
     */
     enum PowerState {
         PWR_IDLE = 0,
         PWR_REF,
         PWR_SREF,
         PWR_PRE_PDN,
         PWR_ACT,
         PWR_ACT_PDN
     };

    /**
     * The refresh state is used to control the progress of the
     * refresh scheduling. When normal operation is in progress the
     * refresh state is idle. Once tREFI has elasped, a refresh event
     * is triggered to start the following STM transitions which are
     * used to issue a refresh and return back to normal operation
     *
     * REF_IDLE      : IDLE state used during normal operation
     *                 From here can transition to:  REF_DRAIN
     *
     * REF_SREF_EXIT : Exiting a self-refresh; refresh event scheduled
     *                 after self-refresh exit completes
     *                 From here can transition to:  REF_DRAIN
     *
     * REF_DRAIN     : Drain state in which on going accesses complete.
     *                 From here can transition to:  REF_PD_EXIT
     *
     * REF_PD_EXIT   : Evaluate pwrState and issue wakeup if needed
     *                 Next state dependent on whether banks are open
     *                 From here can transition to:  REF_PRE, REF_START
     *
     * REF_PRE       : Close (precharge) all open banks
     *                 From here can transition to:  REF_START
     *
     * REF_START     : Issue refresh command and update DRAMPower stats
     *                 From here can transition to:  REF_RUN
     *
     * REF_RUN       : Refresh running, waiting for tRFC to expire
     *                 From here can transition to:  REF_IDLE, REF_SREF_EXIT
     */
     enum RefreshState {
         REF_IDLE = 0,
         REF_DRAIN,
         REF_PD_EXIT,
         REF_SREF_EXIT,
         REF_PRE,
         REF_START,
         REF_RUN
     };

    /**
     * Rank class includes a vector of banks. Refresh and Power state
     * machines are defined per rank. Events required to change the
     * state of the refresh and power state machine are scheduled per
     * rank. This class allows the implementation of rank-wise refresh
     * and rank-wise power-down.
     */
    class Rank : public EventManager
    {

      private:

        /**
         * A reference to the parent DRAMCtrl instance
         */
        DRAMCtrl& memory;

        /**
         * Since we are taking decisions out of order, we need to keep
         * track of what power transition is happening at what time
         */
        PowerState pwrStateTrans;

        /**
         * Previous low-power state, which will be re-entered after refresh.
         */
        PowerState pwrStatePostRefresh;

        /**
         * Track when we transitioned to the current power state
         */
        Tick pwrStateTick;

        /**
         * Keep track of when a refresh is due.
         */
        Tick refreshDueAt;

        /*
         * Command energies
         */
        Stats::Scalar actEnergy;
        Stats::Scalar preEnergy;
        Stats::Scalar readEnergy;
        Stats::Scalar writeEnergy;
        Stats::Scalar refreshEnergy;

        /*
         * Active Background Energy
         */
        Stats::Scalar actBackEnergy;

        /*
         * Precharge Background Energy
         */
        Stats::Scalar preBackEnergy;

        /*
         * Active Power-Down Energy
         */
        Stats::Scalar actPowerDownEnergy;

        /*
         * Precharge Power-Down Energy
         */
        Stats::Scalar prePowerDownEnergy;

        /*
         * self Refresh Energy
         */
        Stats::Scalar selfRefreshEnergy;

        Stats::Scalar totalEnergy;
        Stats::Scalar averagePower;

        /**
         * Stat to track total DRAM idle time
         *
         */
        Stats::Scalar totalIdleTime;

        /**
         * Track time spent in each power state.
         */
        Stats::Vector pwrStateTime;

        /**
         * Function to update Power Stats
         */
        void updatePowerStats();

        /**
         * Schedule a power state transition in the future, and
         * potentially override an already scheduled transition.
         *
         * @param pwr_state Power state to transition to
         * @param tick Tick when transition should take place
         */
        void schedulePowerEvent(PowerState pwr_state, Tick tick);

      public:

        /**
         * Current power state.
         */
        PowerState pwrState;

       /**
         * current refresh state
         */
        RefreshState refreshState;

        /**
         * rank is in or transitioning to power-down or self-refresh
         */
        bool inLowPowerState;

        /**
         * Current Rank index
         */
        uint8_t rank;

       /**
         * Track number of packets in read queue going to this rank
         */
        uint32_t readEntries;

       /**
         * Track number of packets in write queue going to this rank
         */
        uint32_t writeEntries;

        /**
         * Number of ACT, RD, and WR events currently scheduled
         * Incremented when a refresh event is started as well
         * Used to determine when a low-power state can be entered
         */
        uint8_t outstandingEvents;

        /**
         * delay power-down and self-refresh exit until this requirement is met
         */
        Tick wakeUpAllowedAt;

        /**
         * One DRAMPower instance per rank
         */
        DRAMPower power;

        /**
         * List of comamnds issued, to be sent to DRAMPpower at refresh
         * and stats dump.  Keep commands here since commands to different
         * banks are added out of order.  Will only pass commands up to
         * curTick() to DRAMPower after sorting.
         */
        std::vector<Command> cmdList;

        /**
         * Vector of Banks. Each rank is made of several devices which in
         * term are made from several banks.
         */
        std::vector<Bank> banks;

        /**
         *  To track number of banks which are currently active for
         *  this rank.
         */
        unsigned int numBanksActive;

        /** List to keep track of activate ticks */
        std::deque<Tick> actTicks;

        Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank);

        const std::string name() const
        {
            return csprintf("%s_%d", memory.name(), rank);
        }

        /**
         * Kick off accounting for power and refresh states and
         * schedule initial refresh.
         *
         * @param ref_tick Tick for first refresh
         */
        void startup(Tick ref_tick);

        /**
         * Stop the refresh events.
         */
        void suspend();

        /**
         * Check if the current rank is available for scheduling.
         * Rank will be unavailable if refresh is ongoing.
         * This includes refresh events explicitly scheduled from the the
         * controller or memory initiated events which will occur during
         * self-refresh mode.
         *
         * @param Return true if the rank is idle from a refresh point of view
         */
        bool isAvailable() const { return refreshState == REF_IDLE; }

        /**
         * Check if the current rank has all banks closed and is not
         * in a low power state
         *
         * @param Return true if the rank is idle from a bank
         *        and power point of view
         */
        bool inPwrIdleState() const { return pwrState == PWR_IDLE; }

        /**
         * Trigger a self-refresh exit if there are entries enqueued
         * Exit if there are any read entries regardless of the bus state.
         * If we are currently issuing write commands, exit if we have any
         * write commands enqueued as well.
         * Could expand this in the future to analyze state of entire queue
         * if needed.
         *
         * @return boolean indicating self-refresh exit should be scheduled
         */
        bool forceSelfRefreshExit() const {
            return (readEntries != 0) ||
                   ((memory.busStateNext == WRITE) && (writeEntries != 0));
        }

        /**
         * Check if the current rank is idle and should enter a low-pwer state
         *
         * @param Return true if the there are no read commands in Q
         *                    and there are no outstanding events
         */
        bool lowPowerEntryReady() const;

        /**
         * Let the rank check if it was waiting for requests to drain
         * to allow it to transition states.
         */
        void checkDrainDone();

        /**
         * Push command out of cmdList queue that are scheduled at
         * or before curTick() to DRAMPower library
         * All commands before curTick are guaranteed to be complete
         * and can safely be flushed.
         */
        void flushCmdList();

        /*
         * Function to register Stats
         */
        void regStats();

        /**
         * Computes stats just prior to dump event
         */
        void computeStats();

        /**
         * Schedule a transition to power-down (sleep)
         *
         * @param pwr_state Power state to transition to
         * @param tick Absolute tick when transition should take place
         */
        void powerDownSleep(PowerState pwr_state, Tick tick);

       /**
         * schedule and event to wake-up from power-down or self-refresh
         * and update bank timing parameters
         *
         * @param exit_delay Relative tick defining the delay required between
         *                   low-power exit and the next command
         */
        void scheduleWakeUpEvent(Tick exit_delay);

        void processWriteDoneEvent();
        EventWrapper<Rank, &Rank::processWriteDoneEvent>
        writeDoneEvent;

        void processActivateEvent();
        EventWrapper<Rank, &Rank::processActivateEvent>
        activateEvent;

        void processPrechargeEvent();
        EventWrapper<Rank, &Rank::processPrechargeEvent>
        prechargeEvent;

        void processRefreshEvent();
        EventWrapper<Rank, &Rank::processRefreshEvent>
        refreshEvent;

        void processPowerEvent();
        EventWrapper<Rank, &Rank::processPowerEvent>
        powerEvent;

        void processWakeUpEvent();
        EventWrapper<Rank, &Rank::processWakeUpEvent>
        wakeUpEvent;

    };

    // define the process to compute stats on simulation exit
    // defined per rank as the per rank stats are based on state
    // transition and periodically updated, requiring re-sync at
    // exit.
    class RankDumpCallback : public Callback
    {
        Rank *ranks;
      public:
        RankDumpCallback(Rank *r) : ranks(r) {}
        virtual void process() { ranks->computeStats(); };
    };

    /**
     * A burst helper helps organize and manage a packet that is larger than
     * the DRAM burst size. A system packet that is larger than the burst size
     * is split into multiple DRAM packets and all those DRAM packets point to
     * a single burst helper such that we know when the whole packet is served.
     */
    class BurstHelper {

      public:

        /** Number of DRAM bursts requred for a system packet **/
        const unsigned int burstCount;

        /** Number of DRAM bursts serviced so far for a system packet **/
        unsigned int burstsServiced;

        BurstHelper(unsigned int _burstCount)
            : burstCount(_burstCount), burstsServiced(0)
        { }
    };

    /**
     * A DRAM packet stores packets along with the timestamp of when
     * the packet entered the queue, and also the decoded address.
     */
    class DRAMPacket {

      public:

        /** When did request enter the controller */
        const Tick entryTime;

        /** When will request leave the controller */
        Tick readyTime;

        /** This comes from the outside world */
        const PacketPtr pkt;

        const bool isRead;

        /** Will be populated by address decoder */
        const uint8_t rank;
        const uint8_t bank;
        const uint32_t row;

        /**
         * Bank id is calculated considering banks in all the ranks
         * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
         * bankId = 8 --> rank1, bank0
         */
        const uint16_t bankId;

        /**
         * The starting address of the DRAM packet.
         * This address could be unaligned to burst size boundaries. The
         * reason is to keep the address offset so we can accurately check
         * incoming read packets with packets in the write queue.
         */
        Addr addr;

        /**
         * The size of this dram packet in bytes
         * It is always equal or smaller than DRAM burst size
         */
        unsigned int size;

        /**
         * A pointer to the BurstHelper if this DRAMPacket is a split packet
         * If not a split packet (common case), this is set to NULL
         */
        BurstHelper* burstHelper;
        Bank& bankRef;
        Rank& rankRef;

        DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
                   uint32_t _row, uint16_t bank_id, Addr _addr,
                   unsigned int _size, Bank& bank_ref, Rank& rank_ref)
            : entryTime(curTick()), readyTime(curTick()),
              pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
              bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
              bankRef(bank_ref), rankRef(rank_ref)
        { }

    };

    /**
     * Bunch of things requires to setup "events" in gem5
     * When event "respondEvent" occurs for example, the method
     * processRespondEvent is called; no parameters are allowed
     * in these methods
     */
    void processNextReqEvent();
    EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;

    void processRespondEvent();
    EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;

    /**
     * Check if the read queue has room for more entries
     *
     * @param pktCount The number of entries needed in the read queue
     * @return true if read queue is full, false otherwise
     */
    bool readQueueFull(unsigned int pktCount) const;

    /**
     * Check if the write queue has room for more entries
     *
     * @param pktCount The number of entries needed in the write queue
     * @return true if write queue is full, false otherwise
     */
    bool writeQueueFull(unsigned int pktCount) const;

    /**
     * When a new read comes in, first check if the write q has a
     * pending request to the same address.\ If not, decode the
     * address to populate rank/bank/row, create one or mutliple
     * "dram_pkt", and push them to the back of the read queue.\
     * If this is the only
     * read request in the system, schedule an event to start
     * servicing it.
     *
     * @param pkt The request packet from the outside world
     * @param pktCount The number of DRAM bursts the pkt
     * translate to. If pkt size is larger then one full burst,
     * then pktCount is greater than one.
     */
    void addToReadQueue(PacketPtr pkt, unsigned int pktCount);

    /**
     * Decode the incoming pkt, create a dram_pkt and push to the
     * back of the write queue. \If the write q length is more than
     * the threshold specified by the user, ie the queue is beginning
     * to get full, stop reads, and start draining writes.
     *
     * @param pkt The request packet from the outside world
     * @param pktCount The number of DRAM bursts the pkt
     * translate to. If pkt size is larger then one full burst,
     * then pktCount is greater than one.
     */
    void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);

    /**
     * Actually do the DRAM access - figure out the latency it
     * will take to service the req based on bank state, channel state etc
     * and then update those states to account for this request.\ Based
     * on this, update the packet's "readyTime" and move it to the
     * response q from where it will eventually go back to the outside
     * world.
     *
     * @param pkt The DRAM packet created from the outside world pkt
     */
    void doDRAMAccess(DRAMPacket* dram_pkt);

    /**
     * When a packet reaches its "readyTime" in the response Q,
     * use the "access()" method in AbstractMemory to actually
     * create the response packet, and send it back to the outside
     * world requestor.
     *
     * @param pkt The packet from the outside world
     * @param static_latency Static latency to add before sending the packet
     */
    void accessAndRespond(PacketPtr pkt, Tick static_latency);

    /**
     * Address decoder to figure out physical mapping onto ranks,
     * banks, and rows. This function is called multiple times on the same
     * system packet if the pakcet is larger than burst of the memory. The
     * dramPktAddr is used for the offset within the packet.
     *
     * @param pkt The packet from the outside world
     * @param dramPktAddr The starting address of the DRAM packet
     * @param size The size of the DRAM packet in bytes
     * @param isRead Is the request for a read or a write to DRAM
     * @return A DRAMPacket pointer with the decoded information
     */
    DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
                           bool isRead);

    /**
     * The memory schduler/arbiter - picks which request needs to
     * go next, based on the specified policy such as FCFS or FR-FCFS
     * and moves it to the head of the queue.
     * Prioritizes accesses to the same rank as previous burst unless
     * controller is switching command type.
     *
     * @param queue Queued requests to consider
     * @param extra_col_delay Any extra delay due to a read/write switch
     * @return true if a packet is scheduled to a rank which is available else
     * false
     */
    bool chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);

    /**
     * For FR-FCFS policy reorder the read/write queue depending on row buffer
     * hits and earliest bursts available in DRAM
     *
     * @param queue Queued requests to consider
     * @param extra_col_delay Any extra delay due to a read/write switch
     * @return true if a packet is scheduled to a rank which is available else
     * false
     */
    bool reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay);

    /**
     * Find which are the earliest banks ready to issue an activate
     * for the enqueued requests. Assumes maximum of 64 banks per DIMM
     * Also checks if the bank is already prepped.
     *
     * @param queue Queued requests to consider
     * @param time of seamless burst command
     * @return One-hot encoded mask of bank indices
     * @return boolean indicating burst can issue seamlessly, with no gaps
     */
    std::pair<uint64_t, bool> minBankPrep(const std::deque<DRAMPacket*>& queue,
                                          Tick min_col_at) const;

    /**
     * Keep track of when row activations happen, in order to enforce
     * the maximum number of activations in the activation window. The
     * method updates the time that the banks become available based
     * on the current limits.
     *
     * @param rank_ref Reference to the rank
     * @param bank_ref Reference to the bank
     * @param act_tick Time when the activation takes place
     * @param row Index of the row
     */
    void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
                      uint32_t row);

    /**
     * Precharge a given bank and also update when the precharge is
     * done. This will also deal with any stats related to the
     * accesses to the open page.
     *
     * @param rank_ref The rank to precharge
     * @param bank_ref The bank to precharge
     * @param pre_at Time when the precharge takes place
     * @param trace Is this an auto precharge then do not add to trace
     */
    void prechargeBank(Rank& rank_ref, Bank& bank_ref,
                       Tick pre_at, bool trace = true);

    /**
     * Used for debugging to observe the contents of the queues.
     */
    void printQs() const;

    /**
     * Burst-align an address.
     *
     * @param addr The potentially unaligned address
     *
     * @return An address aligned to a DRAM burst
     */
    Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }

    /**
     * The controller's main read and write queues
     */
    std::deque<DRAMPacket*> readQueue;
    std::deque<DRAMPacket*> writeQueue;

    /**
     * To avoid iterating over the write queue to check for
     * overlapping transactions, maintain a set of burst addresses
     * that are currently queued. Since we merge writes to the same
     * location we never have more than one address to the same burst
     * address.
     */
    std::unordered_set<Addr> isInWriteQueue;

    /**
     * Response queue where read packets wait after we're done working
     * with them, but it's not time to send the response yet. The
     * responses are stored seperately mostly to keep the code clean
     * and help with events scheduling. For all logical purposes such
     * as sizing the read queue, this and the main read queue need to
     * be added together.
     */
    std::deque<DRAMPacket*> respQueue;

    /**
     * Vector of ranks
     */
    std::vector<Rank*> ranks;

    /**
     * The following are basic design parameters of the memory
     * controller, and are initialized based on parameter values.
     * The rowsPerBank is determined based on the capacity, number of
     * ranks and banks, the burst size, and the row buffer size.
     */
    const uint32_t deviceSize;
    const uint32_t deviceBusWidth;
    const uint32_t burstLength;
    const uint32_t deviceRowBufferSize;
    const uint32_t devicesPerRank;
    const uint32_t burstSize;
    const uint32_t rowBufferSize;
    const uint32_t columnsPerRowBuffer;
    const uint32_t columnsPerStripe;
    const uint32_t ranksPerChannel;
    const uint32_t bankGroupsPerRank;
    const bool bankGroupArch;
    const uint32_t banksPerRank;
    const uint32_t channels;
    uint32_t rowsPerBank;
    const uint32_t readBufferSize;
    const uint32_t writeBufferSize;
    const uint32_t writeHighThreshold;
    const uint32_t writeLowThreshold;
    const uint32_t minWritesPerSwitch;
    uint32_t writesThisTime;
    uint32_t readsThisTime;

    /**
     * Basic memory timing parameters initialized based on parameter
     * values.
     */
    const Tick M5_CLASS_VAR_USED tCK;
    const Tick tWTR;
    const Tick tRTW;
    const Tick tCS;
    const Tick tBURST;
    const Tick tCCD_L;
    const Tick tRCD;
    const Tick tCL;
    const Tick tRP;
    const Tick tRAS;
    const Tick tWR;
    const Tick tRTP;
    const Tick tRFC;
    const Tick tREFI;
    const Tick tRRD;
    const Tick tRRD_L;
    const Tick tXAW;
    const Tick tXP;
    const Tick tXS;
    const uint32_t activationLimit;

    /**
     * Memory controller configuration initialized based on parameter
     * values.
     */
    Enums::MemSched memSchedPolicy;
    Enums::AddrMap addrMapping;
    Enums::PageManage pageMgmt;

    /**
     * Max column accesses (read and write) per row, before forefully
     * closing it.
     */
    const uint32_t maxAccessesPerRow;

    /**
     * Pipeline latency of the controller frontend. The frontend
     * contribution is added to writes (that complete when they are in
     * the write buffer) and reads that are serviced the write buffer.
     */
    const Tick frontendLatency;

    /**
     * Pipeline latency of the backend and PHY. Along with the
     * frontend contribution, this latency is added to reads serviced
     * by the DRAM.
     */
    const Tick backendLatency;

    /**
     * Till when has the main data bus been spoken for already?
     */
    Tick busBusyUntil;

    Tick prevArrival;

    /**
     * The soonest you have to start thinking about the next request
     * is the longest access time that can occur before
     * busBusyUntil. Assuming you need to precharge, open a new row,
     * and access, it is tRP + tRCD + tCL.
     */
    Tick nextReqTime;

    // All statistics that the model needs to capture
    Stats::Scalar readReqs;
    Stats::Scalar writeReqs;
    Stats::Scalar readBursts;
    Stats::Scalar writeBursts;
    Stats::Scalar bytesReadDRAM;
    Stats::Scalar bytesReadWrQ;
    Stats::Scalar bytesWritten;
    Stats::Scalar bytesReadSys;
    Stats::Scalar bytesWrittenSys;
    Stats::Scalar servicedByWrQ;
    Stats::Scalar mergedWrBursts;
    Stats::Scalar neitherReadNorWrite;
    Stats::Vector perBankRdBursts;
    Stats::Vector perBankWrBursts;
    Stats::Scalar numRdRetry;
    Stats::Scalar numWrRetry;
    Stats::Scalar totGap;
    Stats::Vector readPktSize;
    Stats::Vector writePktSize;
    Stats::Vector rdQLenPdf;
    Stats::Vector wrQLenPdf;
    Stats::Histogram bytesPerActivate;
    Stats::Histogram rdPerTurnAround;
    Stats::Histogram wrPerTurnAround;

    // Latencies summed over all requests
    Stats::Scalar totQLat;
    Stats::Scalar totMemAccLat;
    Stats::Scalar totBusLat;

    // Average latencies per request
    Stats::Formula avgQLat;
    Stats::Formula avgBusLat;
    Stats::Formula avgMemAccLat;

    // Average bandwidth
    Stats::Formula avgRdBW;
    Stats::Formula avgWrBW;
    Stats::Formula avgRdBWSys;
    Stats::Formula avgWrBWSys;
    Stats::Formula peakBW;
    Stats::Formula busUtil;
    Stats::Formula busUtilRead;
    Stats::Formula busUtilWrite;

    // Average queue lengths
    Stats::Average avgRdQLen;
    Stats::Average avgWrQLen;

    // Row hit count and rate
    Stats::Scalar readRowHits;
    Stats::Scalar writeRowHits;
    Stats::Formula readRowHitRate;
    Stats::Formula writeRowHitRate;
    Stats::Formula avgGap;

    // DRAM Power Calculation
    Stats::Formula pageHitRate;

    // Holds the value of the rank of burst issued
    uint8_t activeRank;

    // timestamp offset
    uint64_t timeStampOffset;

    /**
     * Upstream caches need this packet until true is returned, so
     * hold it for deletion until a subsequent call
     */
    std::unique_ptr<Packet> pendingDelete;

    /**
     * This function increments the energy when called. If stats are
     * dumped periodically, note accumulated energy values will
     * appear in the stats (even if the stats are reset). This is a
     * result of the energy values coming from DRAMPower, and there
     * is currently no support for resetting the state.
     *
     * @param rank Currrent rank
     */
    void updatePowerStats(Rank& rank_ref);

    /**
     * Function for sorting Command structures based on timeStamp
     *
     * @param a Memory Command
     * @param next Memory Command
     * @return true if timeStamp of Command 1 < timeStamp of Command 2
     */
    static bool sortTime(const Command& cmd, const Command& cmd_next) {
        return cmd.timeStamp < cmd_next.timeStamp;
    };

  public:

    void regStats() override;

    DRAMCtrl(const DRAMCtrlParams* p);

    DrainState drain() override;

    virtual BaseSlavePort& getSlavePort(const std::string& if_name,
                                        PortID idx = InvalidPortID) override;

    virtual void init() override;
    virtual void startup() override;
    virtual void drainResume() override;

    /**
     * Return true once refresh is complete for all ranks and there are no
     * additional commands enqueued.  (only evaluated when draining)
     * This will ensure that all banks are closed, power state is IDLE, and
     * power stats have been updated
     *
     * @return true if all ranks have refreshed, with no commands enqueued
     *
     */
    bool allRanksDrained() const;

  protected:

    Tick recvAtomic(PacketPtr pkt);
    void recvFunctional(PacketPtr pkt);
    bool recvTimingReq(PacketPtr pkt);

};

#endif //__MEM_DRAM_CTRL_HH__