1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Alexandru Dutu
*/
/**
* @file
* Declaration of a multi-level page table.
*/
#ifndef __MEM_MULTI_LEVEL_PAGE_TABLE_HH__
#define __MEM_MULTI_LEVEL_PAGE_TABLE_HH__
#include <string>
#include "base/types.hh"
#include "mem/page_table.hh"
class System;
/**
* This class implements an in-memory multi-level page table that can be
* configured to follow ISA specifications. It can be used instead of the
* PageTable class in SE mode to allow CPU models (e.g. X86KvmCPU)
* to do a normal page table walk.
*
* To reduce memory required to store the page table, a multi-level page
* table stores its translations similarly with a radix tree. Let n be
* the number of levels and {Ln, Ln-1, ..., L1, L0} a set that specifies
* the number of entries for each level as base 2 logarithm values. A
* multi-level page table will store its translations at level 0 (the
* leaves of the tree) and it will be layed out in memory in the
* following way:
*
* +------------------------------+
* level n |Ln-1_E0|Ln-1_E1|...|Ln-1_E2^Ln|
* +------------------------------+
* / \
* +------------------------+ +------------------------+
* level n-1 |Ln-2_E0|...|Ln-2_E2^Ln-1| |Ln-2_E0|...|Ln-2_E2^Ln-1|
* +------------------------+ +------------------------+
* / \ / \
* .
* .
* .
* / / \
* +------------------+ +------------+ +------------+
* level 1 |L0_E1|...|L0_E2^L1| |...|L0_E2^L1| ... |...|L0_E2^L1|
* +------------------+ +------------+ +------------+
* , where
* +------------------------------+
* |Lk-1_E0|Lk-1_E1|...|Lk-1_E2^Lk|
* +------------------------------+
* is a level k entry that holds 2^Lk entries in Lk-1 level.
*
* Essentially, a level n entry will contain 2^Ln level n-1 entries,
* a level n-1 entry will hold 2^Ln-1 level n-2 entries etc.
*
* The virtual address is split into offsets that index into the
* different levels of the page table.
*
* +--------------------------------+
* |LnOffset|...|L1Offset|PageOffset|
* +--------------------------------+
*
* For example L0Offset will be formed by the bits in range
* [log2(PageOffset), log2(PageOffset)+L0].
*
* For every level of the page table, from n to 1, the base address
* of the entry is loaded, the offset in the virtual address for
* that particular level is used to index into the entry which
* will reveal the memory address of the entry in the next level.
*
* @see MultiLevelPageTable
*/
namespace {
template <class First, class ...Rest>
Addr
prepTopTable(System *system, Addr pageSize)
{
Addr addr = system->allocPhysPages(First::tableSize());
PortProxy &p = system->physProxy;
p.memsetBlob(addr, 0, First::tableSize() * pageSize);
return addr;
}
template <class ...Types>
struct LastType;
template <class First, class Second, class ...Rest>
struct LastType<First, Second, Rest...>
{
typedef typename LastType<Second, Rest...>::type type;
};
template <class Only>
struct LastType<Only>
{
typedef Only type;
};
template <class ...Types>
struct WalkWrapper;
template <class Final, class Only>
struct WalkWrapper<Final, Only>
{
static void
walk(System *system, Addr pageSize, Addr table, Addr vaddr,
bool allocate, Final *entry)
{
entry->read(system->physProxy, table, vaddr);
}
};
template <class Final, class First, class Second, class ...Rest>
struct WalkWrapper<Final, First, Second, Rest...>
{
static void
walk(System *system, Addr pageSize, Addr table, Addr vaddr,
bool allocate, Final *entry)
{
First first;
first.read(system->physProxy, table, vaddr);
Addr next;
if (!first.present()) {
fatal_if(!allocate,
"Page fault while walking the page table.");
next = prepTopTable<Second>(system, pageSize);
first.reset(next);
first.write(system->physProxy);
} else {
next = first.paddr();
}
WalkWrapper<Final, Second, Rest...>::walk(
system, pageSize, next, vaddr, allocate, entry);
}
};
template <class ...EntryTypes>
void
walk(System *system, Addr pageSize, Addr table, Addr vaddr,
bool allocate, typename LastType<EntryTypes...>::type *entry)
{
WalkWrapper<typename LastType<EntryTypes...>::type, EntryTypes...>::walk(
system, pageSize, table, vaddr, allocate, entry);
}
}
template <class ...EntryTypes>
class MultiLevelPageTable : public EmulationPageTable
{
typedef typename LastType<EntryTypes...>::type Final;
/**
* Pointer to System object
*/
System *system;
/**
* Physical address to the last level of the page table
*/
Addr _basePtr;
public:
MultiLevelPageTable(const std::string &__name, uint64_t _pid,
System *_sys, Addr pageSize) :
EmulationPageTable(__name, _pid, pageSize), system(_sys)
{}
~MultiLevelPageTable() {}
void
initState(ThreadContext* tc) override
{
if (shared)
return;
_basePtr = prepTopTable<EntryTypes...>(system, pageSize);
}
Addr basePtr() { return _basePtr; }
void
map(Addr vaddr, Addr paddr, int64_t size, uint64_t flags = 0) override
{
EmulationPageTable::map(vaddr, paddr, size, flags);
Final entry;
for (int64_t offset = 0; offset < size; offset += pageSize) {
walk<EntryTypes...>(system, pageSize, _basePtr,
vaddr + offset, true, &entry);
entry.reset(paddr + offset, true, flags & Uncacheable,
flags & ReadOnly);
entry.write(system->physProxy);
DPRINTF(MMU, "New mapping: %#x-%#x\n",
vaddr + offset, paddr + offset);
}
}
void
remap(Addr vaddr, int64_t size, Addr new_vaddr) override
{
EmulationPageTable::remap(vaddr, size, new_vaddr);
Final old_entry, new_entry;
for (int64_t offset = 0; offset < size; offset += pageSize) {
// Unmap the original mapping.
walk<EntryTypes...>(system, pageSize, _basePtr, vaddr + offset,
false, &old_entry);
old_entry.present(false);
old_entry.write(system->physProxy);
// Map the new one.
walk<EntryTypes...>(system, pageSize, _basePtr, new_vaddr + offset,
true, &new_entry);
new_entry.reset(old_entry.paddr(), true, old_entry.uncacheable(),
old_entry.readonly());
new_entry.write(system->physProxy);
}
}
void
unmap(Addr vaddr, int64_t size) override
{
EmulationPageTable::unmap(vaddr, size);
Final entry;
for (int64_t offset = 0; offset < size; offset += pageSize) {
walk<EntryTypes...>(system, pageSize, _basePtr,
vaddr + offset, false, &entry);
fatal_if(!entry.present(),
"PageTable::unmap: Address %#x not mapped.", vaddr);
entry.present(false);
entry.write(system->physProxy);
DPRINTF(MMU, "Unmapping: %#x\n", vaddr);
}
}
void
serialize(CheckpointOut &cp) const override
{
EmulationPageTable::serialize(cp);
/** Since, the page table is stored in system memory
* which is serialized separately, we will serialize
* just the base pointer
*/
paramOut(cp, "ptable.pointer", _basePtr);
}
void
unserialize(CheckpointIn &cp) override
{
EmulationPageTable::unserialize(cp);
paramIn(cp, "ptable.pointer", _basePtr);
}
};
#endif // __MEM_MULTI_LEVEL_PAGE_TABLE_HH__
|