1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
|
/*
* Copyright (c) 2012, 2014, 2018 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andreas Hansson
*/
#include "mem/physical.hh"
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/user.h>
#include <unistd.h>
#include <zlib.h>
#include <cerrno>
#include <climits>
#include <cstdio>
#include <iostream>
#include <string>
#include "base/trace.hh"
#include "debug/AddrRanges.hh"
#include "debug/Checkpoint.hh"
#include "mem/abstract_mem.hh"
/**
* On Linux, MAP_NORESERVE allow us to simulate a very large memory
* without committing to actually providing the swap space on the
* host. On FreeBSD or OSX the MAP_NORESERVE flag does not exist,
* so simply make it 0.
*/
#if defined(__APPLE__) || defined(__FreeBSD__)
#ifndef MAP_NORESERVE
#define MAP_NORESERVE 0
#endif
#endif
using namespace std;
PhysicalMemory::PhysicalMemory(const string& _name,
const vector<AbstractMemory*>& _memories,
bool mmap_using_noreserve) :
_name(_name), size(0), mmapUsingNoReserve(mmap_using_noreserve)
{
if (mmap_using_noreserve)
warn("Not reserving swap space. May cause SIGSEGV on actual usage\n");
// add the memories from the system to the address map as
// appropriate
for (const auto& m : _memories) {
// only add the memory if it is part of the global address map
if (m->isInAddrMap()) {
memories.push_back(m);
// calculate the total size once and for all
size += m->size();
// add the range to our interval tree and make sure it does not
// intersect an existing range
fatal_if(addrMap.insert(m->getAddrRange(), m) == addrMap.end(),
"Memory address range for %s is overlapping\n",
m->name());
} else {
// this type of memory is used e.g. as reference memory by
// Ruby, and they also needs a backing store, but should
// not be part of the global address map
DPRINTF(AddrRanges,
"Skipping memory %s that is not in global address map\n",
m->name());
// sanity check
fatal_if(m->getAddrRange().interleaved(),
"Memory %s that is not in the global address map cannot "
"be interleaved\n", m->name());
// simply do it independently, also note that this kind of
// memories are allowed to overlap in the logic address
// map
vector<AbstractMemory*> unmapped_mems{m};
createBackingStore(m->getAddrRange(), unmapped_mems,
m->isConfReported(), m->isInAddrMap(),
m->isKvmMap());
}
}
// iterate over the increasing addresses and chunks of contiguous
// space to be mapped to backing store, create it and inform the
// memories
vector<AddrRange> intlv_ranges;
vector<AbstractMemory*> curr_memories;
for (const auto& r : addrMap) {
// simply skip past all memories that are null and hence do
// not need any backing store
if (!r.second->isNull()) {
// if the range is interleaved then save it for now
if (r.first.interleaved()) {
// if we already got interleaved ranges that are not
// part of the same range, then first do a merge
// before we add the new one
if (!intlv_ranges.empty() &&
!intlv_ranges.back().mergesWith(r.first)) {
AddrRange merged_range(intlv_ranges);
AbstractMemory *f = curr_memories.front();
for (const auto& c : curr_memories)
if (f->isConfReported() != c->isConfReported() ||
f->isInAddrMap() != c->isInAddrMap() ||
f->isKvmMap() != c->isKvmMap())
fatal("Inconsistent flags in an interleaved "
"range\n");
createBackingStore(merged_range, curr_memories,
f->isConfReported(), f->isInAddrMap(),
f->isKvmMap());
intlv_ranges.clear();
curr_memories.clear();
}
intlv_ranges.push_back(r.first);
curr_memories.push_back(r.second);
} else {
vector<AbstractMemory*> single_memory{r.second};
createBackingStore(r.first, single_memory,
r.second->isConfReported(),
r.second->isInAddrMap(),
r.second->isKvmMap());
}
}
}
// if there is still interleaved ranges waiting to be merged, go
// ahead and do it
if (!intlv_ranges.empty()) {
AddrRange merged_range(intlv_ranges);
AbstractMemory *f = curr_memories.front();
for (const auto& c : curr_memories)
if (f->isConfReported() != c->isConfReported() ||
f->isInAddrMap() != c->isInAddrMap() ||
f->isKvmMap() != c->isKvmMap())
fatal("Inconsistent flags in an interleaved "
"range\n");
createBackingStore(merged_range, curr_memories,
f->isConfReported(), f->isInAddrMap(),
f->isKvmMap());
}
}
void
PhysicalMemory::createBackingStore(AddrRange range,
const vector<AbstractMemory*>& _memories,
bool conf_table_reported,
bool in_addr_map, bool kvm_map)
{
panic_if(range.interleaved(),
"Cannot create backing store for interleaved range %s\n",
range.to_string());
// perform the actual mmap
DPRINTF(AddrRanges, "Creating backing store for range %s with size %d\n",
range.to_string(), range.size());
int map_flags = MAP_ANON | MAP_PRIVATE;
// to be able to simulate very large memories, the user can opt to
// pass noreserve to mmap
if (mmapUsingNoReserve) {
map_flags |= MAP_NORESERVE;
}
uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
PROT_READ | PROT_WRITE,
map_flags, -1, 0);
if (pmem == (uint8_t*) MAP_FAILED) {
perror("mmap");
fatal("Could not mmap %d bytes for range %s!\n", range.size(),
range.to_string());
}
// remember this backing store so we can checkpoint it and unmap
// it appropriately
backingStore.emplace_back(range, pmem,
conf_table_reported, in_addr_map, kvm_map);
// point the memories to their backing store
for (const auto& m : _memories) {
DPRINTF(AddrRanges, "Mapping memory %s to backing store\n",
m->name());
m->setBackingStore(pmem);
}
}
PhysicalMemory::~PhysicalMemory()
{
// unmap the backing store
for (auto& s : backingStore)
munmap((char*)s.pmem, s.range.size());
}
bool
PhysicalMemory::isMemAddr(Addr addr) const
{
return addrMap.contains(addr) != addrMap.end();
}
AddrRangeList
PhysicalMemory::getConfAddrRanges() const
{
// this could be done once in the constructor, but since it is unlikely to
// be called more than once the iteration should not be a problem
AddrRangeList ranges;
vector<AddrRange> intlv_ranges;
for (const auto& r : addrMap) {
if (r.second->isConfReported()) {
// if the range is interleaved then save it for now
if (r.first.interleaved()) {
// if we already got interleaved ranges that are not
// part of the same range, then first do a merge
// before we add the new one
if (!intlv_ranges.empty() &&
!intlv_ranges.back().mergesWith(r.first)) {
ranges.push_back(AddrRange(intlv_ranges));
intlv_ranges.clear();
}
intlv_ranges.push_back(r.first);
} else {
// keep the current range
ranges.push_back(r.first);
}
}
}
// if there is still interleaved ranges waiting to be merged,
// go ahead and do it
if (!intlv_ranges.empty()) {
ranges.push_back(AddrRange(intlv_ranges));
}
return ranges;
}
void
PhysicalMemory::access(PacketPtr pkt)
{
assert(pkt->isRequest());
const auto& m = addrMap.contains(pkt->getAddrRange());
assert(m != addrMap.end());
m->second->access(pkt);
}
void
PhysicalMemory::functionalAccess(PacketPtr pkt)
{
assert(pkt->isRequest());
const auto& m = addrMap.contains(pkt->getAddrRange());
assert(m != addrMap.end());
m->second->functionalAccess(pkt);
}
void
PhysicalMemory::serialize(CheckpointOut &cp) const
{
// serialize all the locked addresses and their context ids
vector<Addr> lal_addr;
vector<ContextID> lal_cid;
for (auto& m : memories) {
const list<LockedAddr>& locked_addrs = m->getLockedAddrList();
for (const auto& l : locked_addrs) {
lal_addr.push_back(l.addr);
lal_cid.push_back(l.contextId);
}
}
SERIALIZE_CONTAINER(lal_addr);
SERIALIZE_CONTAINER(lal_cid);
// serialize the backing stores
unsigned int nbr_of_stores = backingStore.size();
SERIALIZE_SCALAR(nbr_of_stores);
unsigned int store_id = 0;
// store each backing store memory segment in a file
for (auto& s : backingStore) {
ScopedCheckpointSection sec(cp, csprintf("store%d", store_id));
serializeStore(cp, store_id++, s.range, s.pmem);
}
}
void
PhysicalMemory::serializeStore(CheckpointOut &cp, unsigned int store_id,
AddrRange range, uint8_t* pmem) const
{
// we cannot use the address range for the name as the
// memories that are not part of the address map can overlap
string filename = name() + ".store" + to_string(store_id) + ".pmem";
long range_size = range.size();
DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
filename, range_size);
SERIALIZE_SCALAR(store_id);
SERIALIZE_SCALAR(filename);
SERIALIZE_SCALAR(range_size);
// write memory file
string filepath = CheckpointIn::dir() + "/" + filename.c_str();
gzFile compressed_mem = gzopen(filepath.c_str(), "wb");
if (compressed_mem == NULL)
fatal("Can't open physical memory checkpoint file '%s'\n",
filename);
uint64_t pass_size = 0;
// gzwrite fails if (int)len < 0 (gzwrite returns int)
for (uint64_t written = 0; written < range.size();
written += pass_size) {
pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
(uint64_t)INT_MAX : (range.size() - written);
if (gzwrite(compressed_mem, pmem + written,
(unsigned int) pass_size) != (int) pass_size) {
fatal("Write failed on physical memory checkpoint file '%s'\n",
filename);
}
}
// close the compressed stream and check that the exit status
// is zero
if (gzclose(compressed_mem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
}
void
PhysicalMemory::unserialize(CheckpointIn &cp)
{
// unserialize the locked addresses and map them to the
// appropriate memory controller
vector<Addr> lal_addr;
vector<ContextID> lal_cid;
UNSERIALIZE_CONTAINER(lal_addr);
UNSERIALIZE_CONTAINER(lal_cid);
for (size_t i = 0; i < lal_addr.size(); ++i) {
const auto& m = addrMap.contains(lal_addr[i]);
m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
}
// unserialize the backing stores
unsigned int nbr_of_stores;
UNSERIALIZE_SCALAR(nbr_of_stores);
for (unsigned int i = 0; i < nbr_of_stores; ++i) {
ScopedCheckpointSection sec(cp, csprintf("store%d", i));
unserializeStore(cp);
}
}
void
PhysicalMemory::unserializeStore(CheckpointIn &cp)
{
const uint32_t chunk_size = 16384;
unsigned int store_id;
UNSERIALIZE_SCALAR(store_id);
string filename;
UNSERIALIZE_SCALAR(filename);
string filepath = cp.cptDir + "/" + filename;
// mmap memoryfile
gzFile compressed_mem = gzopen(filepath.c_str(), "rb");
if (compressed_mem == NULL)
fatal("Can't open physical memory checkpoint file '%s'", filename);
// we've already got the actual backing store mapped
uint8_t* pmem = backingStore[store_id].pmem;
AddrRange range = backingStore[store_id].range;
long range_size;
UNSERIALIZE_SCALAR(range_size);
DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
filename, range_size);
if (range_size != range.size())
fatal("Memory range size has changed! Saw %lld, expected %lld\n",
range_size, range.size());
uint64_t curr_size = 0;
long* temp_page = new long[chunk_size];
long* pmem_current;
uint32_t bytes_read;
while (curr_size < range.size()) {
bytes_read = gzread(compressed_mem, temp_page, chunk_size);
if (bytes_read == 0)
break;
assert(bytes_read % sizeof(long) == 0);
for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
// Only copy bytes that are non-zero, so we don't give
// the VM system hell
if (*(temp_page + x) != 0) {
pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
*pmem_current = *(temp_page + x);
}
}
curr_size += bytes_read;
}
delete[] temp_page;
if (gzclose(compressed_mem))
fatal("Close failed on physical memory checkpoint file '%s'\n",
filename);
}
|